Showing posts with label India. Show all posts
Showing posts with label India. Show all posts

Saturday 5 September 2009

Farmers worldwide being helped by Mobile Phones Technology


Airtel has entered into a strategic tie-up with IFFCO (Indian Farmers Fertilisers Cooperative) for providing agriculture and allied information to farmers through mobile phones. The facility was formally launched by the Chief Operating Officer (Andhra Pradesh) of Bharti Airtel Limited, Rajnish Kaul, at a function at Anakapalle town, about 40 km from here on Tuesday.

Addressing a media conference on the occasion, he said that the unique facility would benefit over 10 lakh IFFCO society members of rural Andhra Pradesh by giving them access to vital information. The farmer members would be given five free voice messages on farming techniques, weather forecasts, dairy farming, animal husbandry, fertilizer availability and rural health initiatives.

Mr. Kaul said the farmers could also call a dedicated free helpline to get answers from a qualified veterinarian to their specific queries regarding the health of their animals. He said that SIM cards would be provided at subsidised rates and lifetime activation would be done for a mere Rs.47. Calls between the members would be charged at 50 paise a minute. The SIMs would be compatible with any mobile handsets and farmers could buy the handsets of their choice depending on their purchasing power. He said the facility was launched about six months ago in various districts of the State and there were already 65,000 connections.

Question Box provides a service in India and Uganda. In India, phone boxes are installed in slums and villages that connect users to operators that will answer questions. In Uganda, users can call in from any mobile phone and ask their questions. The operators have access to a repository of previously asked questions (and their answers), and they can also occasionally consult the Internet. A special search engine and database were also built specifically for the project.

Another initiative, Avaaj Otalo, provides an audio community forum for farmers in rural Gujarat, India. Working with an organization that produced a popular radio program, Otalo provides a call-in number where farmers can exchange questions and answers. Users are also able to listen to archives of the radio program.

These projects differ in that Question Box avoids having to process users' questions by adding a human listener in the loop; Avaaj Otalo avoids processing by organizing their collection of audio prompts with into a menu. Both programs, however, have yet to deal with the problem of cost because they subsidize the service for users. Otalo operates with a toll-free number and Question Box provides the phones to call from in India. In Uganda, Grameen Community Knowledge Workers provides the mobile phones.

It's easy to see why the fishermen of the southern Indian state of Kerala captured the attention of a Harvard economist when they began using mobile phones a few years ago to track prices in the markets where they sold their catch of the day. Observing how these devices can be used to promote economic growth, Robert Jensen wrote in a 2007 paper titled, "The Visible Hand(set): Mobile Phones and Market Performance in South Indian Fisheries -- The Micro and Mackerel Economics of Information," that "before mobile phones, deciding which [market] would offer the best price was sheer guesswork." With mobile phones, however, suddenly it became an information-based decision. What's more, noted Jensen (who is currently at Brown University in Rhode Island), "it's not a zero-sum trade-off." The fishermen's customers benefitted from lower prices and greater choice, and there was less waste since the fishermen could easily identify the villages that would have the greatest demand for their fish each day.

Now Jensen's "visible handset" is reaching further into rural India. Following a nationwide launch this summer of Nokia Life Tools (NLT), India's farmers can use their mobile phones to access tailored information to help them grow, harvest and sell their crops and manage their livestock. "There is no reason why farmers should not be as successful as fishermen," says Ravi Bapna, associate professor of information systems at the Carlson School of Management in Minnesota and executive director of the Centre for Information Technology and the Networked Economy at Hyderabad-based Indian School of Business (ISB).

Consider Ravindra Shinde, a farmer in Magardhokada, a village in the Nagpur district of Maharashtra. When he recently harvested 125 quintal (a quintal is 100 kilograms) of soybeans and was about to take the crop to market, the price was $32 a quintal. But then he received a message on his handset that soybean production in the U.S. and Argentina had fallen, so he held back and later sold his crop for $48 a quintal.

IN the early 1990s, I was engaged in an empirical research work relating to the nexus between mobile phone and poverty in rural Bangladesh. However, friends used to tease me and raise their eyebrows on hearing about the project and my interest at that time. This was to be expected in the early 1990s when, not to speak of the poor, even the "solvent" could not afford to have a mobile set. It was treated as a "luxury" item, only to be monopolised by the moneyed people.

My research findings on village pay phones of the Grameen Bank at that time -- and as published in international journals in subsequent years -- clearly showed that mobile phones could help the poor escape "rural penalty" (a la H. Hudson), defined as poverty mainly due to distance, poor connectivity and asymmetric information. However, as of today, about 40 percent of the rural households in Bangladesh are reported to have access to mobile phones and roughly one-fourth of the users are poor. Rickshaw pullers, fishermen, traders all use it to minimise information asymmetry and quicken communication between two points.

About a decade later, I was invited to comment on two research papers showing the impacts of mobile phones on farmers and traders in Africa.

The first paper was by Megumi Muto and Takashi Yamano, both representing JICA and Foundation for Advanced Studies on International Development (FASID). They drew upon panel data of rural Uganda where banana producers could reduce marketing costs and raise income with expansion of mobile phone coverage. The message is that the expansion of mobile networks increased market participation and sales of the perishable product, banana. More importantly, small producers and farmers in remote areas gained the most.

