Pages

Join our LinkedIn group

Showing posts with label EDGE. Show all posts
Showing posts with label EDGE. Show all posts

Sunday, 9 December 2012

Improvements to GSM, GPRS and EDGE to interact with the LTE experience

Monday, 10 October 2011

What is GELTE?

GSM, EDGE and LTE Interworking.
This presentation available to download from here.

Tuesday, 5 October 2010

3GPP Green activities / Energy Saving initiatives


3GPP has been working on Energy saving initiatives for Release-10 and Release-11. Here is a very quick summary of some of these items.

Telecommunication management; Study on Energy Savings Management (ESM)

Most mobile network operators aim at reducing their greenhouse emissions, by several means such as limiting their networks' energy consumption.

In new generation Radio Access Networks such as LTE, Energy Savings Management function takes place especially when mobile network operators want e.g. to reduce Tx power, switch off/on cell, etc. based on measurements made in the network having shown that there is no need to maintain active the full set of NE capabilities.

By initiating this Work Item about Energy Savings Management, 3GPP hopes to contribute to the protection of our environment and the environment of future generations.

The objective of this technical work is to study automated energy savings management features. Usage of existing IRPs is expected as much as possible, e.g. Configuration Management IRP, etc. However, this technical work may identify the need for defining a new IRP.

The following operations may be considered in this study item (but not necessarily limited to):
• Retrieval of energy consumption measurements
• Retrieval of traffic load measurements
• Adjust Network Resources capabilities


OAM aspects of Energy Saving in Radio Networks

There are strong requirements from operators on the management and monitoring of energy saving functions and the evaluation of its impact on the network and service quality. Therefore an efficient and standardized Management of Energy Saving functionality is needed. Coordination with other functionalities like load balancing and optimization functions is also required.

The objectives of this work item are:
• Define Energy Savings Management OAM requirements and solutions for the following use cases,
• eNodeB Overlaid
• Carrier restricted
• Capacity Limited Network
• Define OAM requirements and solutions for coordination of ESM with other functions like
• Self-Optimization
• Self Healing
• Traditional configuration management
• Fault Management
• Select existing measurements which can be used for assessing the impact and effect of Energy Saving actions corresponding to above Energy Saving use cases.
• Define new measurements which are required for assessing the impact and effect of Energy Saving actions, including measurements of the energy consumption corresponding to above Energy Saving use cases.


Study on impacts on UE-Core Network signalling from Energy Saving

Energy Saving (ES) mechanisms are becoming an integral part of radio networks, and consequently, of mobile networks. Strong requirements from operators (for reasons of cost and environmental image) and indirectly from authorities (for the sake of meeting overall international and national targets) have been formulated. With the expected masses of mobile network radio equipment as commodities, in the form of Home NB/eNBs, this aspect becomes even more crucial.

It is necessary to ensure that ES does not lead to service degradation or inefficiencies in the network. In particular:
• the activation status of radio stations (on/off) introduces a new scale of dynamicity for the UE and network;
• mass effects in signalling potentially endanger the network stability and need to be handled properly.

It is unclear whether and how currently defined procedures are able to cope with, and eventually can be optimized for, ES conditions; thus a systematic study is needed.

The study aims, within the defined CT1 work areas, at:
• analysing UE idle mode procedures and UE-Core Network signalling resulting from frequent switch on/off of radio equipment in all 3GPP accesses, including home cell deployment and I-WLAN;
• performing a corresponding analysis for connected mode UEs;
• analysing similar impacts from activation status of non-3GPP access networks;
• documenting limitations, weaknesses and inefficiencies in these procedures, with emphasis on mass effects in the UE-Core Network signalling;
• studying potential optimizations and enhancements to these procedures;

The study shall also evaluate and give recommendations on potential enhancements to 3GPP specifications (whether and where they are seen necessary).


Study on Solutions for Energy Saving within UTRA Node B

Due to the need to reduce energy consumption within operators’ networks, and considering the large amount of UMTS network equipment deployed in the field around the world, the standardisation of methods to save energy in UMTS Node Bs is seen as an important area of study for 3GPP.There has not been a large amount of focus on energy-saving in UMTS networks so far in 3GPP, although some solutions have been agreed in Release 9. Therefore it is proposed to start an initial study phase to identify solutions and perform any initial evaluation, such that a subset of these proposals can be used as the basis for further investigation of their feasibility.

The objective is to do an initial study to identify potential solutions to enable energy saving within UMTS Node-Bs, and do light initial evaluation of the proposed solutions, with the aim that a subset of them can be taken forward for further investigation as part of a more focused study in 3GPP.

The solutions identified in this study item should consider the following aspects:
• Impacts on the time for legacy and new UEs to gain access to service from the Node B
• Impacts on legacy and new terminals (e.g. power consumption, mobility)

Some initial indication of these aspects in relation to the proposed solutions should be provided.


Study on Network Energy Saving for E-UTRAN

The power efficiency in the infrastructure and terminal should be an essential part of the cost-related requirements in LTE-A. There is a strong need to investigate possible network energy saving mechanisms to reduce CO2 emission and OPEX of operators.

Although some solutions have been proposed and part of them have been agreed in Release-9, there has not been a large amount of attention on energy saving for E-UTRAN so far. Many potential solutions are not fully shown and discussed yet. Therefore, it is proposed to start an initial study phase to identify solutions, evaluate their gains and impacts on specifications.

The following use cases will be considered in this study item:
• Intra-eNB energy saving
• Inter-eNB energy saving
• Inter-RAT energy saving

Intra-eNB energy saving, in EUTRAN network, a single cell can operate in energy saving mode when the resource utilization is sufficiently low. In this case, the reduction of energy consumption will be mainly based on traffic monitoring with regard to QoS and coverage assurance.

A lot of work on Inter-eNB energy saving has already been done for both LTE and UTRA in Rel-9. This Study Item will investigate additional aspects (if any) on top of what was already agreed for R9.

Inter-RAT energy saving, in this use case, legacy networks, i.e. GERAN and UTRAN, provide radio coverage together with E-UTRAN. For example E-UTRAN Cell A is totally covered by UTRAN Cell B. Cell B is deployed to provide basic coverage of the voice or medium/low-speed data services in the area, while Cell A enhances the capability of the area to support high-speed data services. Then the energy saving procedure can be enabled based on the interaction of E-UTRAN and UTRAN system.

The objective of this study item is to identify potential solutions for energy saving in E-UTRAN and perform initial evaluation of the proposed solutions, so that a subset of them can be used as the basis for further investigation and standardization.

Energy saving solutions identified in this study item should be justified by valid scenario(s), and based on cell/network load situation. Impacts on legacy and new terminals when introducing an energy saving solution should be carefully considered. The scope of the study item shall be as follows:
• User accessibility should be guaranteed when a cell transfers to energy saving mode
• Backward compatibility shall be ensured and the ability to provide energy saving for Rel-10 network deployment that serves a number of legacy UEs should be considered
• Solutions shall not impact the Uu physical layer
• The solutions should not impact negatively the UE power consumption

RAN2 will focus on the Intra-eNB energy saving, while RAN3 will work on Inter-RAT energy saving and potential additional Inter-eNB energy saving technology.


Study on Solutions for GSM/EDGE BTS Energy Saving

There has not been a large amount of focus on energy-saving in GSM/EDGE networks so far in 3GPP, although some solutions have been agreed in previous Releases, notably MCBTS. Therefore it is proposed to start an initial study phase to identify solutions and perform any initial evaluation, such that a subset of these proposals can be used as the basis for further investigation of their feasibility.

The objective is to study potential solutions to enable energy saving within the BTS (including MCBTS and MSR), and evaluate each proposed solutions in detail. These potential solutions shall focus on the following specific aspects
• Reduction of Power on the BCCH carrier (potentially enabling dynamic adjustment of BCCH power)
• Reduction of power on DL common control channels
• Reduction of power on DL channels in dedicated mode, DTM and packet transfer mode
• Deactivation of cells (e.g. Cell Power Down and Cell DTX like concepts as discussed in RAN)
• Deactivation of other RATs in areas with multi-RAT deployments, for example, where the mobile station could assist the network to suspend/minimise specific in-use RATs at specific times of day
• And any other radio interface impacted power reduction solutions.

The solutions identified in this study item shall also consider the following aspects:
• Impacts on the time for legacy and new mobile stations to gain access to service from the BTS
• Impacts on legacy and new mobile stations to keep the ongoing service (without increasing drop rate)
• Impacts on legacy and new mobile stations implementation and power consumption, e.g. due to reduction in DL power, cell (re-)selection performance, handover performance, etc.
• Impacts on UL/DL coverage balance, especially to CS voice

Solutions shall be considered for both BTS energy saving non-supporting and supporting mobile stations (i.e. solutions that are non-backwards compatible towards legacy mobile stations shall be out of the scope of this study).

Tuesday, 31 August 2010

EDGE evolution to REDHOT


EDGE is more than three times as efficient as GSM/GPRS in handling packet-switched data. Using EDGE, operators can support 3x more subscribers than GPRS, either by increasing the data rate per subscriber to 300 kbps, according to network & device capabilities, or adding voice capacity. EDGE uses the same TDMA frame structure, logic channel and 200 kHz carrier as GSM; existing cell plans remain intact. No change is needed in the core network. Neither new spectrum nor a new operating licence is needed. EDGE is a mature, mainstream global technology which allows operators to compete, to protect investments/assets, and stimulate growth of mobile multimedia services. Upgrading to EDGE is a natural step for operators to offer high performance mobile data services over GSM.

The performance of EDGE has improved steadily since its introduction in the market in 2003, and today offers users the possibility of data speeds up to 250kbps, with a latency of less than 150ms. This is sufficient for any current data service to be attractive to customers. According to GSA’s latest EDGE Fact Sheet (August 19, 2010 and available as a free download from www.gsacom.com) over 80% of GSM/GPRS operators globally have committed to deploying EDGE in their networks. 531 GSM/EDGE networks are in commercial service in 196 countries, and thousands of EDGE-capable user devices are launched.

A key part of the evolution is the opportunity to deploy more than a single RF carrier. Downlink Dual Carrier (DLDC) is the first step in evolving EDGE, doubling data rates to 592 kbps on existing EDGE-capable networks.

Downlink speed quadrupled:
up to 1.2 Mbps per user initially
(the standard enables up to 1.9 Mbps per user)
• Dual Carrier first phase implementation 10 timeslots per user; standard enables up to 16 timeslots per user
• EGPRS-2 DL (REDHOT) level B maximum 118.4 kbps per timeslot

Uplink speed up to 474 kbps per user
(the standard enables up to 947 kbps per user)
• EGPRS-2 UL (HUGE) level B with maximum 118.4 kbps per timeslot
• Peak implementation today 4 timeslots per user (standard enables up to 8 timeslots per user)

The EGPRS-2 feature is expected in the market in 2012.

More information is available in the GSA Report 'EDGE Evolution' released on Aug 23 2010. Available to download from GSACOM here.