Showing posts with label Ericsson. Show all posts
Showing posts with label Ericsson. Show all posts

Saturday 28 May 2011

Videos from Ericsson Business Innovation Forum 2011


Most of the videos from the Ericsson Innovation Forum 2011 are available on Youtube. Click on the links to watch the video:

Håkan Eriksson, SVP, Chief Technology Officer and Head of Ericsson in Silicon Valley
Douglas Gilstrap, SVP, Chief Strategist, Ericsson
Vision of the Networked Society and our strategy to get there

Paul Saffo, Managing Director, Foresight at Discern Analytics and Consulting Associate Professor at Stanford University

Magnus Mandersson, Senior Vice President, Head of Global Services, Ericsson

Erik Kruse, Networked Society Lab, Ericsson

Lior Netzer, Vice President, Mobile Network Strategy, Akamai
The cloud can make anyone an entrepreneur

Dhiraj Kumar, Mobile Strategist, Facebook

Wayne Ward, Vice President of Emerging Solutions, Sprint Nextel
Does a cow need to be connected? Connecting things and machine-to-machine

Håkan Eriksson, SVP, Chief Technology Officer and Head of Ericsson in Silicon Valley

Michael O’Hara, Chief Marketing Officer, GSMA
Operator 3.0

Chris Russo, Deputy Fire Chief, Hull, Massachusetts and Executive Vice President and founder of Elerts

Philip Marthinsen, Producer and partner at House of Radon

Jan Uddenfeldt, Chief Technology Officer, Sony Ericsson

Martin Körling, Head of Services & Software Research, Ericsson

Arun Bhikshesvaran, Vice President, Strategy & Market Development, Ericsson North America

Brian Higgins, Executive Director, LTE Ecosystem Development, Verizon Wireless

Michael Björn, Head of Research, Ericsson ConsumerLab

Mario Morales, Program Vice President, Enabling Technologies Group, IDC
Smart technology in Silicon Valley

Brian Wilcove, General Partner, Sofinnova Ventures


Complete agenda of the event here.

Monday 25 April 2011

Advanced Telephony Services for LTE

With LTE World Summit just round the corner, I was going through the last year's presentations and realised that we didn't talk of this one before.

The concept for the advanced telephony services has been around since the early days of IMS and this was one of the ways IMS was sold. Unfortunately IMS didn't take off as planned and only now with the standardisation of VoLTE, there is a possibility of the advanced services becoming a reality.

The following presentation summarises some of these advanced telephony services concepts.

Monday 28 February 2011

More than 50 Billion Connected Devices

I blogged about the 50 Billion connected devices as predicted by Ericsson last year. With the promised 'Internet of things' and 'connected world' we may see 50 billion devices not too far in the near future. Here is a recent whitepaper from Ericsson on this topic.


Wednesday 2 February 2011

Making small purchases simpler with Ericsson IPX

Yesterday a colleague made me aware of this Ericsson's IPX SMS based payment system that looks like a competitor to the NFC technology and doesn't involve any additional chip/hardware. Here is a video:



From Ericsson's website:

Ericsson Internet Payment Exchange (IPX) is a leading mobile aggregator, providing delivery and billing services, via SMS, MMS, web and online mobile billing, to more than 2 billion mobile subscribers across 26 countries. Ericsson IPX also brokers location information in selected countries and Ericsson IPX Messaging provides reach to 96% of all mobile subscribers worldwide with SMS. Ericsson IPX customers are companies who offer digital content, mobile voting & directory information and enterprises offering mobile marketing, communities and banking.

Now, we all love SMS and we have to admit that its the simplest of technology and even the most primitive phone nowadays support it but there could be scenarios when this can be a bit of a problem:

1. SMS can sometimes be delayed if a particular cell is overloaded, etc. So how long do we have to stand in front of the machine?
2. If say for 2-3 mins we do not receive an indication that the machine has a cash, do we send another SMS to cancel the transaction?
3. If we have a problem, do we have a support number to call to? How much will that cost?
4. If there is a queue of people and someone else wants to purchase something as well, does the next person has to wait till the person before has received the item?
5. If two people have sent an SMS, how do they know whose cash is in the machine now? Do we start putting a Pin as well ?

I agree, this technology could be really useful if you have run out of cash (even if you have NFC chip) and you need to purchase something small.

The other obvious advantage is that you can target advertisement at regular users who are at a particular place at a particular time to make them buy something. Also you can get statistics like what time people tend to purchase, what do they purchase, where, etc.

Anyway, hard for me to see this take off big time.

Tuesday 21 December 2010

An Intellectual Property Rights Primer

Page 5-8 is a very good starting point to understand the IPR issues surrounding LTE.
The Essentials of Intellectual Property - Sep 2010
View more documents from Zahid Ghadialy.
An accompanying video and download information is available on Ericsson's website here.

Friday 22 October 2010

IMB and TDtv (and DVB-H)

Its long time since I blogged about TDtv. Its been quite a while since I heard about TDtv. Apparently its been superseded by IMB, aka. Integrated Mobile Broadcast.



IMB is used to stream live video and store popular content on the device for later consumption. This results in a significant offloading of data intensive traffic from existing 3G unicast networks and an improved customer experience. The multimedia client features an intuitive electronic program guide, channel grid and embedded video player for live TV viewing and video recording. All IMB applications can be quickly and cost-effectively adapted to support all major mobile operating systems and different mobile device types, including smartphones, tablets and e-readers.