As information flow increases due to the expanded mobile phone coverage, the cost of crop marketing is expected to decrease, particularly in remote areas where potential marketing gains from the increased information flow is large. We indeed find that the network expansion has a larger impact in market participation in areas farther away from the district centers than in closer areas.

The second paper was presented by Jenny C. Aker of the University of California, Berkeley, on the impact of mobile phones on price dispersion of grains in Niger. Using a sequential searching model, the researcher observed that cell phones increased traders' reservation sales price and the number of markets over which they searched. This reduces price dispersion across markets. To be specific, grain price dispersion reduced by 6-7 percent and reduced intra-annual price variation by 10 percent.

What is important, and as revealed in both papers, is that every farmer need not possess a set. It could be the community, producers' organisations and others from where the price information could spread, either as a "public good" or as a "private good." A participant from the audience in that seminar informed us that in his village in Africa, a mobile phone is hung from the branch of a tree and interested persons could use it on payment of a fee. Second, even with access to mobile phones, full gains might not be reaped as farmers might need more information. The role of public authority and media in this respect is very important. Again, producers' organisations could form an information forum of their own to be more effective at bargaining than individual initiatives.

Monday 24 August 2009

3G or 4G: What should India do?

The first thing I should mention as I always do, please stop calling LTE as 4G as its commonly called as 3.9G. Labelling it as 4G does make it sound better (or sexy, some would say) but its not correct. Maybe the authors who label LTE as 4G dont want to try hard and do some research or its just to make the end users panic that India has missed a complete generation of mobile technology. LTE-Advanced will be the 4G technology and its still long way away (part of Rel-10).

Last week I wrote about Indian subscribers getting taste of 3G as the state owned MTNL and BSNL have launched some services. I am not sure what has been launched but all I can say is there is a dismal takeup as of yet. I read an article today about how Motorola is testing 4G [sic] and this can spoil the governments plan of rasing Rs 35,000 crore (£4.6Billion: 1Billion = 100 crores).

People may start panicking that investing in 3G is now doomed and it can just cause problems for the operators in future. The reality though is much more simpler. In a simple sentence, I would say that going for 3G or LTE does not matter much. Read on.

Lets first get Hardware out of the way. Most of the Base Stations (NodeB's, eNodeB's, RNC, etc) have a major part as SDR's or Software Defined Radios. The advantage of this is that if you have bought a 3G Node B, with just software change it should be upgradable to LTE eNode B. I have come across quite a few products where the equipment manufacturers are claiming that their 3G equipment is fully upgradeable to LTE. I did blog about some of this in this post here.

The second point we should get out of the way is the terminology. For a layman, 3G is something that was introduced 10 years back in 2000 so its quite an obsolete technology. In reality, 3G is commonly used to refer to even the new developments within the 3G spectrum. For example some of the people may have heard of HSDPA which is actually referred to as 3.5G in the mobile domain. Similarly we have HSUPA which is 3.75G and so on. The latest development is going on around 3.8G and 3.85G as part of Release 8. In general usage 3.5G, 3.75G, etc. is referred to as 3G but its more than 3G (3G+ ;). The good thing is that this 3G+ is till evolving. Release 8 was finalised in Dec. 2008 and the terminals based on that are still being tested. It should hopefully be available soon.

So whats the difference between LTE and HSPA+ (also known as 3G even though its 3.8/3.85G). Not much I would say from a general users point of view. Please note I am not arguing about the fundamental technologies because 3G+ uses WCDMA and LTE uses OFDMA/SC-FDMA technologies. OFDM based technologies will generally be always superior to WCDMA ones but it doesnt matter much. The main enhancement that has happened with LTE as compared to 3G is that in 3G the bandwidth is fixed to 5MHz whereas in case of LTE the bandwidth is flexible and can go all the way to 20MHz. Now if we compare the data speeds in 5MHz spectrum then there may not be much difference between them. Now how many operators will be rolling out services across 20MHz bandwidth? More general case will be using 10MHz.

In case of HSPA+, there is a new feature that allows a UE to use couple of cells. In this case even though the bandwidth is 5MHz but due to Dual Cell feature the UE would effectively see 10MHz bandwidth. This will definitely enhance the speeds.

Now coming to devices. 3G/HSPA/HSPA+ technologies have evolved over quite few years. There are some nice sleek and cheap handsets available. The technology in it as been rigourously tested. As a result the handsets are quite stable and many different design and models available.

LTE is yet to come. NTT DoCoMo and Verizon will be the first one to roll it out probably end 2010. Initial plan is to roll out the dongles then handsets will the eventually arrive. The initial ones will have problems, crashes, etc. Will take atleast till 2010 to sort out everything.

The big problem with LTE as many of us know is that the standards have to support for the old style CS voice and SMS. This should be fixed in Release 9 which is going to be standardised in Dec. 2009 (Mar. 2010 practically). There are different approaches and maybe untill LTE is rolled out we wont know which of them is better.

Last thing I should mention is the spectrum. The consensus is that 3G operates in 2.1GHz spectrum mostly worldwide. LTE would initially be deployed in 2.6GHz spectrum. The digital dividend spectrum when it becomes available will also be used for LTE. Most of the devices for LTE will be designed that way. As a result, 3G will continue to operate as it is in the 2.1GHz band. The devices will always be available and will be usable for long time.

Considering all the facts above, I think 3G (HSPA/HSPA+) is the best option in India or as a matter of fact in any country that is thinking of jumping directly from 2G to LTE. When the time is right, it should not be difficult to move from 3G to LTE.

Tuesday 18 August 2009

Indian subscribers getting taste of Mobile Broadband

Lots of interesting developments are happening in India at the moment. The first and the most basic being MNP or Mobile Number Portability finally becoming a reality. For the first time users will be able to move operators and retain their number. This will change the way the users will use their phones. For example most users use their mobiles as secondary phones for making calls while they give their landline numbers to important people. The reason being they are not sure how long they will stick with the current operator. If they change the operator they will get a new number. I think that this will definitely change with MNP.

MNP is not the only thing. Many operators and equipment manufacturers are waiting for the 3G spectrum auction for some time now. The auction was recently postponed for variety of reasons. The auction will let the private operators to bid for the spectrum and they can decide if they want 3G or WiMAX or LTE. The state run MTNL and BSNL have already launched 3G and in Northern India but there have been not many takers yet. Maybe the people are but sceptical right now or maybe the lack of devices. The other thing is that people are maybe not sure if the technology they invest in will be around tomorrow or not.

MTNL is keen to experiment with WiMAX but it does not want to do it alone. There are many companies in India that have developed WiMAX protocol stacks so it may be a boost for these generally small and medium sized companies if WiMAX is deployed by MTNL. The only problem with WiMAX is that there are hardly big global names with any WiMAX devices/equipment. As a reult the prices could be higher and the consumers may have less choice. 3G and LTE will help in this scenario. Qualcomm for example is already looking forward to getting a big chunck of the Indian market.

India has a very big pool of keen technologists and they will whole heartidly embrace mobile broadband and the variety of apps/mobiles but only when they know that there will be stability and reliability. Once the ball starts rolling then the snowball will turn into an avalanche. The question is not if, but when.

Wednesday 12 August 2009

August 2009: Mobile TV Roundup



Qualcomm is slowly building content for its Flo TV mobile service for cell phones with the recent announcement that Discovery Communications launched a Shark Week Mobile Channel.
Discovery Channel’s Shark Week programs are scheduled to air on the
Flo TV service through Aug. 14.

Flo TV uses the analog spectrum previously occupied by television broadcasters, and offers programming from several of the large network brands. Flo TV President Bill Stone says he envisions expanding the service from cell phones to cars and other consumer electronics products.

Flo TV, however, is not the only mobile TV service. AT&T CruiseCast launched a satellite-based television service in cars June 1.

CruiseCast, which is really an AT&T logo slapped onto RaySat Broadcasting equipment and services, offers 22 TV channels and 20 satellite radio channels. Its satellite antenna is a fat disc the size of a Bundt cake affixed to the roof of a vehicle.

The service costs $28 a month, plus $1,300 for equipment, which requires certified installers who charge an additional $200-$300, says Jim Llewellyn, who demonstrated the service July 31 in San Diego.


If you feell you're missing out on The Ashes action, you can now watch the Ashes for free on your W995.

A 3-month pass for the Sky Mobile TV service now comes bundled with the device exclusively on the 3 Network.

With the service, you can watch eight made-for-mobile channels that use highlights content from the Sky Sports 1, 2, 3 and Xtra channels. You’ll also be able to watch live matches right on your W995 too.

Australian cricketers Glenn McGrath and Matthew Hoggard appeared at the launch of the new bundle, and McGrath expressed his thoughts on the new bundle, saying ”the Sony Ericsson W995 on 3 is a real must for any dedicated cricket fan. To be able to access crucial games via Sky Mobile TV on the go, especially when a tournament like The Ashes is on is invaluable to me.”

After the initial 3-month period, Sky Mobile TV will cost you £5 a month. So, while the savings aren’t amazing, amounting to a whopping £15 in total, it’s still a great feature to have right now if you’re a cricket fan.



Testing of free mobile digital TV for cell phones, netbooks and other on-the-go devices is ramping up in the weeks ahead, and the first devices that can provide such broadcasts should be on store shelves by next year, according to the broadcaster-based group behind the effort.
"Just like you turn on your TV today at home and watch live and local broadcast television, you will turn on your handset and be able to watch live and local broadcast television," said Anne Schelle, executive director of the Open Mobile Video Coalition.

Trials are underway around the country in cities such as Chicago, New York and Raleigh, N.C. The biggest test pond will be Washington, D.C., where broadcasters have the attention of what may be the nation's most powerful audience — politicians. "We already have two stations on the air there, and we'll have the rest of our stations on air by next week," said Schelle.

Cell phones are probably the largest single group of devices that could receive local TV programming.

"There are 250 million of them out there," said Schelle. It's not clear whether wireless carriers are as enthusiastic.


MobileCrunch has picked up an interesting story from AV Watch - who themselves have spotted a USB tuner that plugs in to your TV, and then streams out 1-Seg (that’s a Japanese TV standard) formatted TV that your iPhone/iPod Touch can pick up via an App running over WiFi. Nice.

The iPhone has been at somewhat of a disadvantage for a time, because unlike a lot of other phones in Japan, it can’t natively pick up a TV signal - Japan is one of the places where Mobile TV has worked (but there are a number of specific reasons for that….), so this little bit of kit solves an issue for people who need their TV fix.

The USB device is called the SEG Clip, and is sold by I-O data it follows a previous device that was more of a standalone unit from Softbank Mobile - that one was it’s own receiver, transmitted the data by WiFi, but also double as an extra battery if you plugged it in to an iPhone.



WISH-TV today announced the expansion of its mobile offerings to include a new application for BlackBerry smartphones. This mobile application is the latest addition to 24-Hour News 8’s fully synchronized television and digital offerings that are available free of charge at www.wishtv.com .

WISH-TV unveiled its iPhone custom application with great popularity and much success in May 2009. In addition to these specialized applications, 24-Hour News 8 is also available via any web-enabled mobile device.

LIN TV , WISH-TV’s parent company, in conjunction with News Over Wireless (NOW) has developed the custom BlackBerry smartphone and iPhone applications for each of its 27 local television stations. Six LIN TV stations, including WISH-TV, launch the BlackBerry smartphone service today. LIN TV is the first in its local markets to provide instantaneous and on-demand access to its local news, sports and entertainment, as well as video, weather forecasts and traffic reports to BlackBerry smartphone subscribers.

Six LIN TV stations launched the BlackBerry service last week, including WISH-TV, WAVY-TV, KRQE-TV, WANE-TV, WALA-TV and KXAN-TV. LIN has been among the more aggressive broadcasters in the deployment of its content over nontraditional platforms.

Media Content and Communications Services (MCCS) has made its Hindi, Marathi and Bengali news channels -- STAR News, STAR Majha and STAR Ananda -- available on the mobile TV platform.

The content of all three channels will be streamed live, including the ads that appear during the news programmes. The content will be available on the 3G networks of MTNL and BSNL. However, the company claims that their mobile TV option will also be made accessible to subscribers of other telecom operators, who offer 2.5G services.

Currently, only two mobile operators -- BSNL and MTNL -- offer 3G services in India. The video content delivery process is faster on 3G mobile networks, as compared to 2.5G.

Thursday 2 April 2009

Femtocells in India: No thank you.

So many people ask me if Femtocells will be big in India but I am not sure if I know the answer to that. Honestly I will be surprised if any Indian operators have any plan of Femtocells and even if they are rolled out people might not be tempted.

In a post last month, David Chambers gave an interesting overview of facts and statistics of mobile and internet users in India:

First some details on the current situation in India:
- Population: 1.1 Billion
- 80% live in rural areas and survive on agriculture
- 39% are illiterate
- 27% live below the poverty line
- 77% live on less than US$0.50 per day
- The economy is growing at around 8-9% annually (and has done so for a few years), similar to China, but is still far behind in infrastructure – traffic congestion is throttling and there is not yet a metro/underground in the main cities, although some are being built.
- 2% PC penetration

And from a mobile phone perspective:
- It’s all 2G. No 3G licences have yet been awarded.
- It’s GSM. Both the CDMA technology operators (Reliance and Tata) who have a combined share of around 20% are said to be planning GSM technology rollouts, because the technology is cheaper and there is a wider range of handsets.
- It’s growing faster than anywhere else. Over 9 million new subscribers every month, with around 180million subscribers reported today. That’s still a huge growth to catch up with China, which has almost 500M subscribers, increasing by some 4M/month.
- Around 200,000 towers, with around 20% of towers hosting more than one operator’s basestation equipment.
- ARPU figures vary, with a lot of the newer subscribers probably in the US$ 2-4/month bracket, although overall the industry makes around $8/month
- Call rates are in the order of US 2 cent/minute.
- Yankee reports operator share of Bharti 30%, BSNL 18%, Reliance 17%. Vodafone (formerly Hutch) is growing quickly.
- 2G cellular data cards, using fixed price data plans, are becoming popular in a similar way to 3G cards/USB dongles promoted in developed countries. The data rates and capacity are more limited.

Yet from a wired broadband internet position:
- 3 million broadband DSL subscriptions
- 8 million copper loops capable of delivering broadband.
- 10 million dialup internet users.- Fibre is being laid across the country, but fibre-cuts remain a regular fault
So if we look at the potential for 3G femtocells, we find there is little comfort:
- No 3G licences available yet – this is probably some years off, whilst the country focuses on basic 2G voice/text rollout.
- Virtually no wired broadband to support significant volumes.
- Any 2G femtocells would likely conflict with the tight spectrum reuse and frequency planning of the macro network, so would be discouraged except where deployed and managed directly by the operator in extremely high capacity locations.
- The business case for coverage fill-in doesn’t stack up – broadband is unavailable in areas which don’t have cellular coverage.
- The business case for data in the home is even more difficult, with relatively low levels of domestic computer penetration. There is more likely demand for mobile broadband access via macrocells, using the new HSPA, HSPA+ and LTE technologies when 3G spectrum is made available.

So it’s not a question of deployment of 3G femtocells in the Indian market coming a few years after the developed world. The complete lack of copper loops, and the changing technology that makes it more feasible to deploy wireless broadband than dig up and lay new copper loops. The services that femtocells would offer are therefore more likely to be delivered over the macrocellular network (with microcellular support) in the medium and long term for any developing country. There is some interest in 2G picocells which would be deployed by the operator in enterprise situations to handle high traffic concentrations, but this is a different application, technology and market segment from the 3G proposition.

A similar view is reflected in this article here:

Bharti Airtel, Reliance Communications and Vodafone, all became members of Femtoforum about two years back but don't have any deployment of femtocell in the country. Femtoforum is a not-for-profit membership organization founded in 2007 to promote femtocell deployment worldwide. According to some media reports Bharti Airtel is conducting pilot projects for femtocells. The same is true for Reliance Communications and Vodafone, both are members of Femtoforum but are doing nothing about femtocell deployment in the country. Despite repeated attempts none of the service provider is forthcoming about femtocells deployment status.

In my recent visit to India I found that people have a different perspective of mobiles. For instance people couldnt understand why we use SMS so frequently and as a medium for communication (between friends, couples). India may probably have lowest tariff for voice and that is one of the reasons people use mobiles for. Many people have removed their landlines and use mobiles only, for their calls. Another most common use of the mobiles is to be reachable wherever you are. People havent learnt to switch their phones of silent and hence many places of worship in India are installing Jammers to stop mobiles working while you are thinking about God.

Similarly, people are not too bothered about the internet. They would generally use it on the weekends to write to their, friends, etc. If there is free net available in the office then its a different thing. The net speeds are also not very good and the link is not too reliable. One of the most popular application is Skype follwed by chatting applications.

I met many people who had Iphones or latest Nokia's/Samsung's but when I asked them if they did any data usage on their phones they all drew blank. I found one guy very actively using net on his E71 but he was connected via WiFi.

In this kind of situation, Femtocells may not be of much use to people. Femtocells would be useful as voice boosters but would that justify its cost. I dont think so. The main reason for surge in Mobile takeup is because its very cheap to make calls. You get some very good call bundles at really low cost. There are off peak rates which is 1/5th the normal rate. If the reception of a network is not good in somebody's house, he would change to a different network. In fact even now Mobile Number Portability is not available in India. As a result some people change mobile numbers every year.

With all these things in mind, Femtocells would be hard sell in India.

Monday 26 January 2009

Reversing trend of outsourcing

For years the companies has flourished in their business where outsourcing was one of the major source of saving money and still getting good work done.

One of the main reason why India become the major hub for outsourcing was because of it’s immense pool of skilled science graduate which were far cheaper than in US and Europe.
Although in the last decade the salaries in India has risen manifolds but it still remaines the main destination for outsourcing simply because there is no shortage of the skilled techies.

But the current economic climate is changing the whole dynamics and the early signs are for what they call Outsourcing may be coming home.

With the rising unemployment in US and Europe and with so many people are desperate for the jobs all of a sudden companies see the pool of workers who are ready for work in far less then they were may be five years ago.

Remember no body wants to outsource if only they can get the work done at home.
In the current market situation there is a need to cut costs and increase productivity and for that reason some tech companies are looking for a new approach that bypasses traditional overseas locations like India.

One company who has taken a lead in this is IBM who is focussing on two U.S. communities which are East Lansing, Mich., and Dubuque, Iowa. This could be a trend setting move which other could follow very soon.

IBM believes that in these places there is access to skills also there is a willingness of local universities to cooperate with their business endeavours, and some government incentives to make it economically worthwhile. IBM hopes to create 1,500 direct and indirect jobs in five yearsin East Lansing, Mich and 1,300 jobs in Dubuque, Iowa.

Dubuque didn't just open the door and invite IBM into town but they also offered Big Blue (IBM) an enticing package of incentives worth $55 million over 10 years. These include a loan of $11.7 million that will be forgiven if IBM fulfils its hiring pledge. A local development agency also will spend $25 million to rehab an historic former department store.

Another major factor which is contributing towards bringing the jobs back to US from India is the stimulus package considered by the new president Obama. Although it has not been passed yet by the Congress, Obama has repeatedly discussed IT spending together with the rebuilding the US’s crumbling roads, bridges and schools.

I remember back in early 90’s when India opened its economy to go global one of the first companies to make use of the cheap and skilled science graduate was IBM.
For years India has been the primary location for technology outsourcing not only for IBM but other major tech companies as well.

This all seems to be changing now and the cycle seems to reversing.

It’s not only US but the Europe as well, which is going to get benefited by this reverse in trend. One of the astonishing thing which I came across just last week is that the Japanese companies who has R&D centres in UK are now considered as a cheaper options as compared to the ones in Japan. With the value of British pound fallen so much in the last six months the work force in UK all of a sudden becomes cheaper.

Could this be a new trend?

Industry analysts expect more tech services companies to establish operations in low-cost parts of the U.S and Europe.

I believe that in the coming months and years you'll see more of this although it might not be huge, but it will be a nice niche.

Wednesday 24 December 2008

India gets ready for 3G

So here comes 3G in India. It’s been long coming as the data needs were increasing rapidly in almost all the Indian states. With the existing cellular infrastructure not capable of holding huge traffic particular for data, arrival of 3G was imminent.

The Indian Department of Telecoms (DoT) has published its official timetable for the award of its 3G licences across the country as well as a breakdown of how the relevant spectrum will be allocated across the telecoms circles.

As expected, the state-owned operators BSNL and MTNL each have been reserved one block of 2x5MHz in each circle, with the exception of Rajasthan (State in North West India) which will have no 3G spectrum at all. The number of blocks of spectrum in the private auction differs depending on the circle (see the spectrum table, below).

The auction for the 15-year licences is planned for Jan. 15, 2009. In the majority of 3G service areas there is 25 MHz of paired frequency bandwidth available which relates to four blocks of 2x5 MHz spectrum available for auction in addition to the block reserved for the state-owned operators, Bharat Sanchar Nigam (BSNL) and Mahanagar Telephone Nigam (MTNL). Spectrum is rather limited in many other areas, including the major metro circle of Delhi where only two 2x5MHz blocks will be available to private operators.

All of the 3G spectrum will be in the 2.1 GHz band and in the 2.3 GHz and 2.5 GHz frequency bands, a separate auction for Broadband Wireless Access (WiMAX). In both these auctions, which will take place two days after the 3G auction, bidders are restricted to just one block of spectrum per service area.

The table below shows the proposed spectrum layout.


Service Area (Indian Cities or States)

Paired frequency bandwidth to be allotted

Paired frequency bandwidth to be allotted

Delhi

160

15

Mumbai

160

25

Kolkata

80

25

Maharashtra

160

25

Gujrat

160

15

Andhra Pradesh

160

25

Karnataka

160

25

Tamil Nadu

80

25

Kerela

80

25

Punjab

80

25

Haryana

80

25

Uttar Pradesh(e)

80

25

Uttar Pradesh (w)

80

10

Rajasthan

0

20

Madhya Pradesh

80

25

Bengal

80

25

Himachal Prades

30

25

Bihar

30

25

Orrisa

30

25

Assam

30

25

North East

30

5

Jammu And Kashmir

30

25

Monday 22 December 2008

Indian m-Commerce service among top tech pioneers for 2009



JiGrahak is behind ngpay, the brand name of a free mobile-commerce service that allows consumers in India to shop, order meals, make charitable donations, do their banking, and pay their bills, among other things. Launched last February, ngpay already has attracted more than 230,000 users and has become the largest channel for mobile-based transactions with Indian Railways and HDFC Bank, and for movie ticketing. The company expects to have 1 million users by mid-2009.


More information available from this youtube video:


Wednesday 22 October 2008

Bank inside a Phone



Yes you read it correctly, A Little World (ALW), a Mumbai-based company, which has come up with a unique idea: turning a regular mobile phone to play the role of a bank’s branch.

Faced with the challenge of creating affordable solutions to enable penetration of banking in rural areas, ALW came up with this solution. The equipment costs not more than Rs 30,000 (pounds 400 or $700) through which a bank’s branch becomes functional and offers facilities like depositing/withdrawing money, electronic money transfer, crediting of pension money and also having an online passbook.


Other peripherals that make up the branch are a printer-cum-fingerprint scanning machine, cash box to store upto Rs one lakh in cash and a high resolution camera. The mobile phone can store data of upto 50,000 customers including the entire identification profile comprising a picture and six fingerprint templates among other details.


A big opportunity was unlocked after RBI announced a new policy initiative to allow banks to do business using the ‘business correspondent’ model. Under this, a bank ties up with third parties like ALW’s clients Zero Mass to conduct business in far-off areas on behalf of the banks. All the mobile phones have latest security features and are connected to ALW (the technology and backend partner for Zero mass) servers using GPRS or EDGE technology. The ALW server is in turn connected to the core-banking server of the client bank due to which a transaction is made possible just like it happens in a conventional way.


The critical necessity to opening a branch though is the availability of mobile coverage at the villages and ALW has tie ups with all the major GSM mobile phone operators in the country. Zero Mass currently has tie ups with 24 banks to operate their banking operations in remote and unserviced areas across 18 Indian states.


Christened as ‘Zero Platform’ for branchless banking based on mobile, a branch is typically set up in the village grocery store or panchayat office. Peripherals like the printer and camera are connected to the mobile phone using Bluetooth technology and the entire system has been designed so that it can function even during power cuts, which the villages often experience. “The selected handset (either Nokia or Motorola) has features for encryption and decryption of data through which we can make use of a public medium like GPRS to send data,” says ALW’s Chief Technology Officer Anurag Gupta.


In a short span of a year, ALW has set up over 2,800 branches for Zero Mass across the country and has plans to increase the total number of branches to 5,000 by December this year. The accounts are opened free for a period of 10 years and Zero Mass currently boasts of over 12 lakh accounts with around 20,000 added everyday. “The mobile phone operated branch is a great idea. I fail to understand why others in the same space like us have not made use of existing technologies to come up with feasible solutions like this which offer exponential growth opportunity due to low capital expenditure,” says Gupta.


Zero Mass’s motto is to increase electronic transactions like payments and crediting of accounts , Gupta says. Keeping this in view, customers are encouraged to use the account for electronic money transfer, insurance premium payments, depositing of National Rural Employment Guarantee Scheme (NREGS) wages and pension funds in the account. As a pilot project, mobile recharge payments are also being done through Zero Mass-operated branches.


ALW gets a certain amount as technical fees for rendering its services while Zero Mass gets a percentage as commission for each deposit and withdrawal transaction made at the branch. Gupta, also a director at Zero Mass, says the way forward for the company is to make use of the platform for more profitable transactions offering bigger commissions such as mobile phone recharges and railway ticket booking.

Monday 8 September 2008

India to finally unrestrict VoIP

Even though India supplies the world with software and IT engineers, till now it was not possible for people living there to fully use VoIP facility. It was illegal to call any phone using the computer. This is about to change at the Telecom Regulatory Authority of India (TRAI) has proposed that people be allowed to make calls using internet to fixed lines. What does it mean for the people? Well, the price of domestic long distance calls is supposed to halve to less than a penny (just over a cent) and international calls are supposed to get cheaper by 20%. It would also become cheaper for people to call India from abroad. Already in UK, Vodafone is allowing people to call India from a Pay as you talk phone for just 5 p per min. This may also help the Indian call centres as right now, the onshore companies have to pay termination charges when the calls get routed to India. This would mean that Indian call centres may become cheaper and more competetive.

Now for the small print; only the ISP's will be permitted to compete with the telephone companies using this VoIP. The fixed line and the mobile operators are up in arms about this because the ISPs are going to get free money whereas the mobile operators had to pay license fees for entry into the market.

This may not be a big problem for the time being as at the moment India only has around 5 million broadband subscribers whereas there are 287 million mobile subscribers and around 40 million fixed line subscribers. Also, the call rates are so cheap that additional investment in a PC and broadband connection (which is comparatively expensive) may not be lucrative.

If the recommendations by TRAI are accepted, there will surely be a VoIP revolution in India. The existing fixed line and mobile operators will have to come up with some challenging billing models to survive in future.

Saturday 29 March 2008

The story of WiMAX in India

Read an article on WiMAX in India in Rediff:

On March 4, India's Tata Communications, an emerging broadband player, announced the countrywide rollout of a commercial WiMax network, the largest anywhere in the world of the high-speed, wireless broadband technology.

Already 10 Indian cities and 5,000 retail and business customers use the product, and by next year Tata will offer service in 115 cities nationwide. The folks at Tata can hardly contain their excitement. "WiMax is not experimental, it's oven-hot," says Tata's Prateek Pashine, in charge of the company's broadband and retail business.

Of course WiMax is not new. Most everyone in the industry has been talking about it for years. Intel chairman Craig Barrett has been propagating its virtues in pilot projects across the world, including India and Africa.

Sprint will be rolling out a WiMax network in Washington next month, and in other US cities next year. Until now the most advanced use of WiMax has been in Japan and Korea, where Japanese carrier KDDI and Korea Telecom offer extensive WiMax networks.

However the Japanese and Korean services are not available nationwide - KDDI will have its major rollout only in 2009 - and most people use them as supplements to the wired services.

It's in emerging economies like India, where there is little connectivity and where mobile usage is soaring because of the difficulty in getting broadband wires to homes and offices, that WiMax is likely to see its full potential as a commercially viable technology.
Intel, whose silicon chips power WiMax, has been pushing for this technology for some years and its executives are practically salivating at the thought of the successful rollout in India.

"The more countries and telcos that get behind this technology the better," says R. Sivakumar, chief executive of Intel South Asia. Predicting that the new technology will make other types of Internet access obsolete, he boasts "Tata will set the cat among the pigeons."

Tata Communications has been working on setting this up for a couple of years, and successfully completed field trials last December. It has used the technology from Telsima, a Sunnyvale (Calif.) maker of WiMax base-stations and the leading WiMax tech provider in the world.

For now, the technology will be restricted to fixed wireless, but Tata plans to make it mobile by midyear. The company has invested about $100 million in the project, which will increase to $500 million over the next four years as it begins to near its goal of having 50 million subscribers in India.

The world is watching

Global tech analysts are will be watching carefully. Though WiMax is prevalent in Korea, the Korean service is a slightly different version, says Bertrand Bidaud, a communications analyst with Gartner in Singapore. It's a Korea-specific pre-WiMax technology called WiBRO.

But the Indian market is where the conditions for a WiMax deployment are the best, he says, because of limited fixed lines. That means Tata has fewer hurdles to overcome. And as WiMax scales up fast, it will give service providers greater flexibility and costs will drop equally rapidly.

"If it doesn't succeed in India, it will be difficult (for it to succeed) anywhere else, and Bharti, Tata has been virtually asleep, with a limited subscriber base for its limited product. In fact, even with as many as seven broadband providers in the market, the total Indian subscriber base is just 3.2 million and there is no clear market leader.
But with the WiMax rollout Tata can gain a leadership position and add "a few thousand subscribers a day," says Alok Sharma, chief executive of Telsima. Tata is, of course, going for the heavy-billing corporate customer - a target audience that is beginning to make big investments in technology.

Temple service via WiMax

But also important is the ordinary Indian retail customer who can watch movies via WiMax and enjoy Tata's other unique offerings. For instance, users can take in an early morning worship service at the famous Balaji temple in South India.

The temple permitted Tata to install cameras so that Hindu devotees from around the world could watch the proceedings in the temple around the clock. To get connected initially, users will simply have to go to a store, buy a router, install it, and then they become instantly connected. It will be as easy as buying apples, Tata executives promise.
The Tata rollout is a chance for India to become cutting-edge in mobile Internet services, say WiMax boosters. For India, which "always used last year's fashion to dress itself up," says Sharma, it is a chance to launch a brand new. fourth-generation technology that the world can follow. "India is becoming the knowledge centre of the world; it should take the lead in this," he adds.


There are some other bits which I got from one of VSNLs (now known as Tata Communications) presentation:

  • ISPs using 3.3GHz spectrum for WiMAX roll-out
  • At least 3 networks being built in all large towns
  • Best spectral efficiencies

Wireless Broadband opportunity in India bigger than:

  • Entire LatAm (predominantly on 3.5 GHz)
  • Korea (at 2.3 GHz)


Current deployments by Indian operators rival the biggest ofWiMAX deployments around the world. VSNL deploys the largest WiMAX network in a city across the world.

Soft launched on December 31, 2007 in BANGALORE:

  • Silicon Valley of India
  • 8 million people and over 10000 industries
  • 86% literacy ( national avg – at 61%) - second highest literacy rate for an Indian metropolis, after Mumbai.
  • More than 1000 software companies - Infosys and Wipro, India's second and third largest software companies are headquartered in Bangalore
  • The population of the IT industry folks in Bangalore is 5% i.e 400,000.
  • Bangalore's per capita income of Rs. .49,000 (US$ 1,160) is the highest for any Indian city.
  • Launched with 132 BTS, will be adding another 28 by March 2008
  • 3.3 Ghz, 12 Mhz, 3 Mhz/sector, 4 sectors85% of the city covered
  • The response has been far better than what we had anticipated
  • In 20 days we have installed an equivalent of 10% of the existing wireline base
  • Currently a huge backlog of orders to be installedCustomer experience has been fantastic
  • Additional BTS to ensure full coverage planned

Way forward:

  • Enterprise roll out into another 300 cities over the next 15 months
  • Retail roll out into another 15 – 20 cities over the next 15 months
  • Spectrum in 2.5/2.3 Ghz awaited

Sunday 23 March 2008

What can mobile operators learn from Laloo


I am sure a lot of you have no Idea who Laloo or 'Lalu Prasad Yadav' is. He was long term chief minister of Bihar state in India is well known for corruption and scandals (as are many other politicians in India). In 2004 he became the Railways Minister of India.

Indian Railways is a very sensitive topic. As much as people like to complain about it, its makes everyone proud. Its one of the biggest railway network in the world, employs over 1.5 million people and the total distance covered by the trains is 3.5 times the distance to moon.

In 2001 an expert declared that Railways will be bankrupt by 2015 unless privatised. It was making huge losses and was expected to make US$15.4 billion loss by 2015. Lalu turned it around in 2-3 years and now its made profit of U$2.47 billion.

To turn this huge organisation from loss making to profit making he followed some simple logic.
  • Reduce the fares instead of increasing them and the occupancy will improve
  • Increase the freight loading hours from 10 hours to 24 hours daily
  • Make everything simple for ordinarly people to follow including reservations
  • Once the basics are working keep improving the infrastructure and make further cost reductions

Now lets compare this to how mobile operators behave.

  • They provide big subsidy for the handsets but they think this gives them right to charge whatever they wish.
  • The tariff's are still not competetive for international calls and while roaming abroad. A simple call making and receiving for a UK mobile on roaming to US can be charged to £1.20 per min. Compare this to making it free using Skype. This puts off so many people in calling home when abroad and receiving calls on their mobiles. If its cheaper more and more people will make and receive calls when abroad.
  • Using data abroad could be like commiting suicide.
  • There are couple of networks who give huge student discounts but with them text messages can take upto 12 hours to be delivered.
  • Some networks have customer service open for limited hours and they charge calling the number even with the same network mobile.
The mobile operators like to complain that the voice call revenues are decreasing and there is still not enough data uptake. I would urge them to set their house in order before they complain. In the end the consumers will always find cheaper alternatives like VoIP and WiFi unless its something important. On the oher hand if some cheap options are available we do not mind trying them.