Showing posts with label HetNets. Show all posts
Showing posts with label HetNets. Show all posts

Wednesday 23 January 2019

AI and Analytics Based Network Designing & Planning

Recently I blogged about how Deutsche Telekom is using AI for variety of things. The most interesting being (from this blog point of view), fiber-optic roll-out. According to their press release (shortened for easy reading):

"The shortest route to the customer is not always the most economical. By using artificial intelligence in the planning phase we can speed up our fiber-optic roll-out. This enables us to offer our customers broadband lines faster and, above all, more efficiently," says Walter Goldenits, head of Technology at Telekom Deutschland. It is often more economical to lay a few extra feet of cable. That is what the new software-based technology evaluates using digitally-collected environmental data. Where would cobblestones have to be dug up and laid again? Where is there a risk of damaging tree roots?

The effort and thus costs involved in laying cable depend on the existing structure. First, civil engineers open the ground and lay the conduits and fiber-optic cables. Then they have to restore the surface to its previous condition. Of course, the process takes longer with large paving stones than with dirt roads.

"Such huge amounts of data are both a blessing and a curse," says Prof. Dr. Alexander Reiterer, who heads the project at the Fraunhofer IPM. "We need as many details as possible. At the same time, the whole endeavour is only efficient if you can avoid laboriously combing through the data to find the information you need. For the planning process to be efficient the evaluation of these enormous amounts of data must be automated." Fraunhofer IPM has developed software that automatically recognizes, localizes and classifies relevant objects in the measurement data.

The neural network used for this recognizes a total of approximately 30 different categories through deep learning algorithms. This includes trees, street lights, asphalt and cobblestones. Right down to the smallest detail: Do the pavements feature large pavement slabs or small cobblestones? Are the trees deciduous or coniferous? The trees' root structure also has a decisive impact on civil engineering decisions.

Once the data has been collected, a specially-trained artificial intelligence is used to make all vehicles and individuals unidentifiable. The automated preparation phase then follows in a number of stages. The existing infrastructure is assessed to determine the optimal route. A Deutsche Telekom planner then double-checks and approves it.


In the recent TIP Summit 2018, Facebook talked about ‘Building Better Networks with Analytics’ and showed off their analytics platform. Vincent Gonguet, Product Manager, Connectivity Analytics, Facebook talked about how Facebook is using a three-pronged approach of accelerating fiber deployment, expanding 4G coverage and planning 5G networks. The video from the summit as follows:

TIP Summit 2018 Day 1 Presentation - Building Better Networks with Analytics from Telecom Infra Project on Vimeo.

Some of the points highlighted in the video:
  • Educating people to connect requires three main focus areas, Access, Affordability and Awareness – One of the main focus areas of TIP is access. 
  • 4G coverage went from 20% to 80% of world population in the last 5 years. The coverage growth is plateauing because the last 20% is becoming more and more uneconomical to connect.
  • Demand is outpacing supply is many parts of the world (indicating that networks has to be designed for capacity, not just coverage)
  • 19% of 4G traffic can’t support high quality videos today at about 1.5 Mbps
  • Facebook has a nice aggregated map of percentage of Facebook traffic across the world that is experiencing very low speeds, less than 0.5 Mbps
  • Talk looks at three approaches in which Facebook works with TIP members to accelerate fiber deployment, expand 4G coverage and plan 5G networks.
  • A joint fiber deployment project with Airtel and BCS in Uganda was announced at MWC 2018
  • 700 km of fiber deployment was planned to serve over 3 million people (Uganda’s population is roughly 43 million)
  • The real challenge was not just collecting data about roads, infrastructure, etc. New cities would emerge over the period of months with tens of thousands of people 
  • In such situations it would be difficult for human planners to go through all the roads and select the most economical route. Also, different human planners do thing in different ways and hence there is no consistency. In addition, its very hard to iterate. 
  • To make deployments simpler and easier, it was decided to first provide coverage to people who need less km of fiber. The savings from finding optimal path for these people can go in connecting more people.
  • It is also important for the fiber networks to have redundancy but it’s difficult to do this at scale
  • An example and simulation of how fiber networks are created is available in the video  from 07:45 – 11:00.
  • Another example is that of prioritizing 4G deployments based on user experience, current network availability and presence of 4G capable devices in partnership with XL Axiata is available in the video from 11:00 – 14:13. Over 1000 sites were deployed and more than 2 million people experienced significant improvement in their speeds and the quality of videos. 
  • The final example is planning of 5G mmWave networks. This was done in partnership with Deutsche Telekom, trying to bring high speeds to 25,000 apartment homes in a sq. km in the center of Berlin. The goal was to achieve over 1Gbps connection using a mixture of fiber and wireless. The video looks at the simulation of Lidar data where the wireless infrastructure can be deployed. Relevant part is from 14:13 – 20:25.
Finally, you may remember my blog post on Automated 4G / 5G Hetnet Design by Keima. Some of the work they do overlaps with both examples above. I reached out to Iris Barcia to see if they have any comments on the two different approaches above. Below is her response:

“It is very encouraging that DT and Facebook are seeing the benefits of data and automation for design. I think that is the only way we’re going to be able to plan modern communication networks. We approach it from the RAN planning perspective: 8 years ago our clients could already reduce cost by automatically selecting locations with good RF performance and close to fibre nodes, alternatively locations close to existing fibre routes or from particular providers. Now the range of variables that we are capable of computing is vast and it includes aspects such as accessibility rules, available spectrum, regulations, etc. This could be easily extended to account for capability/cost of deploying fibre per type of road. 

But also, we believe in the benefit of a holistic business strategy, and over the years our algorithms have evolved to prioritise cost and consumers more precisely. For example, based on the deployment needs we can identify areas where it would be beneficial to deploy fibre: the study presented at CWTEC showed a 5G Fixed Wireless analysis per address, allowing fibre deployments to be prioritised for those addresses characterised by poor RF connectivity.”

There is no doubt in my mind that more and more of these kinds of tools that relies on Analytics and Artificial Intelligence (AI) will be required to design and plan the networks. By this I don’t just mean 5G and other future networks but also the existing 2G, 3G & 4G networks and Hetnets. We will have to wait and see what’s next.


Related Blog Posts:

Wednesday 10 October 2018

Automated 4G / 5G HetNet Design


I recently heard Iris Barcia, COO of Keima speak after nearly 6 years at Cambridge Wireless CWTEC 2018. The last time I heard her, it was part of CW Small Cells SIG, where I used to be a SIG (special interest group) champion. Over the last 6 years, the network planning needs have changed from planning for coverage to planning for capacity from the beginning. This particular point started a little debate that I will cover in another post, but you can sneak a peek here ðŸ˜‰.

Embedded below is the video and presentation. The slides can be downloaded from SlideShare.





Related posts:

Friday 1 December 2017

Macrocells, Small Cells & Hetnets Tutorial


I blogged about it on the Small Cells blog but cross posting here, just in case you missed it. I am making some videos sharing basic information about mobile technology. Its on YouTube here.

Recently I made some videos looking at all kinds of cellular infrastructure; playlist is embedded below. If you need slides, get it from 3G4G slideshare channel here.

Saturday 5 September 2015

HetNets and Ultra Dense Networks



When I did my 5G presentation back in Feb., I explained about Ultra Dense Networks (UDN) that will be a main feature of future traffic hotspots. I have also blogged about Qualcomm having tested 1000 small cells in a square km. Some operators are already running out of spectrum with traditional deployments in hotspots. They are already making their cells smaller (but not yet using Small cells) thereby having less users in each cell. This may not be enough so the approach likely to be taken is:

  • Offload to WiFi
  • Aggregate WiFi with LTE (different approaches including LTE-U, LAA and LWA)
  • Use Small cells and C-RAN
  • Multi technology Carrier Aggregation
  • Beamforming (and massive MIMO)


The above picture is from a presentation (embedded below) by ZTE in the LTE World Summit. Its a good attempt to show different technologies, the year they are expected to go mainstream, whether they are TDD or FDD and if they will form part of 5G.

Anyway, here is the presentation. There is some interesting information on C-RAN, D-RAN results and fronthaul too.



Saturday 28 June 2014

EE: The Implications of RAN Architecture Evolution for Transport Networks


Here is a presentation by Andy Sutton, EE from the recent LTE World Summit 2014. Unfortunately the event was too big to be present in all presentations but in his own words, "As always the bullet points don’t tell the full story as there’s considerable narrative that goes with this, however it does stress some major themes."