IMB was defined in the 3GPP release 8 standards, and was recently endorsed by the GSMA as their preferred method for the efficient delivery of broadcast services. In June 2010, O2, Orange and Vodafone – three of the five major UK mobile operators – announced that they have teamed up for a three-month trial that will explore IMB wireless technology within a tranche of 3G TDD spectrum.

This spectrum already forms part of the 3G licenses held by many European mobile operators, but has remained largely unused because of a lack of appropriate technology. Currently, 3G TDD spectrum is available to over 150 operators across 60 countries, covering more than half a billion subscribers. IMB enables spectrally efficient delivery of broadcast services in the TDD spectrum based on techniques that are aligned with existing FDD WCDMA standards. This enables a smooth handover between IMB and existing 3G networks.

Issues that previously limited uptake of IMB, or IPWireless' tdTV system, have now all been addressed. Namely, the standard now allows for smooth handover between IMB and unicast delivery; has the potential to be integrated onto a single W-CDMA chip rather than requiring a separate chip; and has resolved interference issues with FDD W-CDMA, at least for spectrum in the 1900MHz to 1910MHz range.

IP Wireless already had a trial at Orange and T-Mobile in the UK (which have just agreed to merge), but in that pilot each 5MHz segment only gave rise to 14 TV channels per operator. The new standard could support 40 separate TV channels if two operators shared their TDD spectrum.

The GSMA announced its support and is backed up with additional support from both IPWireless and Ericsson as well as operators Orange, Softbank and Telstra.

There have been recently quite a few bad news for DVB-H and on top of that IP Wireless has announced that Samsung is going to be releasing phones with IMB support so it may be that we will see IMB sometime next year.

The GSMA paper that details IMB service scenarios and System requirements is embedded below:

Tuesday 27 July 2010

'Single-Vendor LTE' from Alcatel-Lucent


Alcatel-Lucent is positioning itself as the only single-vendor solution that service providers need to deploy Long Term Evolution (LTE) networks, including everything from the radio access network and mobile backhaul to routing, base stations, and applications enablement.

The infrastructure giant is taking this message on the road with a 53-foot LTE trailer equipped with 84 TVs to demo what next-generation networks can do, besides just make things really, really fast.

In fact, one theme in all of Alcatel-Lucent’s demos isn't the speed, but the need for one throat to choke when deploying LTE, whether an operator is evolving from a 2G or 3G network or starting from scratch -- the route AlcaLu hopes they will take.

The other strong theme is the applications LTE will enable, both for businesses and consumers, and AlcaLu's strong position with the developer community. The Alcatel-Lucent trailer not only demos multiple applications, many of which are video-based, but shows how they can run simultaneously on LTE.

One significant challenge will be Alcatel-Lucent's ability to blend those two themes.

Read the complete article at Light Reading here.

Meanwhile, Ericsson CEO Hans Vestberg has been complaining that there are components shortage industry-wide. "We share the same suppliers with consumer electronics makers and others," said Vestberg. "There is a fierce competition for those components."

Vestberg said he believes the components pipeline will open up soon, although other networks providers don't look for much of a supply improvement for several months.

Ericsson has been digesting the Nortel acquisition, which solidified its position as the leading LTE infrastructure provider. It also gained an important beachhead in South Korea with its acquisition of Nortel LG, now Ericsson LG.

"Over the past years, we have gone through major changes with cost reductions and strengthened portfolio and market presence while maintaining our technology leadership," said Vestberg. "The cost reduction program initiated in the first quarter 2009 has been completed, reaching its target. Going forward, cost and capital efficiency will remain top of our agenda."

Read the complete article at Information Week here.

Saturday 22 May 2010

50 Billion Connected Devices by 2020 (2025?)

Back in April, Hans Vestberg, CEO and the President of Ericsson declared that there will be 50 Billion connected devices by 2020.

In the recently concluded LTE World Summit, this statement seemed to have gained lots of attention. Everyone quoted this left, right and center. The interesting thing was that some said that this would happen by 2025 and some also said 2030.

While we can make a generic statement that there will be some 50 Billion connected devices sometime between 2020 and 2030, not everyone was sure how they would be connected.

My understanding is that a device is connected if it has a valid IP (IPv6) address. That means that the PC's at home are included and anything connected over WiFi are included as well.

So by this definition, it wont surprise me if we probably have 100 Billion connected devices by 2030.

Tuesday 27 April 2010

Softbank and Ericsson for TD-LTE as well

Last week I blogged about TD-LTE in India and China, today I found out that there is more interest in TD-LTE:

From Fierce Wireless:

Ericsson, the world's largest wireless infrastructure vendor, is looking to gain more expertise is the area, and this week signed an MoU to create a strategic cooperation with Datang Telecom in China to develop TDD solutions and likely gain a foothold in China Mobile's planned TD-LTE network.

As part of the deal, Ericsson will begin integrating Datang's TD-SCDMA radio access network equipment into its own 3G offering. TD-SCDMA is China's homegrown 3G standard that China Mobile and others are using. TD-LTE is seen as the next generation of TD-SCDMA.

From Telecom Asia:

Japanese cellco Softbank Mobile is considering deploying the Chinese-developed TD-LTE standard as a 4G network.

Senior executive vice president Ted Matsumoto told telecomasia.net the company could deploy it in the 2.5GHz spectrum it gained access to when it
bought a stake in failing PHS operator Willcom last month.

But he said
Willcom’s next-gen PHS technology, XGP, and mobile Wimax were also under consideration.

“We’re going to have 2.5GHz TDD spectrum, so we will seriously explore TD-LTE,” he said.

The XGP technology was “very much like TD, or at least is compatible with TD-LTE.”

Softbank is also focused on winning access to the key 700MHz or 900MHz frequencies, the “golden spectrum” with a much higher propagation range already that is used by both of its competitors.

“We’re fighting the handicap game [without those frequencies],” Matsumoto said. “There’s no 100% assurance, but we definitely will seek a 700/900MHz license.”

Japan’s Ministry of Internal Affairs & Communications plans to allocate 40MHz of spectrum in the 700/900MHz ranges for LTE and is now conducting a review.

For the time being, Softbank has put LTE plans on the backburner in favor of HSPA+.

It shut down its 2G network last month and is looking to reap the cost benefits of running a single 3G/3.5G network with up to 42Mbps download speeds.

Monday 19 April 2010

All eyes on TD-LTE in India and China


The TD-SCDMA and Long Term Evolution (TD-LTE) network will be massively deployed in China, the world's largest telecommunications country by number of telecoms users, in 2010, globally premier international market research and consulting firm Infonetics Research said in a forecast report.
More and more mobile carriers have started developing the LTE, including Verizon Communications Inc., China Mobile Ltd., and China Telecom Corporation Ltd., Infonetics noted. There will be no more than twenty LTE networks in the world at the end of 2010.

China Mobile Communications, the largest mobile telecom carrier in China, will establish three experimental TD-LTE (time division-long term evolution) networks separately in three coastal cities - Qingdao, Xiamen and Zhuhai - beginning the third quarter of 2010, according to the China-based China Business News Daily.

China's Ministry of Industry and Information Technology (MIIT), the carrier, handset and component makers, and handset solution suppliers in China in late 2008 began to cooperate for the development of TD-LTE in three phases, the report said.

The first-phase trial of technological concepts completed in June 2009, and the ongoing R&D and experiments in the second phase will be finished at the end of June 2010, the report indicated, adding the third phase will begin with China Mobile setting up three trial networks in the third quarter.

China Mobile Communications, the largest mobile telecom carrier in China, on April 15 inaugurated its first experimental TD-LTE network at the site of the 2010 Shanghai World Expo.

The trial network consists of 17 outdoor TD-LTE base stations made by Huawei Technologies completely covering the 5.28km square site and will be used to provide mobile high-definition multimedia services.

ZTE and Datang Mobile Communications Equipment as well as Motorola and Alcatel-Lucent have also set up TD-LTE access points inside a number of pavilions.

Motorola, Inc.'s Networks business has already announced in February that it has successfully deployed a TD-LTE network at the Expo Center for World Expo 2010 Shanghai China, and completed the first indoor over-the-air (OTA) TD-LTE data sessions at the site. These advancements demonstrate another milestone of collaborative industry efforts on TD-LTE commercialization, reaffirming Motorola's commitment to address the future needs of TDD spectrum operators in China and around the world.

These milestones follow the announcement by China Mobile Communications Corporation (CMCC) in 2009, that Motorola was selected as main equipment supplier to provide indoor TD-LTE coverage for pavilions at Shanghai Expo. During the Shanghai Expo, Motorola will provide an advanced end-to-end TD-LTE solution and the world's first TD-LTE USB dongles. Motorola will also leverage its orthogonal frequency division multiplexing (OFDM) expertise with professional services to deploy, maintain and optimize these leading-edge networks. Visitors will be able to experience applications such as high-definition video on demand, remote monitoring and high-speed Internet access services.

Motorola, Inc.'s Networks business announced on April 16th that it showcased an end-to-end TD-LTE demonstration via the world's first TD-LTE USB dongle at the Shanghai Expo site to support the "TD-LTE Showcase Network Opening Ceremony" hosted in Shanghai on April 15. Delegates at the ceremony experienced applications that run over a TD-LTE network via USB dongles, including high-definition video wall (simultaneous 24 video streams), remote monitoring and high-speed Internet browsing applications. This latest advancement demonstrates a major milestone of the collaborative industry efforts in building a healthy TD-LTE device ecosystem, reaffirming Motorola's commitment to TDD spectrum operators around the world.

Motorola, a leading provider of TD-LTE technology, and China Mobile share the same commitment to accelerating TD-LTE commercialization and globalization. "We are very excited to support China Mobile in bringing the world's first TD-LTE USB dongle demonstration enabled by our TD-LTE system," said Dr. Mohammad Akhtar, corporate vice president and general manager, Motorola Networks business in Asia Pacific. "A healthy devices ecosystem has always been critical to the development, commercialization and success of wireless network technologies. We are working closely with partners to drive this ecosystem as demonstrated by the advancement announced today. TD-LTE is now a commercial reality and we are very pleased to see that industry players are joining forces to accelerate TD-LTE globalization."

Interest in TD-LTE continues to grow because of several key factors: the low cost of TDD spectrum that is particularly attractive to emerging and developing markets; operators' continuing need for more capacity and spectrum; and the ability to hand-off between TD-LTE and LTE FDD networks. In effect, this ability to roam between LTE FDD and TD-LTE means operators can use TD-LTE networks to augment their FDD LTE network for more capacity or other applications such as video broadcasting, while operators choosing to use TD-LTE as their "main" network can still offer their subscribers the ability to roam to other operators' FDD LTE networks in different countries. Motorola is one of the few vendors in the industry that has expertise in, and is committed to investing in both FDD-LTE and TD-LTE, as well as WiMAX. By leveraging its orthogonal frequency division multiplexing (OFDM) expertise and WiMAX legacy, Motorola has built up its leadership position in TD-LTE with a number of industry-firsts.

