Pages

Parallel Wireless is Hiring

Showing posts with label 4G. Show all posts
Showing posts with label 4G. Show all posts

Friday, 27 April 2012

10 Times Beyond LTE-A (5G maybe?)

Recently when I added a presentation by NSN on whats coming after IMT-Advanced, it was very well received and has already had over 8000 views. There seems to be definitely an appetite for the future networks. Here is another such presentation.


There is also a video of the presentation if you have the patience to sit, watch and learn.



Tuesday, 21 February 2012

Softbank Japan's Ultra Wifi 4G (a.k.a AXGP)


In Japan, they love to re-brand the standard technologies into something more interesting to attract people's attention. In a way they are right as they want to offer a service rather than a technology. Couple of years back NTT Docomo launched its Crossy service, that was offering LTE with upto 75Mbps dl speeds. Yesterday, I read about Softbank launching their 4G service that is based on AXGP format.

I did blog about XGP many years back but AGXP, which stands for Advanced XGP may not be very well related to XGP. According to ZTE Technologies magazine:

In November 2011, Japan’s third largest mobile operator, Softbank, made AXGP commercially available. AXGP is similar to TD-LTE, and has been deployed in Japan in conjunction with ZTE and Huawei. Two thousand base stations were built in the fi rst phase, and there will be up to 10,000 base stations built in the second phase. Ninety-nine percent of the Japanese population will be covered by 2012. So far, the Softbank network is the largest commercial TD-LTE network in the world. Wang Jianzhou, chairman of China Mobile, said, “If in the past the TD-LTE network was just a stratagem on paper, now it has turned into a reality.”

The following are some more details edited from a Japanese website (translation via Chrome):


High-speed data communication service Wireless City Planning of the SOFTBANK Group (Wireless City Planning, WCP) will be scheduled after February 2012, adopted a new communication method AXGP is, in excess of up to 100Mbps downlink high-speed communication is a feature . It was an opportunity to use the test machine prior to the start of service for general users, to report a sense of its use. 


 "AXGP" was developed inherit the "PHS" next generation of Willcom

 "AXGP" high-speed data transmission technology WCP employs a technology that was originally planned to use the 2.5GHz band has been assigned from the Ministry of Internal Affairs and Communications Willcom to deploy as "PHS" next generation. Had to expand the limited service area and some intended for users under the name of "WILLCOM CORE XGP" PHS is then the next generation, business is XGP is "Wireless City Planning" of Softbank subsidiary company under the reorganization proceedings of Willcom inheritance. Provide the service as "AXGP" form of communication is an evolved version of XGP in WCP.


 AXGP, in addition to the XGP also hand while inheriting the "micro cell" was characteristic of PHS, PHS has been developed as the next generation, that have become compatible with the method of TD-LTE. Including China and India, that are compatible with the TD-LTE system is expected to expand in many parts of the world, the benefits can be expected that international expansion is expected. 

 Service is initially started up to 76Mbps. The first bullet is the mobile router products

 AXGP is at present, but services have been provided for users in a small part had been using the service test XGP Willcom old, since the February 2012 service "SoftBank 4G for general users as MVNO Softbank Mobile plans to start ". The communication speed up to 110Mbps downstream and 15Mbps and maximum upstream and downstream speeds in excess of 100Mbps for speed has become a feature.


 At the start of service, the mobile router will "101SI" made of (SII) will be released at the same time Seiko Instruments. However, 101SI has become a maximum 76Mbps to 110Mbps falling down is the theoretical value of the service, at the start of the service is not provided in the full spec. Terminal is planned to also provide support AXGP Then, in the year 2012 is also powered smartphone will be compatible with AXGP. In addition, "101SI" to support (42Mbps maximum downlink, 5.7Mbps uplink maximum) "ULTRASPEED" Softbank mobile. 




Ultra-high speed in the area. Hope to plan area at the time of service and rates

 Although a measurement with the outdoor area was limited, with respect to communication speed was very good results with the results fit. Most favorable conditions and even the user does not exist before the start of the service say that already provide services as high-speed data communication, "Xi" of NTT DoCoMo, Inc., or UQ Communications 37.5Mbps, which is the maximum theoretical value of outdoor (Kurosshi~i) It was also a number greater than the maximum 40Mbps "UQ WiMAX" of is very encouraging.


 However, the decisive factor in mobile data communications is not only communication speed, three elements of the communication charge is important and easy-to-use, deployment area, including "ease of connection." In the area at the moment of some are very fast and are limited in the Yamanote Line, but is a matter of course in order before the service, ease of connection of the fact there are many parts of the still unknown. Also, I'd be anxious and services are provided in the fee structure what.


 SoftBank is to introduce a flat-rate voice among their users ahead of any other mobile phone operators so far, campaigns expand the iPhone however any inexpensive flat-rate packet. Further has a track record of just made me started to increase subscribers by the "straight-line with anyone" WILLCOM has also continued to decline in subscribers. Softbank Mobile also be deployed as a MVNO, at the time of release of the service that you want to use the AXGP expect a bold expansion of unique services and Softbank WCP, which is the same group Softbank.


Softbank's website is billing this as 'Ultra Wifi 4G' and will be launched to public this Friday, just in time for MWC12.

Saturday, 13 August 2011

Wednesday, 20 July 2011

Technology Deployment and Adoption Trends

This informative slide shows the number of years it takes after the technology is launched to reach the peak volumes. Though we know this to be true for the 1G and 2G systems, I find it difficult to believe the same would be true for 3G and 4G systems.

If the LTE deployments are going to happen as per the plans then we may see the peak volumes for 3G/HSPA+ around 2016. It would be difficult to predict the same for '4G' systems as we do not know as of know what all would be part of 4G. As you would recall that LTE was supposed to be 3.9G but was too confusing so everyone adopted it as 4G. LTE-A, the real 4G, I guess would still be part of 4G. What else would end up as 4G is hard to predict so we will have to go with the prediction for the time being.

Sunday, 8 May 2011

What is '4G' ?

One of the most popular posts is Dilbert's definition of '4G'. So I decided to go back and see how and if the definition of '4G' has changed over the time.

Back in 2008, '4G' was more of WiMAX. Here is a video from that time:




2009 video of Cisco where they are pushing for 4G = IP :





2010 video that says 4G = fast :




Now from 2011, where consumers in US are being asked What '4G' means:


WKRG.com News

And finally my '4G' FAQ from 2006 that is seriously outdated and needs updating :)

Thursday, 3 February 2011

4G Mobile Broadband Evolution: 3GPP Release-10 and Beyond

New Report from 4G Americas:

4G Mobile Broadband Evolution: 3GPP Release 10 and Beyond - HSPA+ SAE/LTE and LTE-Advanced provides detailed discussions of Release 10, including the significant new technology enhancements to LTE/EPC (called LTE-Advanced) that were determined in October 2010 to have successfully met all of the criteria established by the International Telecommunication Union Radiotelecommunication Sector (ITU-R) for the first release of IMT-Advanced. IMT-Advanced, which includes LTE-Advanced, provides a global platform on which to build next generations of interactive mobile services that will provide faster data access, enhanced roaming capabilities, unified messaging and broadband multimedia. The paper also provides detailed information on the introduction of LTE-Advanced and the planning for Release 11 and beyond. Release 10 is expected to be finalized in March 2011, while work on Release 11 will continue through the fourth quarter of 2012.

White paper embedded below and is available to view and download from the 3G4G website.


Tuesday, 26 October 2010

Complete Coverage of 4G World 2010 ... in case you missed


Wireless Week has a very good magazine with detailed highlights of everything that happened in the recently concluded 4G World event in Chicago. The links are as follows:




Thursday, 27 May 2010

LTE will be known as 4G!


I have been mentioning since 3 years that LTE is 3.9G and its not 4G. In fact I have brought it up in many posts and discussions so that we do not dilute the term 4G. From my recent visit to the LTE World Summit and from the news, etc. it seems that the marketing guys won and LTE would be known as 4G.
In the picture above you can clearly see that the press releases by well known companies as well as Samsung's dongle has 4G for LTE stamped. It may be very difficult to reverse this '4G' means LTE term.
So I have now started thinking about what LTE-Advanced will be known as. Here is my attempt:
  • 5G - Not sure if people will buy this. Assuming that LTE-Advanced specs are ready by March 2011 (as is predicted) then people wont be ready to jump from 4G to 5G this soon.
  • 4G+ - Not sure if this sounds sexy enough
  • Super 4G - Boring
  • Turbo 4G - reminds me of F1
Suggestions welcome.

Wednesday, 28 October 2009

China proposes TD-LTE-Advanced as its candidate for 4G


The International Telecommunication Union (ITU) has recently received six candidate technology submissions, including China's domestically-developed TD-LTE-Advanced for the global 4G (IMT-Advanced) mobile wireless broadband technology.

China's Ministry of Industry and Information Technology (MIIT) said on October 26 that it will fully support TD-LTE-Advanced in competing to be qualified as global 4G standard technology and promote development of related industries.

TD-LTE-Advanced, which is the intellectual property of China, inherits some of the major technical elements of TD-SCDMA, but will be able to offer an extended bandwidth and higher speed for Internet access.

Currently, 3GPP's LTE-advanced and IEEE's 802.16m are the two major 4G technologies. TD-LTE-Advanced was submitted at the ITU meeting as IMT-Advanced candidate technology, which is supported by major telecom operators and network device manufacturers including France Télécom, Deutsche Telekom, AT&T, NTT, KT, China Mobile, Ericsson, Nokia, Huawei and ZTE.

The selected technologies are expected to be accorded the official designation of IMT-Advanced - to qualify as true 4G technologies - in October 2010.

I was unable to locate more information on TD-LTE-Advanced. Will update once I have some more info.

Thursday, 15 October 2009

On Relay Technology in LTE-Advanced and WiMAX standards

I blogged earlier about Relay technology that is part of LTE-Advanced. In the IEEE Communications Magazine, this month there is a complete article on Relay technology. Here is a brief summary from that paper with my own understanding (and words).

We have mentioned about IMT-Advanced and LTE-Advanced before. International Mobile Telecommunications-Advanced is going to be the first 4G technology and as i discussed earlier, there are two main technologies vying for the 4G crown. I am sure both are as good and both will succeed. From 3GPP point of view, the standards will be part of Release-10 and should be ready end 2010 or beginning 2011. The understanding is that IMT-Advanced systems will support peak data rates of 100 Mb/s in high mobility environment (up to 350 km/h) and 1 Gb/s in stationary and pedestrian environments (up to 10 km/h). The transmission bandwidth of IMT-Advanced systems will be scalable and can change from 20 to 100 MHz, with downlink and uplink spectrum efficiencies in the ranges of [1.1, 15 b/s/Hz] and [0.7, 6.75 b/s/Hz], respectively. There will be a minimum requirement on voice over IP (VoIP) capacities in high- and low-mobility environments of around 30 and 50 active users/sector/MHz. The latency for control and user planes should be less than 100 ms and 10 ms, respectively, in unloaded conditions.


As I mentioned last week, the 3GPP candidate for IMT-Advanced is LTE-Advanced. On the IEEE front, 802.16j group published the relay-based multihop techniques for WiMAX and IEEE 802.16m has been submitted for the IMT-Advanced approval last week. The normal 802.16 WiMAX standard has been approved as 3G standard by the ITU.

So what exactly are Relays. Relay transmission can be seen as a kind of collaborative communications, in which a relay station (RS) helps to forward user information from neighboring user equipment (UE)/mobile station (MS) to a local eNode-B (eNB)/base station (BS). In doing this, an RS can effectively extend the signal and service coverage of an eNB and enhance the overall throughput performance of a wireless communication system. The performance of relay transmissions is greatly affected by the collaborative strategy, which includes the selection of relay types and relay partners (i.e., to decide when, how, and with whom to collaborate).



There are two different terminology used for Relay's. First is Type-I and Type-II and other is non-transparency and transparency. Specifically, a Type-I (or non-transparency) RS can help a remote UE unit, which is located far away from an eNB (or a BS), to access the eNB. So a Type-I RS needs to transmit the common reference signal and the control information for the eNB, and its main objective is to extend signal and service coverage. Type-I RSs mainly perform IP packet forwarding in the network layer (layer 3) and can make some contributions to the overall system capacity by enabling communication services and data transmissions for remote UE units. On the other hand, a Type-II (or transparency) RS can help a local UE unit, which is located within the coverage of an eNB (or a BS) and has a direct communication link with the eNB, to improve its service quality and link capacity. So a Type-II RS does not transmit the common reference signal or the control information, and its main objective is to increase the overall system capacity by achieving multipath diversity and transmission gains for local UE units.


Different relay transmission schemes have been proposed to establish two-hop communication between an eNB and a UE unit through an RS. Amplify and Forward — An RS receives the signal from the eNB (or UE) at the first phase. It amplifies this received signal and forwards it to the UE (or eNB) at the second phase. This Amplify and Forward (AF) scheme is very simple and has very short delay, but it also amplifies noise. Selective Decode and Forward — An RS decodes (channel decoding) the received signal from the eNB (UE) at the first phase. If the decoded data is correct using cyclic redundancy check (CRC), the RS will perform channel coding and forward the new signal to the UE (eNB) at the second phase. This DCF scheme can effectively avoid error propagation through the RS, but the processing delay is quite long. Demodulation and Forward — An RS demodulates the received signal from the eNB (UE) and makes a hard decision at the first phase (without decoding the received signal). It modulates and forwards the new signal to the UE (eNB) at the second phase. This Demodulation and Forward (DMF) scheme has the advantages of simple operation and low processing delay, but it cannot avoid error propagation due to the hard decisions made at the symbol level in phase one.

Relay starts becoming interesting because according to the 3GPP LTE-Advanced and IEEE 802.16j, an RS can act as the BS for legacy UE units and should have its own physical cell identifier. It should be able to transmit its own synchronization channels, reference symbols and downlink control information. So an RS shall have the full functions of an eNB/BS (except for traffic backhauling), including the capabilities of knowing the radio bearer of received data packets and performing traffic aggregation to reduce signaling overhead. There should be no difference between the cell controlled by an RS and that controlled by a normal eNB.

There are much more details and simulation results in the IEEE article. For those interested, can always get hold of the article and dig deeper.
More information also available in the following: