Showing posts with label 4G. Show all posts
Showing posts with label 4G. Show all posts

Wednesday 20 July 2011

Technology Deployment and Adoption Trends

This informative slide shows the number of years it takes after the technology is launched to reach the peak volumes. Though we know this to be true for the 1G and 2G systems, I find it difficult to believe the same would be true for 3G and 4G systems.

If the LTE deployments are going to happen as per the plans then we may see the peak volumes for 3G/HSPA+ around 2016. It would be difficult to predict the same for '4G' systems as we do not know as of know what all would be part of 4G. As you would recall that LTE was supposed to be 3.9G but was too confusing so everyone adopted it as 4G. LTE-A, the real 4G, I guess would still be part of 4G. What else would end up as 4G is hard to predict so we will have to go with the prediction for the time being.

Sunday 8 May 2011

What is '4G' ?

One of the most popular posts is Dilbert's definition of '4G'. So I decided to go back and see how and if the definition of '4G' has changed over the time.

Back in 2008, '4G' was more of WiMAX. Here is a video from that time:




2009 video of Cisco where they are pushing for 4G = IP :





2010 video that says 4G = fast :




Now from 2011, where consumers in US are being asked What '4G' means:


WKRG.com News

And finally my '4G' FAQ from 2006 that is seriously outdated and needs updating :)

Thursday 3 February 2011

4G Mobile Broadband Evolution: 3GPP Release-10 and Beyond

New Report from 4G Americas:

4G Mobile Broadband Evolution: 3GPP Release 10 and Beyond - HSPA+ SAE/LTE and LTE-Advanced provides detailed discussions of Release 10, including the significant new technology enhancements to LTE/EPC (called LTE-Advanced) that were determined in October 2010 to have successfully met all of the criteria established by the International Telecommunication Union Radiotelecommunication Sector (ITU-R) for the first release of IMT-Advanced. IMT-Advanced, which includes LTE-Advanced, provides a global platform on which to build next generations of interactive mobile services that will provide faster data access, enhanced roaming capabilities, unified messaging and broadband multimedia. The paper also provides detailed information on the introduction of LTE-Advanced and the planning for Release 11 and beyond. Release 10 is expected to be finalized in March 2011, while work on Release 11 will continue through the fourth quarter of 2012.

White paper embedded below and is available to view and download from the 3G4G website.


Tuesday 26 October 2010

Complete Coverage of 4G World 2010 ... in case you missed


Wireless Week has a very good magazine with detailed highlights of everything that happened in the recently concluded 4G World event in Chicago. The links are as follows:




Thursday 27 May 2010

LTE will be known as 4G!


I have been mentioning since 3 years that LTE is 3.9G and its not 4G. In fact I have brought it up in many posts and discussions so that we do not dilute the term 4G. From my recent visit to the LTE World Summit and from the news, etc. it seems that the marketing guys won and LTE would be known as 4G.
In the picture above you can clearly see that the press releases by well known companies as well as Samsung's dongle has 4G for LTE stamped. It may be very difficult to reverse this '4G' means LTE term.
So I have now started thinking about what LTE-Advanced will be known as. Here is my attempt:
  • 5G - Not sure if people will buy this. Assuming that LTE-Advanced specs are ready by March 2011 (as is predicted) then people wont be ready to jump from 4G to 5G this soon.
  • 4G+ - Not sure if this sounds sexy enough
  • Super 4G - Boring
  • Turbo 4G - reminds me of F1
Suggestions welcome.

Wednesday 28 October 2009

China proposes TD-LTE-Advanced as its candidate for 4G


The International Telecommunication Union (ITU) has recently received six candidate technology submissions, including China's domestically-developed TD-LTE-Advanced for the global 4G (IMT-Advanced) mobile wireless broadband technology.

China's Ministry of Industry and Information Technology (MIIT) said on October 26 that it will fully support TD-LTE-Advanced in competing to be qualified as global 4G standard technology and promote development of related industries.

TD-LTE-Advanced, which is the intellectual property of China, inherits some of the major technical elements of TD-SCDMA, but will be able to offer an extended bandwidth and higher speed for Internet access.

Currently, 3GPP's LTE-advanced and IEEE's 802.16m are the two major 4G technologies. TD-LTE-Advanced was submitted at the ITU meeting as IMT-Advanced candidate technology, which is supported by major telecom operators and network device manufacturers including France Télécom, Deutsche Telekom, AT&T, NTT, KT, China Mobile, Ericsson, Nokia, Huawei and ZTE.

The selected technologies are expected to be accorded the official designation of IMT-Advanced - to qualify as true 4G technologies - in October 2010.

I was unable to locate more information on TD-LTE-Advanced. Will update once I have some more info.

Thursday 15 October 2009

On Relay Technology in LTE-Advanced and WiMAX standards

I blogged earlier about Relay technology that is part of LTE-Advanced. In the IEEE Communications Magazine, this month there is a complete article on Relay technology. Here is a brief summary from that paper with my own understanding (and words).

We have mentioned about IMT-Advanced and LTE-Advanced before. International Mobile Telecommunications-Advanced is going to be the first 4G technology and as i discussed earlier, there are two main technologies vying for the 4G crown. I am sure both are as good and both will succeed. From 3GPP point of view, the standards will be part of Release-10 and should be ready end 2010 or beginning 2011. The understanding is that IMT-Advanced systems will support peak data rates of 100 Mb/s in high mobility environment (up to 350 km/h) and 1 Gb/s in stationary and pedestrian environments (up to 10 km/h). The transmission bandwidth of IMT-Advanced systems will be scalable and can change from 20 to 100 MHz, with downlink and uplink spectrum efficiencies in the ranges of [1.1, 15 b/s/Hz] and [0.7, 6.75 b/s/Hz], respectively. There will be a minimum requirement on voice over IP (VoIP) capacities in high- and low-mobility environments of around 30 and 50 active users/sector/MHz. The latency for control and user planes should be less than 100 ms and 10 ms, respectively, in unloaded conditions.


As I mentioned last week, the 3GPP candidate for IMT-Advanced is LTE-Advanced. On the IEEE front, 802.16j group published the relay-based multihop techniques for WiMAX and IEEE 802.16m has been submitted for the IMT-Advanced approval last week. The normal 802.16 WiMAX standard has been approved as 3G standard by the ITU.

So what exactly are Relays. Relay transmission can be seen as a kind of collaborative communications, in which a relay station (RS) helps to forward user information from neighboring user equipment (UE)/mobile station (MS) to a local eNode-B (eNB)/base station (BS). In doing this, an RS can effectively extend the signal and service coverage of an eNB and enhance the overall throughput performance of a wireless communication system. The performance of relay transmissions is greatly affected by the collaborative strategy, which includes the selection of relay types and relay partners (i.e., to decide when, how, and with whom to collaborate).



There are two different terminology used for Relay's. First is Type-I and Type-II and other is non-transparency and transparency. Specifically, a Type-I (or non-transparency) RS can help a remote UE unit, which is located far away from an eNB (or a BS), to access the eNB. So a Type-I RS needs to transmit the common reference signal and the control information for the eNB, and its main objective is to extend signal and service coverage. Type-I RSs mainly perform IP packet forwarding in the network layer (layer 3) and can make some contributions to the overall system capacity by enabling communication services and data transmissions for remote UE units. On the other hand, a Type-II (or transparency) RS can help a local UE unit, which is located within the coverage of an eNB (or a BS) and has a direct communication link with the eNB, to improve its service quality and link capacity. So a Type-II RS does not transmit the common reference signal or the control information, and its main objective is to increase the overall system capacity by achieving multipath diversity and transmission gains for local UE units.


Different relay transmission schemes have been proposed to establish two-hop communication between an eNB and a UE unit through an RS. Amplify and Forward — An RS receives the signal from the eNB (or UE) at the first phase. It amplifies this received signal and forwards it to the UE (or eNB) at the second phase. This Amplify and Forward (AF) scheme is very simple and has very short delay, but it also amplifies noise. Selective Decode and Forward — An RS decodes (channel decoding) the received signal from the eNB (UE) at the first phase. If the decoded data is correct using cyclic redundancy check (CRC), the RS will perform channel coding and forward the new signal to the UE (eNB) at the second phase. This DCF scheme can effectively avoid error propagation through the RS, but the processing delay is quite long. Demodulation and Forward — An RS demodulates the received signal from the eNB (UE) and makes a hard decision at the first phase (without decoding the received signal). It modulates and forwards the new signal to the UE (eNB) at the second phase. This Demodulation and Forward (DMF) scheme has the advantages of simple operation and low processing delay, but it cannot avoid error propagation due to the hard decisions made at the symbol level in phase one.

Relay starts becoming interesting because according to the 3GPP LTE-Advanced and IEEE 802.16j, an RS can act as the BS for legacy UE units and should have its own physical cell identifier. It should be able to transmit its own synchronization channels, reference symbols and downlink control information. So an RS shall have the full functions of an eNB/BS (except for traffic backhauling), including the capabilities of knowing the radio bearer of received data packets and performing traffic aggregation to reduce signaling overhead. There should be no difference between the cell controlled by an RS and that controlled by a normal eNB.

There are much more details and simulation results in the IEEE article. For those interested, can always get hold of the article and dig deeper.
More information also available in the following:

Monday 28 September 2009

ICC 2009: 3G to 4G: towards full mobility IP services


There are some interesting slides and presentation from the IEEE Communications Society ICC 2009 conference in Dresden, Germany in June 2009. Here is the link to slides from the topic "3G to 4G: towards full mobility IP services".
Let me know if you found it useful.

Monday 24 August 2009

3G or 4G: What should India do?

The first thing I should mention as I always do, please stop calling LTE as 4G as its commonly called as 3.9G. Labelling it as 4G does make it sound better (or sexy, some would say) but its not correct. Maybe the authors who label LTE as 4G dont want to try hard and do some research or its just to make the end users panic that India has missed a complete generation of mobile technology. LTE-Advanced will be the 4G technology and its still long way away (part of Rel-10).

Last week I wrote about Indian subscribers getting taste of 3G as the state owned MTNL and BSNL have launched some services. I am not sure what has been launched but all I can say is there is a dismal takeup as of yet. I read an article today about how Motorola is testing 4G [sic] and this can spoil the governments plan of rasing Rs 35,000 crore (£4.6Billion: 1Billion = 100 crores).

People may start panicking that investing in 3G is now doomed and it can just cause problems for the operators in future. The reality though is much more simpler. In a simple sentence, I would say that going for 3G or LTE does not matter much. Read on.

Lets first get Hardware out of the way. Most of the Base Stations (NodeB's, eNodeB's, RNC, etc) have a major part as SDR's or Software Defined Radios. The advantage of this is that if you have bought a 3G Node B, with just software change it should be upgradable to LTE eNode B. I have come across quite a few products where the equipment manufacturers are claiming that their 3G equipment is fully upgradeable to LTE. I did blog about some of this in this post here.

The second point we should get out of the way is the terminology. For a layman, 3G is something that was introduced 10 years back in 2000 so its quite an obsolete technology. In reality, 3G is commonly used to refer to even the new developments within the 3G spectrum. For example some of the people may have heard of HSDPA which is actually referred to as 3.5G in the mobile domain. Similarly we have HSUPA which is 3.75G and so on. The latest development is going on around 3.8G and 3.85G as part of Release 8. In general usage 3.5G, 3.75G, etc. is referred to as 3G but its more than 3G (3G+ ;). The good thing is that this 3G+ is till evolving. Release 8 was finalised in Dec. 2008 and the terminals based on that are still being tested. It should hopefully be available soon.

So whats the difference between LTE and HSPA+ (also known as 3G even though its 3.8/3.85G). Not much I would say from a general users point of view. Please note I am not arguing about the fundamental technologies because 3G+ uses WCDMA and LTE uses OFDMA/SC-FDMA technologies. OFDM based technologies will generally be always superior to WCDMA ones but it doesnt matter much. The main enhancement that has happened with LTE as compared to 3G is that in 3G the bandwidth is fixed to 5MHz whereas in case of LTE the bandwidth is flexible and can go all the way to 20MHz. Now if we compare the data speeds in 5MHz spectrum then there may not be much difference between them. Now how many operators will be rolling out services across 20MHz bandwidth? More general case will be using 10MHz.

In case of HSPA+, there is a new feature that allows a UE to use couple of cells. In this case even though the bandwidth is 5MHz but due to Dual Cell feature the UE would effectively see 10MHz bandwidth. This will definitely enhance the speeds.

Now coming to devices. 3G/HSPA/HSPA+ technologies have evolved over quite few years. There are some nice sleek and cheap handsets available. The technology in it as been rigourously tested. As a result the handsets are quite stable and many different design and models available.

LTE is yet to come. NTT DoCoMo and Verizon will be the first one to roll it out probably end 2010. Initial plan is to roll out the dongles then handsets will the eventually arrive. The initial ones will have problems, crashes, etc. Will take atleast till 2010 to sort out everything.

The big problem with LTE as many of us know is that the standards have to support for the old style CS voice and SMS. This should be fixed in Release 9 which is going to be standardised in Dec. 2009 (Mar. 2010 practically). There are different approaches and maybe untill LTE is rolled out we wont know which of them is better.

Last thing I should mention is the spectrum. The consensus is that 3G operates in 2.1GHz spectrum mostly worldwide. LTE would initially be deployed in 2.6GHz spectrum. The digital dividend spectrum when it becomes available will also be used for LTE. Most of the devices for LTE will be designed that way. As a result, 3G will continue to operate as it is in the 2.1GHz band. The devices will always be available and will be usable for long time.

Considering all the facts above, I think 3G (HSPA/HSPA+) is the best option in India or as a matter of fact in any country that is thinking of jumping directly from 2G to LTE. When the time is right, it should not be difficult to move from 3G to LTE.

Saturday 11 July 2009

LTE and 4G IPR

The other day I heard from Alex GeunHo Lee about his new blog related to 4G technologies IPR. Alex has got extensive experience in IPR and patent related issues and I am sure his blog will be very useful for everyone.

Couple of Alex's presentations are embedded below which I am sure many would find interesting.

LTE Essential Patents Landscape 2009 2Q



4G Key Technologies Patent Landscape 2Q 2009


Monday 13 October 2008

What on earth is this 4G, anyway?

Over the past two years I have been hearing a lot about next generation technologies. It all started by 3.5G i.e. HSPA evolution etc and hence the debate entered into the area of 4G.
Everybody comes along on the blogs, articles, tech magazines etc and make himself/herself comfortable as per their liking with the word 4G.

Some people use the term "4G" to describe WiMAX technology. This terminology i.e. 4G used by WiMax camp does indeed upset some people specially the ones in the LTE camp.

Everyday I come across individuals who have different view regarding the 4G terms. Some do shockingly tell me that neither WiMax nor LTE is a 4G technology rather LTE evolution or LTE advanced will be termed as a 4G technology.

I have literally reached to stage now where I think I should give up now and just leave to almighty to decide what actually a 4G technology is. If you ask me about my personal opinion on this then my view is quite clear in this. I categorize 1G as analog mobile, 2G as digital, 3G as CDMA, and 4G as anything using OFDM. It's pretty simple, it is straightforward, there's not a lot of haggling.

Wikipedia says "There is no formal definition for what 4G is; however, there are certain objectives that are projected for 4G. These objectives include: that 4G will be a fully IP-based integrated system. 4G will be capable of providing between 100 Mbit/s and 1 Gbit/s speeds both indoors and outdoors, with premium quality and high security."

By the Wikipedia definition, three out of four definitions are met under the existing definitions of WiMAX; nobody thinks that the current definition of WiMAX is going to be able to crank up to 1 Gbit/sec, but life, as they say, ain't so simple.

A spokesperson for Nokia has said "There's no official owner of who defines 4G," and you would think if anyone could tell you what 4G was/is/will be, it would be Nokia.

ITU-R is in the process of defining IMT-Advanced, but, funny enough, the standards body has backed away from the phrase 4G. IMT-Advanced is a "big tent" term that will/may/should encompasses 802.16m and LTE-Advanced which in turn are faster than WiMAX and LTE standards respective. Maybe?

If I understand this descent into acronyms and definitions, even the forthcoming, first generation LTE would not qualify as a 4G technology. That is, if we call IMT-Advanced as the term formerly known as 4G - but not called 4G by ITU-R.

I know this whole argument of 4G terms upset many people. They think and rightly so that the whole concept behind a 'Standards Body' is so that such arguments are moot. These guys think that people use different terms to coin their own standards for marketing, one-upmanship and generally nonconformist attitudes.

Well let's hope that some day somebiody will come out with a clear idnetity of the 4G technology which is acceptable to everybody. Meanwhile my friend in the picture above is working hard to find out what 4G really is.

Tuesday 7 October 2008

Nortel 4G: Cracks in the wall

Sometime in distant past, it seemed that Nortel had everything. They were big in UMTS and HSPA, had a share of CDMA pie in Americas, had loads of patents in OFDM technology which is the basis of most Next Generation technologies, had strategic partnership and very much into R&D on WiMAX and LTE and at the same time also working on 4G Optical technologies.

Then they got rid of 3G and HSPA infrastructure by selling it to Alcatel (now Alcatel-Lucent) and started focussing on 4G only. Then their CDMA business started to suffer because people in Americas are moving onto GSM and CDMA growth opportunities are limited. Recently Nortel has again been in news because it wants to sell its Metro Ethernet Networks (MEN) business.


The MEN division includes Nortel's optical business and its carrier Ethernet work, including its Provider Backbone Transport (PBT) technology. That's big news, but so is the lowered forecast. After predicting single-digit sales growth this year, Nortel is now saying its 2008 revenues will be 2 to 4 percent less than the $10.95 billion it reported in 2007.

According to a report in Unstrung, Nortel isn't so keen on developing LTE either, despite repeated claims that it was well positioned to be a major player in that market. When asked during analyst conference call about what actions Nortel might take regarding its 4G developments, CEO Mike Zafirovski said the company is looking for "opportunities to de-risk" its investment. "Future consolidation is necessary in wireless. We're exploring options for 4G that will be best" for Nortel, its customers, and the industry, said the CEO, unhelpfully.

What might those options be? Zafirovski said that "what we did with UMTS and Wimax" are examples of what might happen. Nortel's WiMax strategy is now tied up in the Alvarion relationship, while it sold its 3G UMTS infrastructure business to Alcatel in late 2006.

Analysts, still parsing Nortel's words, see some value in Nortel getting help from partners. “Ever since Nortel exited the UMTS market it’s been next to impossible to see how investing in their own LTE base station would result in anything but huge losses," says Patrick Donegan, Heavy Reading's senior wireless analyst. "Going down the same OEM path as they have with WiMax would at least ensure that those huge losses won’t be suffered. Whether they can go beyond that and carve out a position in LTE which is actually profitable with an OEM partner is unclear but certainly plausible.”

But, just like with carrier Ethernet and optical, the market is too tough for Zafirovski to believe Nortel can be a leading and profitable player. "With eight, nine, ten players competing, industry dynamics require various forms of cooperation," he added.

Despite all the predictions and Hype, 4G or LTE is far away. WiMAX will be rolled out but in chunks and there are already too many people in WiMAX. What Nortel needs and is looking for is some significant partner or perhaps a merger (takeover?). In the meantime it maybe some time before its investors hears any good news from Nortel.

Friday 12 September 2008

eHRPD: Stopgap between EV-DO and LTE

Interesting article from TMCnet.

As LTE is picking up steam, more and more operators opting for this technology. It is but natural that some CDMA2000 operators would like to joing the camp as well. Since there is no clear evolution path available from CDMA2000 to LTE, a soft option is required so that there is no immediate need to change the complete infrastructure and in case of any problems suffer.

The transition for CDMA operators from High Rate Packet Data (HRPD) to LTE will be over a period of several years, as is the case still with the transition from 1xRTT to HRPD. As a result, mobile operators must look for a migration path that will enhance their existing HRPD networks, while addressing LTE deployment requirements and will not require a ‘forklift’ upgrade.

The choice of migration path depends on many factors including radio access strategy, network resource strategy, services enabled, timing and cost. A key goal of LTE is to enhance service provisioning while simplifying interworking with non-3GPP mobile networks. This is essential for CDMA operators that have chosen to migrate to LTE.

Evolved HRPD is a method that allows the mobile operator to upgrade their existing HRPD packet core network using elements of the SAE/EPC architecture. Additionally, eHRPD is a more evolutionary path to LTE while also allowing for seamless service mobility — including seamless hand-offs — between the eHRPD and LTE networks.


One of the main advantages of eHRPD is the ability to provide seamless service mobility between HRPD and LTE access networks with a single mobility management protocol. Moreover, with eHRPD, the operator can leverage the benefit of optimized handover – no dropped sessions and reduced handover latency — between LTE and eHRPD. The benefit of seamless and optimized mobility for data is highly dependant on the mobile operator business model for adding new services. As new applications emerge, the requirement for seamless service mobility becomes greater. Since SAE is an all-IP network infrastructure, the network will quickly move to mobile VoIP for voice. Moreover, with the introduction of eHRPD, the operator can leverage the benefit of optimized intra eHRPD handover when the user crosses the HSGW boundaries. This capability does not exist in current HRPD systems.

You can read the complete article here.

Wednesday 10 September 2008

Japan to trial its own 4G Technology

While we were focussing on the battle between LTE and WiMAX having already forgotten about UMB, Japan has been working on its Next G of PHS called the XGP.


The news came to light in ITU Telecom Asia, which concluded recently.


PHS was popular in Japan earlier on because it was very cheap and easy to deploy in the old days when other technologies were expensive. The main drawback it has is that it is not easy to perform handovers so the calls may drop while in the subway.

PHS operator WillCom has won, one of the spectrum block in 2.5GHz band and is going to start trials next April in Tokyo, Nagoya and Osaka and offer 20Mbps of symmetrical data speeds using a 10MHz spectrum block. A full commercial service is scheduled for August 2009.
The service will be known as WILLCOM CORE (Communication Of Revolution and Evolution)
The technology behind is based on the PHS architecture of numerous microcells offering limited coverage, but will incorporate a new air radio interface based on OFDMA/TDMA/TDD methodologies. Kyocera and UTStarcom will manufacture the radio access equipment for XGP while NEC Infrontia and NetIndex are developing the data card modules for the service. Canada’s Wavesat and Israel’s Altair is supplying the baseband chips for XGP. Like LTE and WiMAX, XGP will support viable spectrum blocks.

But while LTE and WiMAX are based on increments of 1.6MHz for its carrier size, XGP has aligned itself with CDMA and supports increments of 1.25MHz carriers.

With a basic 10MHz carrier system, XGP will offer data speeds of 20Mbps, but future systems incorporating MIMO and SDMA (space division multiple access) will be capable of supporting maximum symmetrical data speeds of 100Mbps. At the same time, the technical description for XGP will support handoffs between base stations for users travelling at up to 300 km/h.

A good presentation from Willcom on XGP is available here.

PHS = Personal Handyphone System