Nokia Siemens Networks has inaugurated a TD-LTE Open Lab at its Chinese Hangzhou R&D facility. TD-LTE smartphone and terminal manufacturers will be able to use the lab to test the interoperability and functionality of their devices across TD-LTE networks.

"The development of terminals and devices has always been a bottleneck in the roll-out of new mobile technology," said Mr. Sha Yuejia, vice president of China Mobile. "We are thus more than happy to see that Nokia Siemens Networks has established a cutting-edge terminal testing environment, an initiative that we support wholeheartedly. After all, a healthy ecosystem needs efforts from all stakeholders."

Nokia Siemens Networks' Open Lab will provide an end-to-end testing environment for verifying the compatibility of terminals and devices with the company's TD-LTE network products and solutions. The lab will also provide consultancy and testing services to device manufacturers. Nokia Siemens Networks' TD-LTE R&D center in Hangzhou is fully integrated into the company's global network of LTE Centers of Competence.

Providing a live TD-LTE experience to operators in the region, Nokia Siemens Networks also recently kicked off a nationwide TD-LTE road show in China. Beginning in Beijing, the road show will cover more than ten provinces in three months, demonstrating the most advanced TD-LTE technology and applications.

In India, Even as the government hopes to raise around $9 billion from the 3G and BWA auctions, foreign telcos waiting in the wings are eager to unfurl a new technology — TD-LTE —which is akin to 4G technology.

US-based Qualcomm and Sweden's Ericcson aim to piggyback on TD-LTE, hoping that it will help them gain a toe-hold in India, the world's fastest growing mobile market. Qualcomm is to participate in the broadband wireless access (BWA) spectrum auction. If it does secure its bid in the auction, India could well become the first country after China to roll out TD-LTE.

TD-LTE, or Time Division Long Term Evolution, caters to peak download speeds of 100 Mbps on mobile phones, compared to the 20 Mbps for 3G and 40 Mbps for Wimax. LTE brings to the table additional spectrum, more capacity, lower cost, and is essential to take mobile broadband to the mass market.

The government has slotted the sale of two 2.3 GHz blocks of spectrum on April 11, providing 20 MHz spectrum in each of the country's 22 telecom circles. The base price has been set at $ 385 million. However, Qualcomm will need an Indian partner for its TD-LTE foray in the country since foreign direct investment is limited to 74%.

The US telco aims to use the 2.3 GHz spectrum band offered for TD-LTE-based BWA services. Sources in the know told TOI that the company would bid aggressively to corner one of the two BWA slots up for sale. There are 11 bidders for the BWA auction.

Asked to comment on the market dynamics, Sandeep Ladda, executive director, PricewaterhouseCoopers (PWC), said: "Though the Indian market is huge, it won't be smooth sailing post auction. We are adding 1 crore customers a month and in January, we added 1.9 crore customers, but the implementation of the new technology has its own cost. And India is a very cost conscious market."

Eager to play by the rules in India, Qualcomm has notified that it would enter into a joint venture with an Indian partner to launch its services and later exit from the joint venture after the network becomes operable.
Meanwhile, The WiMAX Forum has gone on the defensive during the WiMAX Forum Congress Asia in Taipei, Taiwan. The group is speeding up its time table to deliver the next generation of WiMAX--a reaction to heavy data use among WiMAX subscribers as well as the looming threat posed by Qualcomm and Ericsson's lobbying for TD-LTE in India.

Recently, the forum launched a global initiative to accelerate advanced WiMAX features that would double peak data rates and increase average and cell edge end user performance by 50 percent.

Mo Shakouri, vice president with the WiMAX Forum, said enhancements to the current generation of WiMAX weren't on the forum's roadmap, but were brought to the forefront at the urging of several WiMAX operators already facing capacity crunches. The forum reports that the average usage of data on WiMAX networks is close to 10 GB. Clearwire recently reported that mobile users average more than 7 GB of usage per month. In Russia, mobile WiMAX operator Yota sees more than 1 GB per month in data traffic from subscribers using its HTC smartphone. For laptops, it's 13 GB per month.

"Demand for data is moving so fast that we were pushed by many people to add this functionality," Shakouri said.

The WiMAX Forum has also been prodded to announce more detailed plans for 802.16m, and step up the timeline for its development via a new group called the WiMAX 2 Collaboration Initiative, which is made up of vendors Samsung, Alvarion, Motorola, ZTE, Sequans, Beceem, GCT Semiconductor and XRONet. The companies will work in tandem with the WiMAX Forum and WiMAX operators to accelerate the next-generation standard. WiMAX 2, the marketing name for the 802.16m standard, is expected to expand capacity to 300 Mbps peak rates via advances in antennas, channel stacking and frequency re-use.

The forum previously forecast 802.16m would hit in 2012 or 2013. But increasing demands for data--coupled with Qualcomm and Ericsson urging Indian mobile broadband license bidders to go with TD-LTE--motivated the forum to put some stakes in the ground and declare that WiMAX 2 equipment will meet certification by the end of 2011.

"There has been a lot of noise about TD-LTE, and the WiMAX Forum had not specifically given dates regarding timelines for 802.16m," Shakouri said. "Basically our announcement around 802.16m came about because of the noise in India."

The formation of the WiMAX 2 Collaboration Initiative is a marked change from the way the first generation of WiMAX was developed. Sprint Nextel was the entity driving the majority of the standards work as it was eager to get to market and begin building an ecosystem. Vendors are now taking the lead and driving equipment readiness before the 802.16m standard is finalized by the end of this year. Shakouri said the standard is 95 percent finished.

"Those companies are going to take a more active role inside the forum," Shakouri said. "They have all come together to speed up the process."

The group of vendors plans to collaborate on interoperability testing, performance benchmarking and application development before the WiMAX Forum establishes its certification program to narrow the gap between the finalized standard and commercial rollouts.
So how much of a threat is TD-LTE to WiMAX? Shakouri said the answer depends on spectrum decisions. "At this moment, the spectrum we are focusing on is separate, aside from what Qualcomm announced in India," Shakouri said. He also said that a TD-LTE ecosystem is at least two to three years behind WiMAX.

Many analysts speculate that TD-LTE will become the crossover technology that will prompt WiMAX operators to flip to LTE. Clearwire was part of a group of operators and vendors that last month asked the 3GPP standards body to begin working on specifications that would enable TD-LTE to be deployed in the 2.6 GHz band, which Clearwire uses for WiMAX. During the CTIA Wireless 2010 trade show last month, Clearwire CEO Bill Morrow reiterated the company's interest in deploying LTE when the technology catches up to WIMAX. He also called for one standard down the road.
Another initiative the forum is announcing this week is the launch of its Open Retail Initiative, a global program aimed at driving WiMAX into consumer devices sold directly or through retail channels that can be activated by the consumer over the air on the network. If you remember the evangelism of early WiMAX advocates like Barry West, this capability was supposed to be the Holy Grail of the technology.

Wednesday 31 March 2010

Renewed focus on TD-LTE

Last year I blogged about the 3G Americas report on TD-LTE and Motorola's gamble on TD-LTE.





The following is from daily wireless blog:

Industry momentum behind Time Division LTE continues to grow with news that a number of major operators and vendors are working with the 3GPP to allow the standard to be deployed in the USA, using the 2.6GHz spectrum band. Clearwire and its partners own the majority of that spectrum. Most of Clear’s 2.6 GHz spectrum goes unused.

Light Reading Mobile notes that China Mobile, Clearwire, Sprint Nextel, Motorola, Huawei, Nokia Siemens Networks, Alcatel-Lucent and Cisco Systems are asking for the 2.6GHz spectrum (2496MHz to 2690MHz) to be defined as a TDD band for LTE.

Outside the United States, part of the band (2570MHz to 2620MHz) is already specified for TDD. The new work will extend this compliance. The report adds that specifications for the US 2.6GHz band for TD-LTE is scheduled to be completed by March 2011.

LTE pioneers TeliaSonera, NTT DoCoMo and Verizon Wireless, will all use different frequency bands for their respective LTE networks, explains TechWorld. So for roaming in the U.S, Japan and Europe to work, modems will have to support 700MHz, 2100MHz and 2600MHz, with more bands to be used in the future. That will be a challenge for roaming, says Light Reading.


The following is from fierce broadband wireless:

The appeal of TD-LTE has widened well beyond China. The recent announcement of Qualcomm to bid for TDD spectrum in India to support a TD-LTE deployment confirms--although it was not required to validate--the emergence of TD-LTE as global technology, likely to command a substantial market share.


Why the sudden interest in TD-LTE?

There are four main factors driving a growth in support for TD-LTE:

  • The FDD LTE and TD-LTE versions of the 3GPP standard are very similar. As a result, devices can support both the FDD and TDD interfaces through a single chipset--i.e., without any additional cost. This is a hugely important new development: TD-LTE will benefit from the wide availability of FDD LTE devices that will be able to support TD-LTE as well. Unlike WiMAX, TD-LTE does not need to prove to have a substantial market share to convince vendors to develop devices. Vendors do not need to develop new devices, they simply need to add TD-LTE support to the existing ones.
  • There is a lot of TDD spectrum available, and in most cases it is cheaper and under-utilized. 3G licenses frequently have TDD allocations and upcoming 2.5 GHz auction in most cases contemplate TDD bands.
  • The increasing availability of base stations that can be cost-effectively upgraded will make it possible and relatively inexpensive for WiMAX operators to transition to TD‑LTE using the same spectrum allocation. The transition will still require substantial efforts and be justified only in some cases, but it will make it easier for WiMAX operators to have roaming deals and to have access to the same devices that LTE operators have.
  • Industry commitment to WiMAX 16m, the ITU-Advanced version of WiMAX and successor to the current WiMAX 16e, is still limited.


What's next?

In the near term very little will change. TD-LTE is still being developed and it will take time before it gets deployed beyond core markets like China and possibly a few others like China. In Europe, for instance, mobile operators will deploy LTE in the FDD spectrum and only when they will need additional capacity they are likely to move to TDD. Unlike FDD LTE, TD-LTE will move from initial deployments in developing countries, with a later introduction as a mature technology in developed countries--a quite interesting trend reversal.


WiMAX operators will also be barely affected by TD-LTE in the short term. WiMAX is years ahead in terms of technological maturity, devices and ecosystem. This gives them a strong advantage in comparison to TD-LTE operators: They know the technology already, they have a network, and they have customers. They also have the choice whether to switch to TD-LTE or not--and, more importantly, they have no pressure to do so before TD-LTE has reached the maturity they feel comfortable with or until the WiMAX 16m prospects become clearer.



Friday 29 January 2010

HSPA+ rollout updates, Jan 2010

It has been predicted that the growth of HSPA+ broadband across Europe is set to soar with the total number of subscribers set to nearly double across Europe in 2011.

A new report has predicted that by 2011 the growth of HSPA+ broadband across key European markets will soar, and could almost double compared to 2009. The number of subscribers is set to soar from twenty two million in 2009 to around forty three million in 2011. The report was released by CCS Insight.

According to the report HSPA+ broadband will be a major factor in seeing growth of one hundred percent in the to five major European markets. The report goes on to state that the European mobile broadband market will enjoy seeing both subscriber and revenue numbers double by 2011. Revenues are set to increase from around six billion Euros in 2009 to around eleven billion Euros in 2011.

Michael O’Hara, chief marketing officer at the GSMA, said: “It is clear from this report that with the right network investment, European mobile network operators will see significant growth in mobile broadband adoption in the next two years. HSPA technology will drive this rapid uptake across Europe as mobile operators and their customers continue to benefit from its expanding, vibrant and competitive ecosystem.”


HSPA+ was generally the most efficient way of upgrading use of bandwidth already in use and was likely to dominate in the short term at least, with an estimated 1.4 billion subscribers worldwide by 2013, around ten times the estimated take-up of LTE.

HSPA+ release 7, which became available last year, uses MIMO technology like that in 11n Wifi to help take the peak downlink throughput to 28Mbps, with 11Mbps on the uplink. Release 8, for which chipsets will become available this year, aggregates two carrier signals to bring peak data rates to 42Mbps on the downlink.

Release 9 will put two MIMO streams on each of two 5MHz carriers, aggregated to produce a 10MHz data pipe delivering 84Mbps on the downlink; the uplink uses simple aggregation to 23Mbps. A projected Release 10 would bring the peak downlink speed to 168Mbps, though this would require 20MHz carriers only available in the 2.5GHz and 2.6GHz bands.

Novatel Wireless, a developer of wireless data cards and other devices, said that it has added support for dual-carrier HSPA+ networks. The firm said it is using Qualcomm's MDM8220 chipset for the support, and will launch commercial devices in the second half of 2010 based on the chipset. Novatel said the new support will add more advanced data capability and other features to its offerings. Dual Carrier HSPA+ networks are expected to provide higher throughput to wireless data devices, and also helps address better service for cell phone users.

The new modem can receive data at up to 42M bps (bits per second) in compatible 3G networks. To increase the theoretical maximum download speed of the modem from 21M bps to 42M bps, Novatel uses two carrier frequencies instead of the usual one, a technique called dual-carrier. But it will only deliver the higher speed on networks that also support the technique.

Users can expect peak speeds at up to 30M bps, according to Hans Beijner, marketing manager for radio products at Ericsson.Leif-Olof Wallin, research vice president at Gartner, is a more pessimistic, saying increased traffic on the networks could negatively impact speeds. "I think it will be difficult to get above 20M bps," he said.

Sixty-six operators have said they plan to use HSPA Evolution, and so far 37 networks have been commercially launched, according to statistics from the Global Mobile Suppliers Association (GSA).

However, the version of HSPA Evolution that supports 42M bps is still very much in its infancy. Last week, mobile operator 3 Scandinavia announced plans to launch services when modems become available. In December, representatives from Vodafone and the Australian operator Telstra visited Ericsson to Stockholm to view a demonstration, but neither operator has so far announced plans to launch commercial services.

Ericsson and 3 Scandinavia have unveiled plans to roll-out a worlds-first 84Mbps HSPA+ wireless network. The initial rollout will cover Denmark and four Swedish cities. HSPA+ networks that currently operate in Canada, for example, offer speeds of up to 21Mbps depending on conditions. In the United States, T-Mobile recently announced a similar planned network.

Real-world tests of the 21Mbps networks show the services achieving around 7Mbps speed. If a similar performance could be applied to the new Ericsson/3 network, it could result in speeds of roughly 28Mbps at realistic distances and network load.

and 3 will also deploy 900MHz 3G networks in Sweden in a bid to boost coverage in remote areas, as existing higher frequency networks have left some users with poor performance.
The high-speed services will hit Denmark and areas of Sweden this winter if all goes to plan.

China Unicom is putting the finishing touch on the tests on its HSPA+ networks in Guangzhou, Shenzhen, and Zhuhai, which were kicked off in October 2009 by partnering with its three major suppliers Huawei Technologies, ZTE, and Ericsson.

HSPA+ is the next generation technology for China Unicom's WCDMA 3G service. HSPA+, also known as Evolved High-Speed Packet Access, is a wireless broadband standard defined in 3GPP release 7. The HSPA+ network claims with a transmission speed of 21Mbps, 1.5 times faster than its current 3G network.

The outdoor average speed of the networks built up by Ericsson and Huawei reach up to 16.5Mbps and 18.5Mbps on the downlink, 50% higher than that of the existing HSPA network. That means you can download a song within two or three seconds.

Cell C, South Africa, has signed a US$378m deal with the Chinese telecom equipment provider ZTE Corporation. Cell C would ever lead the industry as far as network infrastructure is concerned but it is a fact that Cell C will be the first South African operator to roll out HSPA+ technologies incorporating download speeds of up to 21Mbit/s – three times faster than anything currently available.

According to Cell C an important factor in the decision to appoint ZTE is its ability to offer 4G services using Cell C’s 900MHz frequency band which offers wider and deeper coverage than existing 2100 MHz networks, enabling cost effective deployment to rural as well as metropolitan areas.

Tuesday 15 December 2009

Teliasonera reaches a milestone with first commercial LTE Networks

TeliaSonera has rolled out commercial LTE Networks in Stockholm, Sweden and Oslo, Norway. The Swedish network is supplied by Ericsson and the Norway one by Huawei. At the moment only Samsung Dongles are available for browsing the web.

Read the press release here.

By the way, its a bit shameful that the operator wants to market itself and its using the term 4G for LTE as it probably sounds more sexy :) I blogged couple of years back and it still applies that LTE is 3.9G and IMT-Advanced/LTE-Advanced is 4G.

Sunday 25 October 2009

All eyes on China Mobile TD-SCDMA network


China Mobile plans to spend more on 3G terminal subsidies in 2010.

The outfit has tripled the amount of subsidies from the current year level and is expected to spend $4.4 billion next year. The huge amounts of cash will enable the outfit to push into the 3G space in the worlds largest economy.

China Mobile has 70 per cent of the Chinese wireless market but has been taking a caning from China Unicom. The outfit uses its own TD-SCDMA 3G standard but with that sort of money to spend it is fairly clear that foreign salesmen will be showing up trying to flog the outfit shedloads of 3G gear.

The company recently launched a line of smartphones dubbed Ophones based on the TD-SCDMA technology which uses Google's Android mobile operating system.

All three carriers have commercially launched their 3G networks over the recent months, but take-up has been slow. Market leader Mobile has been hamstrung by the limited number of handsets for the new TD-SCDMA system.

But now with its device range expanding and the network expected to be rolled out to 238 cities by year-end, the market’s 800-pound gorilla appears ready to assert itself.

Analyst firm BDA says China Mobile plans to spend 120 billion yuan on handset subsidies this year, most of it on TD-SCDMA. It laid out 50 billion on subsidizing phones in the first half of the year, with less than 12% going to TD phones.

Now a China Mobile source told has told website C114 that the company would leverage its financial strengths “to stage a price war to resist Telecom’s and Unicom’s 3G” services.

China Mobile has 503 million users, Unicom 142 million and China Telecom 44 million customers. Of these 3G comprises a tiny fraction - China Mobile has 1.3 million using TD-SCDMA, Unicom 350,000 using W-CDMA and China Telecom 1.3 million on its CDMA EV-DO network.


TD-SCDMA is primed to evolve into a global standard: TD-LTE. Granted, TD-LTE's sales pitch is not all that different from its ancestors - i.e. making use of unpaired spectrum to boost capacity in urban environments where FDD macro networks get overloaded. What is different this time around is a bigger ecosystem of vendors developing it - admittedly for just a single market at the moment, but also the biggest single mobile market in the world.

The other key difference is that TDD has always been primarily a data play. But from 2001 up to 2008, 3G cellcos were still primarily in the voice business, and FDD allowed them to continue milking that cash cow. That worked fine when 3G data usage was still mostly ringtones, wallpapers and other walled-garden content.

Then the iPhone happened. Smartphones got smarter and data usage skyrocketed so high that E1 backhaul links became the new bottlenecks. If ABI Research is to be believed, by 2014 mobile users will be transmitting a total of 1.6 exabytes a month (compared to 1.3 exabytes for all of last year).

Hence all the interest in LTE, as well as related technological tricks to offload data traffic and maximize RAN capacity like spectrum refarming in the 900- and 1800-MHz bands and femtocells. TD-LTE is another tool in the toolbox, and by the time we start hitting monthly exabyte levels in five years, its predecessor in China will have been put through the ringer enough to qualify as "seasoned" if not "mature".

Of course, all that depends on a ton of factors over the next five years. Still, TDD is a lot closer to realizing its potential than it was at the start of the decade.

If nothing else, TD-LTE may have the novel distinction of being the quietest evolution the cellular world has yet seen. That will depend on how much progress Qualcomm and other chipset vendors make with dual-mode FDD/TDD chipsets, but once devices are capable of roaming seamlessly between both, TD-LTE may be the first RAN acronym that won't need to be marketed to end-users who don't give a toss what it's called anyway.

ST-Ericsson is creating a strong foothold in the evolving Chinese 3G market, and is powering the first modem for TD-HSPA, which can take advantage of the fastest speeds offered by China Mobile.

The silicon joint venture is working with Chinese partner Hojy Wireless on modules that will turn up in data cards and dongles early next year. China Mobile will hope these will boost uptake of its new network by heavy duty data users, a market where China Telecom's EV-DO system has so far shone more brightly. The M6718 modem could also be included in notebooks, netbooks and smartphones in future, as the market moves beyond data cards.

Mobile broadband modules, for incorporation in a range of devices, are an important part of the broader ST-Ericsson portfolio, with co-parent Ericsson a key customer as it bolsters its module business in 3G and LTE. The M6718 is a dual-mode TD-HSPA/EDGE device, supporting 2.8Mbps downlink and 2.2Mbps uplink.

Friday 11 September 2009

Ericsson's Exciter: Conceptual mobile Personal Area Mediator (PAM)

Interesting Video:



If you find this interesting, there is a presentation you can look at here. Unfortunately its in swedish but you can get an idea about which direction things will be going in future.

Friday 7 August 2009

Multi-Standards Radio Base Station (MSR-BS) in 3GPP Release 9

I wrote about Future Mobile Terminals earlier which will probably be Multiservice, Multinetwork and Multimode. A similar approach would be needed for the network side. 3GPP is working on Release-9 feature of Multi-Standard Radio (MSR-BS). The 3GPP Spec 37.900 is not yet available but a draft should be available soon.

Research and Markets have already released a report arguing about the benefits of MSR-BS. Last year Ericsson released the RBS 6000 series products that has MSR support. Huawei and Nokia Siemens Networks are also working on similar products under different guises. Martin has blogged about this topic as well earlier in case you want to refer to.

According to Research and Markets report the terms used for this technology is Multi-Standard Radio Base Station (MSR-BTS/MSR-BS), Multi-Mode Radio Base Station (MMR-BTS/MMR-BS) and Multi-Radio Access Technology (Multi-RAT). The name in standards usually is MSR-BS.

So what is MSR-BS? The 3GPP definition is: Base Station characterized by the ability of its receiver and transmitter to process two or more carriers in common active RF components simultaneously in a declared RF bandwidth, where at least one carrier is of a different RAT than the other carrier(s).

In very simple terms, a single Base Station will be able to simultaneously transmit different radio access technologies from a single unit. So a unit may be for example transmitting GSM, WCDMA 2100 and LTE 2600 simultaneously.

The number of technologies supported by a BTS will be an implementation choice. With technology maturing it wont be surprising to have upto 4-5 different technologies in a MSR-BS in the next five years.

The advantage the mobile operator will have will not only be monetary but there will be possibility of space saving. But as the old english proverb says, they will be "putting their eggs in a single basket". If one unit stops working then the coverage in the area goes down. There may not be an option to fallback on different technology.

The way this MSR-BS are implemented will be definitely based on Software Defined Radios (SDR). The advantage with SDR will be that in different parts there is a slight frequency variation for different technologies like GSM-850 is specific to USA whereas the rest of the world uses GSM-900. These small variations will easily be customisable with these MSR-BS and optimisations wont be too far off.

Different Band Categories have been defined for different scenarios. For example Band Category 1 involves deplyment where GSM wont be present. Only LTE and WCDMA is present there. Band Category 2 involves frequency bands where GSM, EDGE, WCDMA and LTE may be present. Band Category 3 is designed with TDD and TD-SCDMA in mind.

More information as and when available

Thursday 30 July 2009

Nortel Acquisition and Ericsson Gameplan



Bankruptcy courts in Canada and the United States unanimously approved Nortel Networks Corp.'s request to sell its main wireless business to Swedish rival LM Ericsson.

The US$1.13-billion sale will deliver to the Swedish telecom firm Toronto-based Nortel's CDMA, or code division multiple-access technology, an older system, but one still widely deployed by mobile-phone carriers. CDMA is expected to continue to be in use in developing markets like Asia for the next several years.

However, the most lucrative portion of the sale, analysts say, comes in Nortel's long-term-evolution technology, or LTE. Nortel said it has spent as much as US$200-million annually developing the next-generation wireless gear that is expected to become the global standard in the future.

"Nortel still owns all of the LTE patents," Nortel counsel Derrick Tay said in court. Mr. Tay said Nortel owned some 5,500 patents. Of those, 600 were being "transferred" to Ericsson while none of the LTE intellectual property was being sold. Instead, Nortel will be licensing them to Ericsson, he said.

I am curious as to what does it mean by licensing the LTE patents considering the fact that Nortel is bankrupt. If the license period is something like say 99 years then it shouldnt really matter for Ericsson. I am not sure just making a guess.

Lynnette Luna, Fierce Wireless has a very interesting take on this:
Ericsson and Nokia, once the staunchest opponents of CDMA technology, found themselves in a bidding war for bankrupt Nortel's CDMA assets. The war ended on Friday with Ericsson on top and willing to pay $1.13 billion for most of Nortel's CDMA and LTE assets.


Ericsson had tried to make a go of it in the North American CDMA market following its purchase of Qualcomm's infrastructure business that was part of its IPR settlement with Qualcomm in 1999. It subsequently ended the business after failing to penetrate this market since Qualcomm didn't have much of an installed base. Nokia, now Nokia Siemens Networks, never tried to play in the North American CDMA market, and thus has a weak North American market share overall at around 5.5 percent.

However, Ericsson this year has made significant headway into the U.S. market, scoring a big LTE deal with Verizon--at the expense of Nortel--and winning a $5 billion CDMA outsourcing agreement with Sprint Nextel. Did it really need to spend $1.13 billion to gain more market share?

The answer is yes. Despite winning these two U.S. deals, the biggest criticism of Ericsson has been its lack of CDMA expertise--whether managing a network or migrating CDMA operators to LTE. Now it has both. Given the fact that Nortel's CDMA gear is in a significant portion of CDMA networks operating around the world, Ericsson now has a great story to tell. It needs that CDMA expertise to migrate customers from CDMA to LTE--especially since voice traffic will continue to run over CDMA networks while data gets routed over LTE for the foreseeable future.

For Ericsson, it's no longer about getting a foot in the door. It's about crushing the competition. Ericsson is looking forward to a future when both WCDMA and CDMA operators look to it to help them migrate to LTE. But as Ericsson CEO Carl-Henric Svanberg said on the conference call this morning, "CDMA will be the first markets to migrate to LTE so therefore it is important to us."

Meanwhile, a deal like this could be the nail in the coffin for some vendors. It's certainly not good news for NSN, which would have boosted its North American market share to 30 percent had it won the assets. And Chinese vendors ZTE and Huawei have been trying hard to make inroads into the North American market through CDMA. This deal certainly hampers those efforts.

And Alcatel-Lucent just saw its major competitor become significantly stronger. Alcatel-Lucent was the vendor with the better CDMA-to-LTE conversion story while Nortel was stuck in bankruptcy limbo.

Of course, it's not just about getting a stronger foothold in LTE. Nortel's CDMA business is a money-maker, and Ericsson executives on the call this morning said they believe the unit will continue to be profitable for the next few years as operators keep investing in their CDMA networks. There are actually operators looking to deploy CDMA EV-DO Rev. B. And don't forget the services market, a major growth engine for Ericsson. Ericsson said the deal will be earnings per share accretive within the first year.