Slides embedded below, can be downloaded from Slideshare:


Monday 12 May 2014

Improvement in Interference Rejection and Suppression Technology


In the last post where I talked about FeICIC I mentioned about the advanced Interference rejecting receivers, here is one very good article from NTT Docomo technical journal. The following is from this article:

Rel. 11 LTE has introduced MMSE-Interference Rejection Combining (MMSE-IRC) receivers as a mobile terminal interference rejection and suppression technology to mitigate the effects of these interference signals and increase user throughput even in areas that are recently experiencing high interference. Rel. 8 LTE receivers support MIMO transmission technology, so receivers were equipped with at least two antennas since it was first introduced. The MMSE-IRC receivers in Rel. 11 LTE, are able to use the multiple receiver antennas to create points, in the arrival direction of the interference signal, where the antenna gain drops (“nulls”) and use them to suppress the interference signal (Figure 1). The terminal orients a null toward the main interference signal, which is the signal that particularly affects the degradation of throughput, thereby improving the Signal-to-Interferenceplus-Noise power Ratio (SINR) and improving throughput performance.

However, with the original MIMO multiplexed transmission, which realized high throughput using multiple transmit and receiver antennas, the receiver antennas are used to separate the signals between layers, so interference from adjacent cells cannot be suppressed and throughput cannot be improved, particularly for mobile terminals with two receiver antennas.

On the other hand, the 3GPP has already included interference rejection and suppression technology in performance specifications for mobile terminals equipped with W-CDMA/High-Speed Downlink Packet Access (HSDPA) in Rel. 7 of the Universal Mobile Telecommunications System (UMTS). With W-CDMA, receivers normally use one receiver antenna and perform Rake reception, but the effects of multipath interference degrading reception performance was an issue.

Thus, the following three receiver extensions were studied and introduced.
• Type 1/1i extends the Rake receiver to use two antennas.
• Type 2/2i extends the Rake receiver to an MMSE receiver that suppresses multipath and adjacent-cell interference.
• Type 3/3i extends the MMSE interference-suppressing receiver defined in Type 2/2i to use two receiver antennas.

The functional extensions in receivers in Rel.7 UMTS and Rel. 11 LTE are summarized in Table 1. The MMSE-IRC receivers in Rel. 11 LTE incorporate receiver algorithms that are generally equivalent to those in the Type 3/3i receivers introduced in WCDMA/HSDPA. However, in the WCDMA/HSDPA receivers they also operate to suppress inter-coding interference within a cell. There is no interference within a cell in LTE systems, so in the MMSE-IRC receivers introduced in Rel. 11 LTE, they operate to suppress interference arriving from adjacent cells.

From my understanding, a similar approach is being proposed for the Mobile Relay Node (MRN)

Anyway, the complete article is as follows:


Friday 19 July 2013

Nice way of showing HetNets, by Cisco #LTEWS

This is from a presentation by Akram Awad of Cisco in the LTE World Summit 2013 in Amsterdam. I really like the way HetNets are explained





Sunday 30 June 2013

Multi-RAT mobile backhaul for Het-Nets

Recently got another opportunity to hear from Andy Sutton, Principal Network Architect, Network Strategy, EE. His earlier presentation from our Cambridge Wireless event is here. There were many interesting bits in this presentation and some of the ones I found interesting is as follows:

Interesting to see in the above that the LTE traffic in the backhaul is separated by the QCI (QoS Class Identifiers - see here) as opposed to the 2G/3G traffic.




This is EE's implementation. As you may notice 2G and 4G use SRAN (Single RAN) while 3G is separate. As I mentioned a few times, I think 3G networks will probably be switched off before the 2G networks, mainly because there are a lot more 2G M2M devices that requires little data to be sent and not consume lots of energy (which is an issue in 3G), so this architecture may be suited well.


Finally, a practical network implementation which looks different from the text book picture and the often touted 'flat' architecture. Andy did mention that they see a ping latency of 30-50ms in the LTE network as opposed to around 100ms in the UMTS networks.


Mark Gilmour was able to prove this point practically.

Here is the complete presentation:



Monday 8 April 2013

Interference Management in HetNets


Interference Management is a big topic in HetNet's. An earlier blog post here on similar topic was very popular. The above picture shows a Heterogeneous cellular network topology incorporating different forms of small cell deployments as an overlay on the macrocell network. Small cells would generally use secure tunnels back to the core network using existing broadband infrastructure. Whereas in the HCS (Hierarchical Cell Structures), different layers have different frequencies, thereby not causing radio frequency interference, in HetNets same frequencies can be used between different layers. The same frequencies can cause radio frequency Interference and necessitates the use of advanced Interference avoidance techniques.

CTTC has another interesting presentation on Interference Management in HetNets that I am embedding below as slides and video:





Friday 26 October 2012

Developing and Integrating a High Performance HetNet

I have seen on Twitter some people think that HetNets (Heterogeneous Networks) is just a new name for the Hierarchical Cell Structures (HCS). The main difference between then is that while HCS requires all layers to have different frequencies, HetNets can use the same or the different frequency. In case the same frequency is used, there needs to be a way to manage interference between the different layers. In fact the term 'layers' is hardly used with HetNets as there is nothing strictly hierarchical with different types of cells that co-exist in a HetNet. Typically a HetNet comprises of Macro cells, Micro/Pico cells, other Small Cells (including Femtocells) and WiFi as well (if used to offload traffic).

This recent whitepaper from 4G Americas is an excellent source to understand more about HetNets



Available to download from Slideshare here.

Wednesday 19 September 2012

"No-Edge Networks" and Multi-Stream Aggregation (MSA)

The following is from Huawei press release:


The LTE-Advanced Multi-Stream Aggregation (MSA) technology standard is capable of increasing data rates at the cell's edge. A key component of Huawei's "No-Edge Networks" concept, MSA technology coordinates macro cells to improve user data rates at the cell's edge and also between heterogeneous networking scenarios to improve peak rates and simplify mobile management to ensure a consistent user experience.

With the development of mobile broadband, operators are mostly concerned about user experience. With mobile coverage, should able to enjoy the same quality of services no matter where they are. However, with mobile communication systems, the most challenging issue is system performance at the cell's edge.

The concept behind Huawei's MSA technology is that the user is always able to receive downlink data and aggregate downlink data streams from a cell or cell group with the best signal quality. A similar method applies to uplink data, where the user always transmits uplink data to a cell or cell group with the best signal quality. The uplink data streams are aggregated on the network side.

Huawei's MSA technology reduces the number of handovers, lowering device power transmission and increasing device standby time. These advantages are in accordance with the concept of delivering a "borderless network" and "green" wireless communications. It's expected that MSA technology will improve system performance at the cell's edge by almost 30%.

MSA technology is especially suitable for macro-micro HetNets. In hotspot area, macro cells provide basic LTE coverage while the micro cells provides capacity enhancement. The use of MSA technology allows users to receive controlled signaling from macro cells and services from best quality HetNet cell. Users at any location within the network can then enjoy fast and stable data services with ultra broadband, zero waiting and ubiquitous connectivity. MSA technology brings users high speeds and high quality as well as a simple service experience.

The advanced MSA technology proposed by Huawei is set to become a key feature of the evolution to 3GPP LTE-Advanced standards. Huawei has contributed 293 core standards to the 3GPP LTE/LTE-Advanced standardization process, 20% of the global total and the most of any other company.

I wasnt able to find much information but there is this couple of slides that were submitted in Rel-12 workshop that is embedded below:




What do you think of this feature?

Monday 30 July 2012

Tuesday 26 June 2012

Multi-Vendor SON in Het-Net




From a presentation by Prof. Shahram G Niri, NEC in the LTE World Summit, Barcelona.

The complete presentation is available here.


Monday 25 June 2012

LTE Small Cells, SON and HetNets



From a presentation by Prof. Shahram G Niri, NEC in the LTE World Summit, Barcelona.

The complete presentation is available here.

Monday 18 June 2012

3GPP Release-12 and beyond


3GPP Recently held a workshop on "Release 12 and Onward" to identify common requirements for future 3GPP radio access technologies. The goal of the workshop is to investigate what are the main changes that could be brought forward to evolve RAN toward Release 12 and onward. It is recommended that presentations in the workshop include views on:
- Requirements
- Potential technologies
- Technology roadmap for Releases 12, 13 and after

The discussions from the workshop should be used to define the work plan for Release 12 and onward in TSG-RAN.

The list of presentations and links, etc. are below and I have also embedded the Summary and Draft report, both of which can be downloaded from 3GPP website or slideshare. Here is a list of different topics and the presentations that covered them:


AdHoc Networks
AdHoc Networks - RWS-120035


Antennas, Beamforming, Transmitters, Receivers
3D-beamforming - RWS-120002
Vertical sectorization/3D beamforming via AAS - RWS-120005
Advanced receivers and joint Tx/Rx optimisation - RWS-120005
Network assistance for IC receivers - RWS-120005
Support of Active Antenna Systems - RWS-120006
Advanced transmitter beamforming - RWS-120010
Advanced receiver cancellation - RWS-120010
Vertical and 3D beamforming - RWS-120011
MIMO Enhancements - RWS-120014
New antenna configurations and 3D MIMO - RWS-120014
UE AAS (Active Antenna System) [Detailed] - RWS-120015 / RWS-120049
Cloud of Antennas (CoA) Concept - RWS-120016
Support of Massive MIMO Technology - RWS-120016
Full Dimension MIMO (FD-MIMO) System [Detailed] - RWS-120021 / RWS-120046
Cloud-RAN: Benefits and Drawbacks - RWS-120021 / RWS-120046
Further Enhanced Receivers - RWS-120022
Multiple antenna evolution - RWS-120025
3D beamforming - RWS-120026
Vision of 3D MIMO - RWS-120029
Massive MIMO & 3D MIMO - RWS-120034
Potential MIMO Enhancements - RWS-120035
Advanced Antenna Technology - RWS-120035
DL MIMO Enhancement - RWS-120037
Performance Requirement for 8Rx at eNB - RWS-120037
UE Receiver Enhancements - RWS-120039
DL MU-MIMO Enhancement - RWS-120039
Enhancement of MIMO, CoMP - RWS-120040
Advanced MIMO - RWS-120040
MIMO and COMP - RWS-120041
Role of Advanced Receivers - RWS-120041
Advanced Interference Handling - RWS-120041
Interference Suppression Subframes (ISS) and IRC Receiver [Detailed] - RWS-120051


Applications (Apps)
Efficiency for diverse small data applications - RWS-120011
Device Service/Application Awareness - RWS-120018
I-Net:”I”-centric mobile network design philosophy - RWS-120024
Application Aware Comm - RWS-120036 / RWS-120050


Backhaul and Relay
Relay backhaul enhancement - RWS-120011
LTE Backhaul - RWS-120013
Relay - RWS-120025
CoMP, backhaul and X2 interface - RWS-120027 / RWS-120048
Mobile Relay And Relay Backhaul Enhancement - RWS-120029


Baseband
Baseband resource pooling and virtualization - RWS-120011


Capacity and Coverage
Higher system capacity - RWS-120010
Capacity for Mobile Broadband: Requirements and Candidate technologies - RWS-120012
Increase N/W capacity by 1000 times - RWS-120020
Coverage Enhancement - RWS-120037
Capacity Enhancement - RWS-120038 / RWS-120047
Cell-edge Throughput Improvement - RWS-120038 / RWS-120047


Carrier Aggregation, Flexible Bandwidths and Multiflow
LTE multiflow / Inter-site CA - RWS-120002
LTE/HSDPA Carrier Aggregation - RWS-120002
Multiflow Enhancements - RWS-120002
Multi-Stream Aggregation - RWS-120006
Provide mechanisms for Flexible Bandwidth Exploitation - RWS-120008
Carrier aggregation enhancement - RWS-120019
Inter-eNB Carrier Aggregation - RWS-120021 / RWS-120046
Evolution of Carrier Aggregation - RWS-120036 / RWS-120050
CA of Alternative Spectra - RWS-120042


Cells, Carriers, C/U Planes
C/U plane split & Phantom cell - RWS-120010
Phantom cell by single/separate nodes - RWS-120010
Phantom cell: Other topics - RWS-120010
New Carrier Type for Primary Component Carrier - RWS-120011
Flexible/Reconfigurable Cells - RWS-120023
New carrier-type (NCT) enhancements - RWS-120026
Amorphous cells - RWS-120034
New Carrier Types - RWS-120035
Non-Orthogonal Access - RWS-120039
Dynamic Area Construction for UE - RWS-120040


Cognitive Radio
Cognitive radio - RWS-120034
Cognitive Networking - RWS-120036 / RWS-120050


Coordinated MultiPoint (CoMP)
CoMP Enhancements - RWS-120014
CoMP/ICIC enhancement - RWS-120019
CoMP Enhancements - RWS-120023
CoMP enhancements - RWS-120026
CoMP Technologies - RWS-120027 / RWS-120048
Enhanced CoMP - RWS-120029
Potential CoMP Enhancements - RWS-120035
CoMP - RWS-120037
CoMP Enhancement for Indoor Environment - RWS-120040
Overhauling DL CoMP - RWS-120042


Device, Handsets, UE's
Additional UE Enhancements - RWS-120018
Coordination : Multi-mode UE - RWS-120024


D2D / Device-to-Device
Device-to-Device - RWS-120003
LTE Device to Device - Proximity Based Services - RWS-120004
LTE device to device - RWS-120007
LTE direct communication - RWS-120007
Device-to-Device Communications - RWS-120014
D2D Discovery/Communication - RWS-120016
3GPP Proximity Services (ProSe) / D2D - RWS-120022
Device-to-Device communications - RWS-120026
Device-to-Device communication - RWS-120036 / RWS-120050


Data Rates and Throughputs
Higher data rate and user-experienced throughput - RWS-120010
Fairness of user throughput - RWS-120010


Deployments
LTE in Local Area Deployments & Enhancements - RWS-120004
Energy Efficient Local Area Deployments - RWS-120004
Scaling for Mass Deployment - RWS-120008
Flexible and cost-efficient NW deployments - RWS-120010
Considerations on dense NW deployment - RWS-120019


Energy Consumption, Efficiency and Savings
Energy efficiency - RWS-120005
Reduce energy consumption - RWS-120008
Energy Saving - RWS-120014
UE Power Saving - RWS-120036 / RWS-120050
NB Power Saving - RWS-120036 / RWS-120050
Energy Saving Enhancements with CoMP - RWS-120040
Energy Saving with Centralized eNB - RWS-120040


Herogeneous Networks (HetNets)
Optimisation of Het Nets performance - RWS-120005
Improved Support for Heterogeneous Networks - RWS-120006
Network hyper-densification: LTE HetNet2.0 - RWS-120007
Multi-layer HetNet Deployments - RWS-120016
HetNet for HSPA - RWS-120017
HetNet Enhancements - RWS-120023
HetNet Mobility - RWS-120029
Small cells & HetNet - RWS-120031
HetNet - RWS-120037
HetNet Enhancements for HeNB - RWS-120040


HSDPA / HSUPA / HSPA+ Enhancements
HSPA UL Enhancements - RWS-120003
Uplink Enhancements - RWS-120006
UMTS evolution: enhancing CS voice on DCH - RWS-120007
High Speed Packet Access - RWS-120012
HSPA RRM enhancement - RWS-120024
HSPA+ further evolution - RWS-120034


Interworking (HSPA, LTE)
Coordination : HSPA/LTE e-interworking - RWS-120024
Inter-RAT Coordination/CA - RWS-120037


Local-Area Access (Small Cells)
Local-Area Access - RWS-120003
LTE in Local Area Deployments & Enhancements - RWS-120004
LTE Local Area Enhancements - RWS-120004
LTE Local Area Enhancement Areas - RWS-120004
enhanced Local Area (eLA) - RWS-120010
Local Area Enhancements - RWS-120022
Improved Local Area Mobility - RWS-120022


LTE
LTE for Nomadic and Fixed Use - RWS-120018
E-PDCCH enhancement - RWS-120019
Efficiency : Paging Optimization - RWS-120024


LTE Hotspot and Indoor Enhancements (LTE-Hi)
Hotspot and Indoor Enhancements (LTE-Hi) - RWS-120006
Hotspot/indoor Scenario (LTE-Hi) - RWS-120025
Indoor & Hotspot Enhancements (LTE-Hi) [Detailed] - RWS-120029
Possible Study Items for Indoor Environment - RWS-120040


M2M / Machine Type Communications (MTC)
Machine Type Communications - RWS-120003
Improved Support for MTC - RWS-120006
Machine-to-Machine: The Internet of Things - RWS-120014
Machine Type Communications: a new ecosystem - RWS-120014
Wireless MTC and RAN optimizations for MTC - RWS-120016
Low-Cost MTC UE - RWS-120017
MTC + eDDA (enhanced Diverse data application) - RWS-120019
Further Enhancements to Support MTC - RWS-120023
MTC - RWS-120025
MTC enhancements - RWS-120026
M2M - RWS-120029
MTC and migration of traffic from 2G - RWS-120031
Machine Type Communications enhancements - RWS-120034
Machine Type Communications - RWS-120035
Extension triggered by growing M2M traffic - RWS-120038 / RWS-120047
LTE-based M2M - RWS-120041


MBMS / eMBMS
eMBMS Enhancements - RWS-120007
eMBMS - RWS-120013
UHD Multimedia Broadcast/Multicast Service - RWS-120036 / RWS-120050


Mesh Networks
Mesh Networks - RWS-120018


Network Density
Network density: Scenarios - RWS-120010


Network Architecture and Operation
Easier network operation, tolerance to failure - RWS-120005
System Architecture - RWS-120032
Evolution of LTE Networks - RWS-120034


Positioning
Positioning Enhancements - RWS-120006


Public Safety
Public Safety - RWS-120030
Operation of Public Safety System via LTE - RWS-120031
Public safety’s future in LTE [Detailed] - RWS-120033


Self Organising Networks (SON) and Minimisation of Drive Testing (MDT)
SON Evolution - RWS-120002
Enhanced MDT - RWS-120011
Network Self-Optimisation - RWS-120014
SON and MDT - RWS-120017
HetNet SON - RWS-120029
MDT & Energy Saving - RWS-120029
Autonomous Interference Coordination - RWS-120029
Large scale multi-layer centralized cooperative radio - RWS-120034
MDT Enhancement - RWS-120036 / RWS-120050
SON Enhancements - RWS-120036 / RWS-120050
MDT and eDDA - RWS-120041


Small Cells (HNB/HeNB)
UMTS evolution: small cells - RWS-120007
Wide & Local area enhancements - RWS-120010
Small Cells - RWS-120014
Small Cell Enhancement in Rel-12 - RWS-120021 / RWS-120046
HeNB Enhancement - RWS-120036 / RWS-120050
Efficient Usage of Macro and Small Cells - RWS-120038 / RWS-120047
Low-cost Low Power Nodes (LC-LPN) - RWS-120038 / RWS-120047
Small-Cell Improvements: System Aspects - RWS-120041


Spectrum
Enhanced spectrum efficiency - RWS-120005
Spectrum efficiency: eLA topics - RWS-120010
Scenarios for spectrum extension - RWS-120010
Spectrum and spectrum usage - RWS-120012
Wider Spectrum Utilization - RWS-120016
Spectral efficiency for LTE - RWS-120017
New Spectrum for Mobile Broadband Access - RWS-120021 / RWS-120046
Enabling Technologies for New Spectrum - RWS-120021 / RWS-120046
Radio Propagation - RWS-120021 / RWS-120046
Opportunistic Use of Unlicensed Spectrum for D2D Local Traffic - RWS-120023
Flexible Spectrum Utilization - RWS-120024
Spectrum Related: New Bands And CA Band Combinations - RWS-120029
Spectrum - RWS-120032
Hybrid access scheme - RWS-120034
Spectrum - RWS-120035
Spectrum and Transmission Efficiency - RWS-120039
Spectrum-Agile LTE - RWS-120041


TDD / TD-LTE
TD-LTE - RWS-120014
TDD-specific aspects - RWS-120014
TDD adaptive reconfiguration - RWS-120034
Efficient Usage of Dual Duplex Modes - RWS-120038 / RWS-120047
LTE TDD Small-Cell versus WiFi - RWS-120041


Testing
Testing and Certification - RWS-120022


Traffic and Signalling Overhead
Efficient support of diverse traffic characteristics - RWS-120005
Efficient support for variety of traffic types - RWS-120010
Enhancements for variety of traffic types - RWS-120010
Very high traffic (and signalling) scenarios - RWS-120017
Control Plane Overhead Reduction - RWS-120021 / RWS-120046
Further Enhancements to Support Diverse Data Applications - RWS-120023
Efficiency : Small data services in high mobility - RWS-120024


User Experience
Improve User experience - RWS-120009
User Challenges - RWS-120032


Video streaming, call
RAN Enhancements for Video Streaming QoE - RWS-120023
RAN Enhancements for Internet Video Call - RWS-120023


WiFi / WLAN
Cooperation between LTE/HSPA and WiFi - RWS-120005
Unlicensed spectrum: LTE & WLAN - RWS-120007
LTE integration with other RATs - RWS-120014
WiFi integration: For Beyond Rel-12 - RWS-120017
LTE-WLAN Interworking - RWS-120023
Coordination With WiFi - RWS-120029
Smarter opportunistic usage of Wi-Fi - RWS-120031
LTE TDD Small-Cell versus WiFi - RWS-120041


Others
Other identified techniques for LTE - RWS-120005
Efficient Transactions - RWS-120035
Link Enhancement Considerations - RWS-120035
Intra-RAT cooperation / Inter-RAT cooperation - RWS-120036 / RWS-120050


Here is the summary from the workshop:

Complete list of Presentations

RWS-120002Release 12 and beyond for C^4 (Cost, Coverage, Coordination with small cells and Capacity)NSN
RWS-120003Views on Rel-12Ericsson & ST-Ericsson
RWS-120004LTE evolving towards Local Area in Release 12 and beyondNokia Corporation
RWS-120005Views on Release 12Orange
RWS-120006Views on Rel-12 and onwards for LTE and UMTSHuawei Technologies, HiSilicon
RWS-1200073GPP RAN Rel-12 & BeyondQualcomm
RWS-120008New Solutions for New Mobile Broadband ScenariosTelefonica
RWS-120009Telecom Italia requirements on 3GPP evolutionTelecom Italia
RWS-120010Requirements, Candidate Solutions & Technology Roadmap for LTE Rel-12 OnwardNTT DOCOMO, INC.
RWS-120011Where to improve Rel-12 and beyond: Promising technologiesNEC
RWS-120012Deutsche Telekom Requirements and Candidate TechnologiesDeutsche Telekom
RWS-120013Release 12 Prioritization ConceptsDish Networks
RWS-120014Towards LTE RAN EvolutionAlcatel-Lucent
RWS-120015UE AAS (Active Antenna System)Magnolia Broadband
RWS-120016Requirements and Technical Considerations for RAN Rel.12 & OnwardsFujitsu Limited
RWS-120017Operator requirements on future RAN functionalityTeliaSonera
RWS-120018AT&T View of Release 12 in the North America MarketplaceAT&T
RWS-120019Major drivers, requirements and technology proposals for LTE Rel-12 OnwardPanasonic
RWS-120020Efficient spectrum resource usage for next-generation N/WSK Telecom
RWS-120021Technologies for Rel-12 and onwardsSamsung Electronics
RWS-120022LTE Rel-12 and BeyondRenesas Mobile Europe
RWS-120023LTE Rel-12 and Beyond: Requirements and Technology ComponentsIntel
RWS-120024Considerations on further enhancement and evolution of UMTS/LTE network in R12 and onwardsChina Unicom
RWS-120025Views on LTE R12 and BeyondCATT
RWS-120026A proposal for potential technologies for Release 12 and onwardsETRI
RWS-120027A view on requirements on Rel-12 and onwards from an operator’s viewpointSoftbank Mobile
RWS-120028India market Requirements for Rel. 12 and beyondCEWiT
RWS-120029Views on LTE Rel-12 & BeyondCMCC
RWS-120030LTE addressing the needs of the Public Safety CommunityIPWireless
RWS-120031Vodafone view on 3GPP RAN Release 12 and beyondVodafone
RWS-120032An Operator’s View of Release 12 and BeyondSprint
RWS-120033Public Safety Requirements for Long Term Evolution REL-12U.S. Department of Commerce
RWS-120034Views on 3GPP Rel-12 and BeyondZTE
RWS-120035Considerations for LTE Rel-12 and beyondMotorola Mobility
RWS-120036LG’s view on evolution of LTE in Release 12 and beyondLG Electronics
RWS-120037Views on REL-12 and OnwardsChina Telecom
RWS-120038KDDI’s Views on LTE Release 12 onwardsKDDI
RWS-120039Evolving RAN Towards Rel-12 and BeyondSHARP
RWS-120040Views on enhancement of system capacity and energy efficiency toward Release12 and onwardHitachi
RWS-120041Beyond LTE-A: MediaTek’s view on R12MediaTek
RWS-120042Potential Technologies and Road Map for LTE Release 12 and BeyondITRI, HTC
RWS-120043New concept to maximize the benefit of interference rejection at the UE receiver: interference suppression subframes (ISS)Broadcom
RWS-120046Technologies for Rel-12 and onwardsSamsung Electronics
RWS-120047KDDI’s Views on LTE Release 12 onwardsKDDI
RWS-120048A view on Rel-12 and onwards from an operator’s viewpointSoftbank Mobile
RWS-120049UE AAS (Active Antenna System)Magnolia Broadband
RWS-120050LG’s view on evolution of LTE in Release 12 and beyondLG Electronics
RWS-120051New concept to maximize the benefit of interference rejection at the UE receiver: interference suppression subframes (ISS)Broadcom

More technically minded people want to explore the 3GPP website for the workshop links here: http://3gpp.org/ftp/workshop/2012-06-11_12_RAN_REL12/

Draft report that gives more insight into the presentations as follows: