Pages

Showing posts with label Network Architecture. Show all posts
Showing posts with label Network Architecture. Show all posts

Sunday, 3 September 2017

5G Core Network, System Architecture & Registration Procedure

The 5G System architecture (based on 3GPP TS 23.501: System Architecture for the 5G System; Stage 2) consists of the following network functions (NF). The functional description of these network functions is specified in clause 6.
- Authentication Server Function (AUSF)
- Core Access and Mobility Management Function (AMF)
- Data network (DN), e.g. operator services, Internet access or 3rd party services
- Structured Data Storage network function (SDSF)
- Unstructured Data Storage network function (UDSF)
- Network Exposure Function (NEF)
- NF Repository Function (NRF)
- Network Slice Selection Function (NSSF)
- Policy Control function (PCF)
- Session Management Function (SMF)
- Unified Data Management (UDM)
- Unified Data Repository (UDR)
- User plane Function (UPF)
- Application Function (AF)
- User Equipment (UE)
- (Radio) Access Network ((R)AN)

As you can see, this is slightly more complex than the 2G/3G/4G Core Network Architecture.

Alan Carlton, Vice President, InterDigital and Head of InterDigital International Labs Organization spanning Europe and Asia provided a concise summary of the changes in 5G core network in ComputerWorld:

Session management is all about the establishment, maintenance and tear down of data connections. In 2G and 3G this manifested as the standalone General Packet Radio Service (GPRS). 4G introduced a fully integrated data only system optimized for mobile broadband inside which basic telephony is supported as just one profile.

Mobility management as the name suggests deals with everything that needs doing to support the movement of users in a mobile network. This encompasses such functions as system registration, location tracking and handover. The principles of these functions have changed relatively little through the generations beyond optimizations to reduce the heavy signaling load they impose on the system.

The 4G core network’s main function today is to deliver an efficient data pipe. The existence of the service management function as a dedicated entity has been largely surrendered to the “applications” new world order. Session management and mobility management are now the two main functions that provide the raison d’etre for the core network.

Session management in 4G is all about enabling data connectivity and opening up a tunnel to the world of applications in the internet as quickly as possible. This is enabled by two core network functions, the Serving Gateway (SGW) and Packet Data Gateway (PGW). Mobility management ensures that these data sessions can be maintained as the user moves about the network. Mobility management functions are centralized within a network node referred to as Mobility Management Entity (MME). Services, including voice, are provided as an “app” running on top of this 4G data pipe. The keyword in this mix, however, is “function”. It is useful to highlight that the distinctive nature of the session and mobility management functions enables modularization of these software functions in a manner that they can be easily deployed on any Commercial-Off-The-Shelf (COTS) hardware.

The biggest change in 5G is perhaps that services will actually be making a bit of a return...the plan is now to deliver the whole Network as a Service. The approach to this being taken in 3GPP is to re-architect the whole core based on a service-oriented architecture approach. This entails breaking everything down into even more detailed functions and sub-functions. The MME is gone but not forgotten. Its former functionality has been redistributed into precise families of mobility and session management network functions. As such, registration, reachability, mobility management and connection management are all now new services offered by a new general network function dubbed Access and Mobility Management Function (AMF). Session establishment and session management, also formerly part of the MME, will now be new services offered by a new network function called the Session Management Function (SMF). Furthermore, packet routing and forwarding functions, currently performed by the SGW and PGW in 4G, will now be realized as services rendered through a new network function called the User Plane Function (UPF).

The whole point of this new architectural approach is to enable a flexible Network as a Service solution. By standardizing a modularized set of services, this enables deployment on the fly in centralized, distributed or mixed configurations to enable target network configurations for different users. This very act of dynamically chaining together different services is what lies at the very heart of creating the magical network slices that will be so important in 5G to satisfy the diverse user demands expected. The bottom line in all this is that the emphasis is now entirely on software. The physical boxes where these software services are instantiated could be in the cloud or on any targeted COTS hardware in the system. It is this intangibility of physicality that is behind the notion that the core network might disappear in 5G.


3GPP TS 23.502: Procedures for the 5G System; Stage 2, provides examples of signalling for different scenarios. The MSC above shows the example of registration procedure. If you want a quick refresher of LTE registration procedure, see here.

I dont plan to expand on this procedure here. Checkout section "4.2.2 Registration Management procedures" in 23.502 for details. There are still a lot of FFS (For further studies 😉) in the specs that will get updated in the coming months.


Further Reading:

Monday, 19 June 2017

Network Sharing is becoming more relevant with 5G

5G is becoming a case of 'damned if you do damned if you don't'. Behind the headlines of new achievements and faster speeds lies the reality that many operators are struggling to keep afloat. Indian and Nigerian operators are struggling with heavy debt and it wont be a surprise if some of the operators fold in due course.

With increasing costs and decreasing revenues, its no surprise that operators are looking at ways of keeping costs down. Some operators are postponing their 5G plans in favour of Gigabit LTE. Other die hard operators are pushing ahead with 5G but looking at ways to keep the costs down. In Japan for example, NTT DOCOMO has suggested sharing 5G base stations with its two rivals to trim costs, particularly focusing efforts in urban areas.


In this post, I am looking to summarise an old but brilliant post by Dr. Kim Larsen here. While it is a very well written and in-depth post, I have a feeling that many readers may not have the patience to go through all of it. All pictures in this post are from the original post by Dr. Kim Larsen.


Before embarking on any Network sharing mission, its worthwhile asking the 5W's (Who, Why, What, Where, When) and 2H's (How, How much).

  • Why do you want to share?
  • Who to share with? (your equal, your better or your worse).
  • What to share? (sites, passives, active, frequencies, new sites, old sites, towers, rooftops, organization, ,…).
  • Where to share? (rural, sub-urban, urban, regional, all, etc..).
  • When is a good time to start sharing? During rollout phase, steady phase or modernisation phase. See picture below. For 5G, it would make much more sense that network sharing is done from the beginning, i.e., Rollout Phase


  • How to do sharing?. This may sound like a simple question but it should take account of regulatory complexity in a country. The picture below explains this well:



  • How much will it cost and how much savings can be attained in the long term? This is in-fact a very important question because the end result after a lot of hard work and laying off many people may result in an insignificant amount of cost savings. Dr. Kim provides detailed insight on this topic that I find it difficult to summarise. Best option is to read it on his blog.


An alternative approach to network sharing is national roaming. Many European operators are dead against national roaming as this means the network loses its differentiation compared to rival operators. Having said that, its always worthwhile working out the savings and seeing if this can actually help.

National Roaming can be attractive for relative low traffic scenarios or in case were product of traffic units and national roaming unit cost remains manageable and lower than the Shared Network Cost.

The termination cost or restructuring cost, including write-off of existing telecom assets (i.e., radio nodes, passive site solutions, transmission, aggregation nodes, etc….) is likely to be a substantially financial burden to National Roaming Business Case in an area with existing telecom infrastructure. Certainly above and beyond that of a Network Sharing scenario where assets are being re-used and restructuring cost might be partially shared between the sharing partners.

Obviously, if National Roaming is established in an area that has no network coverage, restructuring and termination cost is not an issue and Network TCO will clearly be avoided, Albeit the above economical logic and P&L trade-offs on cost still applies.

If this has been useful to understand some of the basics of network sharing, I encourage you to read the original blog post as that contains many more details.

Futher Reading:



Friday, 12 May 2017

5G – Beyond the Hype

Dan Warren, former GSMA Technology Director who created VoLTE and coined the term 'Phablet' has been busy with his new role as Head of 5G Research at Samsung R&D in UK. In a presentation delivered couple of days back at Wi-Fi Global Congress he set out a realistic vision of 5G really means.

A brief summary of the presentation in his own words below, followed by the actual presentation:
"I started with a comment I have made before – I really hate the term 5G.  It doesn’t allow us to have a proper discussion about the multiplicity of technologies that have been throw under the common umbrella of the term, and hence blurs the rationale for one why each technology is important in its own right.  What I have tried to do in these slides is talk more about the technology, then look at the 5G requirements, and consider how each technology helps or hinders the drive to meet those requirements, and then to consider what that enables in practical terms.

The session was titled ‘5G – beyond the hype’ so in the first three slides I cut straight to the technology that is being brought in to 5G.  Building from the Air Interface enhancements, then the changes in topology in the RAN and then looking at the ‘softwarisation’ on the Core Network.  This last group of technologies sets up the friction in the network between the desire to change the CapEx model of network build by placing functions in a Cloud (both C-RAN and an NFV-based Core, as well as the virtualisation of transport network functions) and the need to push functions to the network edge by employing MEC to reduce latency.  You end up with every function existing everywhere, data breaking out of the network at many different points and some really hard management issues.

On slide 5 I then look at how these technologies line up to meeting 5G requirements.  It becomes clear that the RAN innovations are all about performance enhancement, but the core changes are about enabling new business models from flexibility in topology and network slicing.  There is also a hidden part of the equation that I call out, which is that while technology enables the central five requirements to be met, they also require massive investment by the Operator.  For example you won’t reach 100% coverage if you don’t build a network that has total coverage, so you need to put base stations in all the places that they don’t exist today.

On the next slide I look at how network slicing will be sold.  There are three ways in which a network might be sliced – by SLA or topology, by enterprise customer and by MVNO.  The SLA or topology option is key to allowing the co-existence of MEC and Cloud based CN.  The enterprise or sector based option is important for operators to address large vertical industry players, but each enterprise may want a range of SLA’s for different applications and devices, so you end up with an enterprise slice being made up of sub-slices of differing SLA and topology.  Then, an MVNO may take a slice of the network, but will have it’s own enterprise customers that will take a sub-slice of the MVNO slice, which may in turn be made of sub-sub-slices of differing SLAs.  Somewhere all of this has be stitched back together, so my suggestion is that ‘Network Splicing’ will be as important as network slicing.

Slide illustrates all of this again and notes that there will also be other networks that have been sliced as well, be that 2G, 3G, 4G, WiFi, fixed, LPWA or anything else.  There is also going to be an overarching orchestration requirement both within a network and in the Enterprise customer (or more likely in System Integrator networks who take on the ‘Splicing’ role).  The red flags are showing that Orchestration is both really difficult and expensive, but the challenge for the MNO will also exist in the RAN.  The RRC will be a pinch point that has to sort out all of these device sitting in disparate network topologies with varying demands on the sliced RAN.

Then, in the next four slides I look at the business model around this.  Operators will need to deal with the realities of B2B or B2B2C business models, where they are the first B. The first ‘B’s price is the second ‘B’s cost, so the operator should expect considerable pressure on what it charges, and to be held contractually accountable for the performance of the network.  If 5G is going to claim 100% coverage, 5 9’s reliability, 50Mbps everywhere and be sold to enterprise customers on that basis, it is going to have to deliver it else there will be penalties to pay.  On the flip side to this, if all operators do meet the 5G targets, then they will become very much the same so the only true differentiation option will be on price.  With the focus on large scale B2B contracts, this has all the hallmarks of a race downwards and commoditisation of connectivity, which will also lead to disintermediation of operators from the value chain on applications.

So to conclude I pondered on what the real 5G justification is.  Maybe operators shouldn’t be promising everything, since there will be healthy competition on speed, coverage and reliability while those remain as differentiators.  Equally, it could just be that operators will fight out the consumer market share on 5G, but then that doesn’t offer any real uplift in market size, certainly not in mature developed world markets.  The one thing that is sure is that there is a lot of money to be spent getting there."



Let me know what do you think?

Thursday, 20 April 2017

5G: Architecture, QoS, gNB, Specifications - April 2017 Update


The 5G NR (New Radio) plan was finalised in March (3GPP press release) and as a result Non-StandAlone (NSA) 5G NR will be finalised by March 2018. The final 3GPP Release-15 will nevertheless include NR StandAlone (SA) mode as well.

NSA is based on Option 3 (proposed by DT). If you dont know much about this, then I suggest listening to Andy Sutton's lecture here.


3GPP TR 38.804: Technical Specification Group Radio Access Network; Study on New Radio Access Technology; Radio Interface Protocol Aspects provides the overall architecture as shown above

Compared to LTE the big differences are:

  • Core network control plane split into AMF and SMF nodes (Access and Session Management Functions). A given device is assigned a single AMF to handle mobility and AAA roles but can then have multiple SMF each dedicated to a given network slice
  • Core network user plane handled by single node UPF (User Plane Function) with support for multiple UPF serving the same device and hence we avoid need for a common SGW used in LTE. UPF nodes may be daisy chained to offer local breakout and may have parallel nodes serving the same APN to assist seamless mobility.

Hat tip Alistair Urie.
Notice that like eNodeB (eNB) in case of LTE, the new radio access network is called gNodeB (gNB). Martin Sauter points out in his excellent blog that 'g' stands for next generation.

3GPP TS 23.501: Technical Specification Group Services and System Aspects; System Architecture for the 5G System; Stage 2 provides architecture model and concepts including roaming and non-roaming architecture. I will probably have to revisit as its got so much information. The QoS table is shown above. You will notice the terms QFI (QoS Flow Identity) & 5QI (5G QoS Indicator). I have a feeling that there will be a lot of new additions, especially due to URLLC.

Finally, here are the specifications (hat tip Eiko Seidel for his excellent Linkedin posts - references below):
5G NR will use 38 series (like 25 series for 3G & 36 series for 4G).

RAN3 TR 38.801 v2.0.0 on Study on New Radio Access Technology; Radio Access Architecture and Interfaces

RAN1 TR 38.802 v2.0.0 on Study on New Radio (NR) Access Technology; Physical Layer Aspects

RAN4 TR 38.803 v2.0.0 on Study on New Radio Access Technology: RF and co-existence aspects

RAN2 TR 38.804 v1.0.0 on Study on New Radio Access Technology; Radio Interface Protocol Aspects

38.201 TS Physical layer; General description
38.211 TS Physical channels and modulation
38.212 TS Multiplexing and channel coding
38.213 TS Physical layer procedures
38.214 TS Physical layer measurements
38.21X TS Physical layer services provided to upper layer
38.300 TS Overall description; Stage-2
38.304 TS User Equipment (UE) procedures in idle mode
38.306 TS User Equipment (UE) radio access capabilities
38.321 TS Medium Access Control (MAC) protocol specification
38.322 TS Radio Link Control (RLC) protocol specification
38.323 TS Packet Data Convergence Protocol (PDCP) specification
38.331 TS Radio Resource Control (RRC); Protocol specification
37.3XX TS [TBD for new QoS]
37.3XX TS Multi-Connectivity; Overall description; Stage-2
38.401 TS Architecture description
38.410 TS NG general aspects and principles
38.411 TS NG layer 1
38.412 TS NG signalling transport
38.413 TS NG Application Protocol (NGAP)
38.414 TS NG data transport
38.420 TS Xn general aspects and principles
38.421 TS Xn layer 1
38.422 TS Xn signalling transport
38.423 TS Xn Application Protocol (XnAP)
38.424 TS Xn data transport
38.425 TS Xn interface user plane protocol
38.101 TS User Equipment (UE) radio transmission and reception
38.133 TS Requirements for support of radio resource management
38.104 TS Base Station (BS) radio transmission and reception
38.307 TS Requirements on User Equipments (UEs) supporting a release-independent frequency band
38.113 TS Base Station (BS) and repeater ElectroMagnetic Compatibility (EMC)
38.124 TS Electromagnetic compatibility (EMC) requirements for mobile terminals and ancillary equipment
38.101 TS User Equipment (UE) radio transmission and reception
38.133 TS Requirements for support of radio resource management
38.104 TS Base Station (BS) radio transmission and reception
38.141 TS Base Station (BS) conformance testing

Note that all specifications are not in place yet. Use this link to navigate 3GPP specs: http://www.3gpp.org/ftp/Specs/archive/38_series/

Further reading:



Wednesday, 1 February 2017

5G Network Architecture and Design Update - Jan 2017

Andy Sutton, Principal Network Architect at BT recently talked about the architecture update from the Dec 2016 3GPP meeting. The slides and the video is embedded below.





You can see all the presentations from IET event 'Towards 5G Mobile Technology – Vision to Reality' here.

Eiko Seidel recently also wrote an update from 3GPP 5G Adhoc regarding RAN Internal Functional Split. You can read that report here.

Related posts:

Friday, 23 September 2016

5G New Radio (NR), Architecture options and migration from LTE


You have probably read about the demanding requirements for 5G in many of my blog posts. To meet these demanding requirements a 'next-generation radio' or 'new radio' (NR) will be introduced in time for 5G. We dont know as of yet what air interface, modulation technology, number of antennas, etc. for this NR but this slide above from Qualcomm gives an idea of what technologies will be required for this 5G NR.
The slide above gives a list of design innovations that will be required across diverse services as envisioned by 5G proponents.

It should be mentioned that Rel-10/11/12 version of LTE is referred to as LTE-Advanced and Rel-13/14 is being referred to as LTE-A Pro. Rel-15 will probably have a new name but in various discussions its being referred to as eLTE.

When first phase of 5G arrives in Rel-15, eLTE would be used for access network and EPC will still be used for core network. 5G will use NR and eventually get a new core network, probably in time for phase 2. This is often referred to as next generation core network (NGCN).

The slides below from Deutsche Telekom show their vision of how operators should migrate from eLTE to 5G.



The slides below from AT&T show their vision of LTE to 5G migration.



Eiko Seidel posted the following in 3GPP 5G standards group (i recommend you join if you want to follow technical discussions)


Summary RAN1#86 on New Radio (5G) Gothenburg, Sweden

At this meeting RAN1 delegates presented and discussed numerous evaluation results mainly in the areas of waveforms and channel coding.

Nonetheless RAN1 was not yet prepared to take many technical decisions. Most agreements are still rather general. 

First NR terminology has been defined. For describing time structures mini-slots have been introduced: a mini-slot is the smallest possible scheduling unit and smaller than a slot or a subframe.

Discussions on waveforms favored filtered and windowed OFDM. Channel coding discussions were in favor of LDPC and Turbo codes. But no decisions have been made yet.

Not having taken many decisions at this meeting, RAN1 now is behind its schedule for New Radio.
Hopefully the lag can be made up at two additional NR specific ad hoc meetings that have been scheduled for January and June 2017.

(thanks to my colleague and friend Dr. Frank Kowalewski for writing this short summary!)

Yet another post from Eiko on 3GPP RAN 3 on related topic.

The RAN3 schedule is that in February 2017 recommendations can be made for a protocol architecture.  In the meeting arguments came up by some parties that the work plan is mainly addressing U-Plane architecture and that split of C- and U-plane is not considered sufficiently. The background is that the first step will be dual connectivity with LTE using LTE RRC as control plane and some companies would like to concentrate on this initially. It looks like that a prioritization of features might happen in November timeframe. Beside UP and CP split, also the functional split between the central RAN node and the distributed RAN node is taking place for the cloud RAN fronthaul interface. Besides this, also discussion on the fronthaul interface takes place and it will be interesting to see if RAN3 will take the initiative to standardize a CPRI like interface for 5G. Basically on each of the three interfaces controversial discussion is ongoing.

Yet another basic question is, what is actually considered as a “New 5G RAN”? Is this term limited to a 5G eNB connected to the NG core? Or can it also be also an eLTE eNB with Dual Connectivity to 5G? Must this eLTE eNB be connected to the 5G core or is it already a 5G RAN when connected to the EPC? 

Finally, a slide from Qualcomm on 5G NR standardization & launch.


Saturday, 27 August 2016

Dedicated Core Networks (DCN) for different traffic types

Looking at a paper (embedded below) from NTT Docomo technical journal where they talk about Dedicated Core Network (DCN) for handling different traffic type (M2M/IoT for example). Note that this approach is different from NFV based network sliced architecture. For the latter, the network functions should have been virtualized.


There will be some signalling overhead in the core network to handle the new core and reroute the traffic according destined for the new dedicated core. I would still hope that this would be minuscule in the grand scheme of things. Anyway, let me know what you think about the paper below.



Friday, 1 July 2016

EE's vision of Ultra-Reliable Emergency Network


Many of my readers would be aware that UK is probably the first country to have decided to move its emergency services network from an existing TETRA network to a commercial LTE network operated by EE.

While some people have hailed this as a very bold move in the right direction, there is no shortage of critics. Around 300,000 emergency services users will share the same infrastructure used by over 30 million general users.

The following is from an article in Wireless Magazine:

Steve Whatson, deputy director Delivery, Emergency Services Mobile Communications Programme (ESMCP) – the organisation within the UK Home Office procuring ESN – assured delegates that ESN will match the existing dedicated Airwave emergency services communication network in terms of coverage for roads, outdoor hand portable devices and marine coverage. Air to ground (A2G) will extend its reach from 6,000ft to 12,000ft.

Whatson also pointed out that coverage is not one single piece, but will comprise a number of different elements, which all need to mesh into one seamless network run by the ESN Lot 3 Mobile Services (main 4G network) provider – EE.

This includes: EE’s main commercial 4G network; Extended Area Services (hard-to-reach areas of the UK where new passive sites are to be built under a separate contract and then equipped with EE base stations); air-to-ground; London Underground; Crossrail; marine coverage (to 12 nautical miles); and special coverage solutions.

EE is currently rolling out new 4G sites – it will eventually have some 19,500 sites – and is upgrading others with 800MHz spectrum, which propagates over longer distances and is better at penetrating buildings than its other 4G spectrum holdings. Crucially for ESN, it is also switching on a Voice over LTE (VoLTE) capability, starting with the UK’s main cities.
...
Mission critical networks must be always available and have levels of resilience far in excess of commercial networks. Speaking exclusively to Wireless in early May, Tom Bennett, group director Technology Services, Architecture & Devices at EE, said: ‘We already achieve a very high availability level, but what the Home Office was asking for effectively was about a 0.3% increase against our existing commercial availability levels.

‘Now for every 0.1% increase in availability there is a significant investment because you are at the extreme top end of the curve where it is harder and harder to make a noticeable difference.’

There are very specific requirements for coverage and availability of the ESN network for the UK road system. Bennett says: ‘Mobile is based on a probability of service. No more than 1% of any constabulary’s roads are allowed to be below 75% availability, and on major roads it is 96% availability. A coverage gap in this context is no more than 1km.’

The current Airwave network has approximately 4,000 sites, many with back-up generators on site with fuel for seven days of autonomous running if the main power is cut, along with a range of resilient backhaul solutions.

Bennett says that out of EE’s 18,500 sites it has about the same number of unique coverage sites (ie. no overlapping coverage) – around 4,000. ‘As part of our investment programme, those unique coverage sites will need a significant investment in the causes of unavailability – ie. resilient backhaul and back-up batteries.’

He explains that EE has undertaken a lot of analysis of what causes outages on its network, and it has combined that data with the Home Office’s data on where the natural disasters in the UK have occurred over the past 10 years.

From this, EE is able to make a reasonable assessment of which sites are likely to be out of action due to flooding or other disasters for more than three or four days. ‘For those sites – and it is less than 4,000 – you need generators too, because you may not be able to physically access the sites for some days,’ says Bennett.

For obvious reasons, the unique coverage sites are mostly in rural areas. But as Bennett points out, the majority of cases where the emergency services are involved is where people are – suburban and urban areas.

‘In these areas EE has overlapping coverage from multiple sites to meet the capacity requirements, so if a site goes down, in the majority of cases we have compensation coverage. A device can often see up to five tower sites in London, for example,’ he says.

Having adequate backhaul capacity – and resilient backhaul at that – is vital in any network. Bennett says EE is installing extra backhaul, largely microwave and fibre, but other solutions will also be used including satellite and LTE relay from base station to base station – daisy chaining. On 9 May 2016, EE announced a deal with satellite provider Avanti to provide satellite backhaul in some areas of the UK.

Additional coverage and resilience will be offered by RRVs (rapid response vehicles), which EE already has in its commercial network today, for example, to provide extra capacity in Ascot during the racing season.

‘We would use similar, although not exactly the same technology for disaster recovery and site/service recovery, but with all the backhaul solutions,’ says Bennett. ‘Let’s say we planned some maintenance or upgrade work that involved taking the base station out for a while.

‘We’d talk to the chief inspector before the work commences. If he says, there’s no chance of doing that tonight, we can put the RRV there, and provided we maintain coverage, we can carry out the work. RRVs are a very good tool for doing a lot of things.’

At the British APCO event, Mansoor Hanif, director of Radio Access Networks at EE said it was looking at the possibility of using ‘airmasts’ to provide additional coverage. Meshed small cells, network in a box and repeater solutions are becoming available for these ‘airmasts’, which will provide coverage from balloons, or UAVs – tethered drones with power cables and optical fibre connected to them.

Mansoor Hanif, Director of RAN at EE gave a presentation on this at Critical Communications World 2016 and has also given an interview. Both are embedded below.






Feel free to let me know if you believe this will work or not and why.

Friday, 17 June 2016

History: 30 years of the mobile phone in the UK


In January 1985 the UK launched its first mobile networks. Now, thirty years on, many people and companies in the UK have been celebrating this enormous achievements and advances that have been made since then and which have seen the mobile evolve from a humble telephone into the multimedia pocket computer which has become such an essential part of modern life. It was simply not possible in 1985 to envisage a country that would be able to boast more active mobile phones than people or to have along the way clocked up several world firsts, and be now leading on the deployment of 4G and shaping the future 5G technologies.

Below is a series of talks in an event organised by University of Salford,



The following talks are part of playlist:

1. Launch of Vodafone – Nigel Linge, on behalf of Vodafone
2. Launch of Cellnet - Mike Short, O2
3. The emergence of GSM - Stephen Temple, 5GIC
4. The launch of Mercury one2one and Orange - Graham Fisher, Bathcube Telecoms
5. From voice to data - Stuart Newstead, Ellare
6. Telepoint - Professor Nigel Linge, University of Salford
7. 3G - Erol Hepsaydir, 3 UK
8. Handset evolution and usage patterns - Julian Divett, EE
9. 4G and onwards to 5G – Professor Andy Sutton, EE  and University of Salford.

For anyone interested in reading about the history of mobile phones in UK, read this book below with more facts and figures


If you have any facts to share, please feel free to add in the comments below.

Monday, 2 May 2016

Does 5G need 'Next Generation' of Internet Protocols?

I have often heard Martin Geddes mention that the Internet is broken, the protocols (TCP/IP) are wrong and if we want to continue the way our data usage is going, we need to define new protocols (see here for example). It was good to find out last week at 5G Huddle that ETSI is already working on this.


The TCP/IP protocol suite has undoubtedly enabled the evolution of connected computing and many other developments since its invention during the 1970’s. Thanks to the development and ubiquity of this protocol stack, we have managed to build an Internet on which we are dependent as a communications tool, an information storage and distribution tool, a marketing channel and a sales and distribution platform, for consumers and for businesses large and small.

However, the industry has reached a point where forward leaps in the technology of the local access networks will not deliver their full potential unless, in parallel, the underlying protocol stacks used in core and access networks evolve. The development of future 5G systems presents a unique opportunity to address this issue, as a sub-optimal protocol architecture can negate the huge performance and capacity improvements planned for the radio access network.

ETSI has created an Industry Specification Group to work on Next Generation Protocols (NGP ISG), looking at evolving communications and networking protocols to provide the scale, security, mobility and ease of deployment required for the connected society of the 21st century.

The NGP ISG will identify the requirements for next generation protocols and network architectures, from all interested user and industry groups. Topics include:

  • Addressing
  • Security, Identity, Location, Authorization, Accounting/Auditing and Authentication
  • Mobility
  • Requirements from Internet of Things
  • Requirements from video and content distribution
  • Requirements from ultra‐low latency use cases from different sectors (i.e. automotive)
  • Requirements from network operators (e.g. challenges with E2E encrypted content)
  • Requirements from eCommerce
  • Requirements for increased energy efficiency within the global ICT sector.


This ISG is seen as a transitional group i.e. a vehicle for the 5G community (and others of interest) to first gather their thoughts and prepare the case for the Internet community’s engagement in a complementary and synchronised modernisation effort.

The ISG provides a forum for interested parties to contribute by sharing research and results from trials and developments in such a way that a wider audience can be informed. Other standards bodies will be involved so that parallel and concerted standardization action can take place as a further step in the most appropriate standards groups.

Andy Sutton, chair of the NGP recently gave the following presentation in 5G Huddle:



Please feel free to add your opinions in the comments.

Further reading:

**** Added 05/06/2016:20.00 ****
A whitepaper published by ETSI on this topic is available here and embedded below:


Sunday, 21 February 2016

Possible 5G Network Architecture Evolution


Came across this interesting Network Architecture evolution Roadmap by Netmanias. Its embedded below and available to download from the Netmanias website.



Saturday, 2 January 2016

End to end and top to bottom network design…


A good way to start 2016 is by a lecture delivered by Andy Sutton, EE at the IET conference 'Towards 5G Mobile Technology – Vision to Reality'. The slides and the video are both embedded below. The video also contains Q&A at the end which people may find useful.




Videos of all other presentations from the conference are available here for anyone interested.

Saturday, 28 November 2015

5G, NFV and Network Slicing


5G networks have multifaceted requirements where the network needs to be optimised for data rate, delay and connection numbers. While some industry analysts suspect that these requirements cannot be met by a single network, vendors suggest that Network Slicing will allow all these requirements to be met by a single network.

Ericsson's whitepaper provides a good definition of what network slicing means:

A logical instantiation of a network is often called a network slice. Network slices are possible to create with both legacy platforms and network functions, but virtualization technologies substantially lower barriers to using the technology, for example through increased flexibility and decreased costs.
...
Another aspect of management and network slicing is setting up separate management domains for different network slices. This may allow for completely separate management of different parts of the network that are used for different purposes. Examples of use cases include mobile virtual network operators (MVNOs) and enterprise solutions. This kind of network slice would, in current Evolved Packet Core (EPC) networks, only cover the PDN gateway (PGW) and the policy control resource function (PCRF). However, for machine type communication (MTC) and machine-tomachine (M2M) solutions, it is likely that it would also cover the Mobile Management Entities (MMEs) and Serving Gateways (SGWs).


NGMN came out with the 5G whitepaper which touched on this subject too: 

Figure above illustrates an example of multiple 5G slices concurrently operated on the same infrastructure. For example, a 5G slice for typical smartphone use can be realized by setting fully-fledged functions distributed across the network. Security, reliability and latency will be critical for a 5G slice supporting automotive use case. For such a slice, all the necessary (and potentially dedicated) functions can be instantiated at the cloud edge node, including the necessary vertical application due to latency constraints. To allow on-boarding of such a vertical application on a cloud node, sufficient open interfaces should be defined. For a 5G slice supporting massive machine type devices (e.g., sensors), some basic C-plane functions can be configured, omitting e.g., any mobility functions, with contentionbased resources for the access. There could be other dedicated slices operating in parallel, as well as a generic slice providing basic best-effort connectivity, to cope with unknown use cases and traffic. Irrespective of the slices to be supported by the network, the 5G network should contain functionality that ensures controlled and secure operation of the network end-to-end and at any circumstance.


Netmanias has a detailed article on this topic which is quite interesting too, its available here.

Recently, South Korean operator SK Telecom and Ericsson concluded a successful trial of this technology, see here. Ericsson is also working with NTT Docomo on 5G including network slicing, see here.

Sunday, 25 October 2015

Updates from the 3GPP RAN 5G Workshop - Part 3

Continuing with the updates from 5G RAN workshop, part 1 and part 2 here.
Dish network wants to have a satellite based 5G network. A recent article from Light Reading shows the following:

Dish states that there are misconceptions about what satellite technology can deliver for 5G networks. Essentially Dish says that satellites will be capable of delivering two-way communications to support 5G.

A hybrid ground and space 5G network would use small satellites that each use a "spot beam" to provide a dedicated area of two-way coverage on the ground. This is different than the old model of using one satellite with a single beam to provide a one-way service like a TV broadcast over a landmass.

Dish argues that newer, smaller satellites, equipped with the latest multi-antenna arrays (MIMO) would allow for "ubiquitous connectivity through hybrid satellite and terrestrial networks," the operator writes. In this model, satellites could connect areas that it would be hard to network otherwise like mountains and lakes.

The presentation from Dish is as follows:



Alcatel-Lucent provided a whitepaper along with the presentation. The paper provides an interesting view of 5G from their point of view. Its embedded below:



The presentation from Kyocera focused on TD-LTE which I think will play a prominent role in 5G. In case of wide channels, TD-LTE can help predict the channel accurately, which is a drawback for FDD at high frequencies. Their presentation is available here.

The presentation from NEC focussed on different technologies that will play a role in 5G. Their presentation is available here.
The final presentation we will look at this time is by the South Korean operator, KT. What is interesting to see is that in the part 1 we saw in the chairman's summary that 5G will come in two phases; Rel-15 will be phase 1 and Rel-16 will be phase 2. In the summary slide in KT's presentation, it looks like they are going to consider Rel-14 as 5G. Its not at all surprising considering that Verizon has said that they want to commercialise 5G by 2017, even though 5G will not be fully specified according to 3GPP by then. Anyway, here is the presentation by KT.



Saturday, 10 October 2015

VoLTE Roaming: LBO, S8HR or HBO

There was an interesting discussion on different roaming scenarios in the LTE Voice Summit on 29th, 30th Sep. in London. The above picture provides a brief summary of these well known options. I have blogged about LBO/RAVEL here and S8HR here. A presentation by NTT Docomo in a GSMA webinar here provides more details on these architectures (slide 29 onwards - though it is more biased towards S8HR).

Ajay Joseph, CTO, iBasis gave an interesting presentation that highlighted the problems present in both these approaches.

In case of LBO, the biggest issue is that the home operator need to do a testing with each roaming partner to make sure VoLTE roaming works smoothly. This will be time consuming and expensive.

In case of S8HR, he provided a very good example. Imagine a VoLTE subscriber from USA is visiting Singapore. He now needs to make a phone call to someone in Indonesia (which is just next to Singapore). The flow of data would be all the way from Singapore to USA to Indonesia and back. This can introduce delays and impact QoE. The obvious advantage of S8HR is that since the call setup and media go to Home PMN (Public Mobile Network), no additional testing with the Visited PMN is required. The testing time is small and rollouts are quicker.

iBasis are proposing a solution called Hub Breakout (HBO) which would offer the best of LBO and S8HR. Each VoLTE operator would need to test their interoperability only with iBasis. Emergency calls and lawful intercept that does not work with S8HR would work with the HBO solution.

While I agree that this is a good solution, I am sure that many operators would not use this solution and there may be other solutions proposed in due course as well. Reminds me of this XKCD cartoon:


Anyway, here is the iBasis presentation:



Sunday, 4 October 2015

Updates from the 3GPP RAN 5G Workshop - Part 2

I have finally got round to having a look at some more presentations on 5G from the recently concluded 3GPP RAN 5G Workshop. Part 1 of the series is here.
Panasonic introduced this concept of Sub-RAT's and Cradle-RAT's. I think it should be obvious from the picture above what they mean but you can refer to their presentation here for more details.


Ericsson has provided a very detailed presentation (but I assume a lot of slides are backup slides, only for reference). They have introduced what they call as "NX" (No compatibility constraints). This is in line to what other vendors have referred to as well that above 6GHz, for efficiency, new frame structures and waveforms would serve best. Their slides are here.



Nokia's proposal is that in the phase 1 of 5G, the 5G Access point (or 5G NodeB) would connect to the 4G Evolved Packet Core (EPC). In phase 2, both the LTE and the 5G (e)NodeB's would connect to the 5G core. Their presentation is available here.

Before we move on to the next one, I should mention that I am aware of some research that is underway, mostly by universities where they are exploring an architecture without a centralised core. The core network functionality would be distributed and some of the important data would be cached on the edge. There will be challenges to solve regarding handovers and roaming; also privacy and security issues in the latter case.
I quite like the presentation by GM research about 5G in connected cars. They make a very valid point that "Smartphones and Vehicles are similar but not the same. The presentation is embedded below.



Qualcomm presented a very technical presentation as always, highlighting that they are thinking about various future scenarios. The picture above, about phasing is in a way similar to the Ericsson picture. It also highlights what we saw in part 1, that mmW will arrive after WRC-19, in R16. Full presentation here.


The final presentation we are looking is by Mitsubishi. Their focus is on Massive MIMO which may become a necessity at higher frequencies. As the frequency goes higher, the coverage goes down. To increase the coverage area, beamforming can be used. The more the antennas, the more focused the beam could be. They have also proposed the use of SC-FDMA in DL. Their presentation is here and also embedded below.



Sunday, 9 August 2015

Diameter Security is worse than SS7 Security?



Back in December last year, there was a flurry of news about SS7 security flaw that allowed hackers to snoop on an unsuspecting users calls and SMS. The blog readers will also be aware that SS7 is being replaced by the Diameter protocol. The main reason being to simplify roaming while at the same time being able to manage the signalling storm in the networks.


The bad news is that while is case of SS7, security issues are due to network implementation and configuration (above pic), the security issues in Diameter seem to be due to the protocol and architecture themselves (below pic)


Diameter is very important for LTE network architecture and will possibly continue in the future networks too. It is very important to identify all such issues and iron them before some hackers start exploiting the network vulnerabilities causing issues for everyone.

The presentation by Cédric Bonnet, Roaming Technical Domain Manager, Orange at Signalling Focus Day of LTE World Summit 2015 is embedded below:


From SS7 to Diameter Security from Zahid Ghadialy

Some important information from this post has been removed due to a valid complaint.

Sunday, 12 July 2015

S8HR: Standardization of New VoLTE Roaming Architecture

VoLTE is a very popular topic on this blog. A basic VoLTE document from Anritsu has over 40K views and my summary from last years LTE Voice summit has over 30K views. I assume this is not just due to the complexity of this feature.

When I attended the LTE Voice summit last year, of the many solutions being proposed for roaming, 'Roaming Architecture for Voice over LTE with Local Breakout (RAVEL)' was being touted as the preferred solution, even though many vendors had reservations.

Since then, GSMA has endorsed a new VoLTE roaming architecture, S8HR, as a candidate for VoLTE roaming. Unlike previous architectures, S8HR does not require the deployment of an IMS platform in VPLMN. This is advantageous because it shortens time-to-market and provides services universally without having to depend on the capability of VPLMN.



Telecom Italia has a nice quick summary, reproduced below:

S8HR simplicity, however, is not only its strength but also its weakness, as it is the source of some serious technical issues that will have to be solved. The analysis of these issues is on the Rel13 3GPP agenda for the next months, but may overflow to Rel14. Let’s see what these issues are, more in detail:


Regulatory requirements - S8HR roaming architecture needs to meet all the current regulatory requirements applicable to voice roaming, specifically:
  • Support of emergency calls - The issues in this context are several. For example, authenticated emergency calls rely on the existence if an IMS NNI between VPLMN and HPLMN (which S8HR does not provide); conversely, the unauthenticated emergency calls, although technically feasible in S8HR, are allowed only in some Countries subject to the local regulation of VPLMN. Also, for a non-UE-detectable IMS Emergency call, the P-CSCF in the HPLMN needs to be capable of deciding the subsequent action (e.g. translate the dialed number and progress the call or reject it with the indication to set up an emergency call instead), taking the VPLMN ID into account. A configuration of local emergency numbers per Mobile Country Code on P-CSCF may thus be needed.
  • ­Support of Lawful Interception (LI) & data retention for inbound roamers in VPLMN -  S8HR offers no solution to the case where interception is required in the VPLMN for inbound roamers. 3GPP is required to define a solution that fulfill such vital regulatory requirement, as done today in circuit switched networks. Of course VPLMN and HPLMN can agree in their bilateral roaming agreement to disable confidentiality protection to support inbound roamer LI but is this practice really viable from a regulatory point of view?
Voice call continuity – The issue is that when the inbound roamers lose the LTE coverage to enter into  a 2G/3G CS area, the Single Radio Voice Call Continuity (SRVCC) should be performed involving the HPLMN in a totally different way than current specification (i.e. without any IMS NNI being deployed).
Coexistence of LBO and S8HR roaming architectures will have to be studied since an operator may need to support both LBO and S8HR VoLTE roaming architecture options for roaming with different operators, on the basis of bilateral agreement and depending on the capability.
Other issues relate to the capability of the home based S-CSCF and TAS (Telephony Application Server) to be made aware about the VPLMN identity for charging purposes and to enable the TAS to subsequently perform communication barring supplementary services. Also, where the roaming user calls a geo-local number (e.g. short code, or premium numbers), the IMS entities in HPLMN must do number resolution to correctly route the call.
From preliminary discussions held at Working Group level in SA2 (architecture) and SA3 (security) in April, it was felt useful to create a new 3GPP Technical Report to perform comprehensive technical analysis on the subject. Thus it is expected that the discussions will continue in the next months until the end of 2015 and will overheat Release 13 agenda due to their commercial and “political” nature. Stay tuned to monitor the progress of the subject or contact the authors for further information!
NTT Docomo also did some trials back in February and got some brilliant results:

In the trials, DOCOMO and KT achieved the world's first high-definition voice and video call with full end-to-end quality of service. Also, DOCOMO and Verizon achieved the world's first transoceanic high-definition VoLTE roaming calls. DOCOMO has existing commercial 3G and 4G roaming relations with Verizon Wireless and KT.
The calls were made on an IP eXchange (IPX) and network equipment to replicate commercial networks. With only two months of preparation, which also proved the technology's feasibility of speedy commercialization, the quality of VoLTE roaming calls using S8HR architecture over both short and long distances was proven to be better than that of existing 3G voice roaming services.


In fact, NTT Docomo has already said based on the survery from GSMA's Network 2020 programme that 80% of the network operators want this to be supported by the standards and 46% of the operators already have a plan to support this.


The architecture has the following technical characteristics:
(1) Bearers for IMS services are established on the S8 reference point, just as LTE data roaming.
(2) All IMS nodes are located at Home Public Land Mobile Network (HPLMN), and all signaling and media traffic for the VoLTE roaming service go through HPLMN.
(3) IMS transactions are performed directly between the terminal and P-CSCF at HPLMN. Accordingly, Visited Public Land Mobile Network (VPLMN) and interconnect networks (IPX/GRX) are not service-aware at the IMS level. The services can only be differentiated by APN or QoS levels.

These three technical features make it possible to provide all IMS services by HPLMN only and to minimize functional addition to VPLMN. As a result, S8HR shortens the time-to-market for VoLTE roaming services.

Figure 2 shows the attach procedure for S8HR VoLTE roaming. From Steps 1 to 3, there is no significant difference from the LTE data roaming attach procedure. In Step 4, HSS sends an update location answer message to MME. In order for the MME to select the PGW in HPLMN (Step 5), the MME must set the information element VPLMN Dynamic Address “Allowed,” which is included in the subscribed data, to “Not Allowed.” In Step 6, the bearer for SIP signaling is created between SGW and PGW with QCI=5. MME sends an attach accept message to the terminal with an IMS Voice over PS Session Support Indication information element, which indicates that VoLTE is supported. The information element is set on the basis of the MME’s internal configuration specifying whether there is a VoLTE roaming agreement to use S8HR. If no agreement exists between two PLMNs, the information element will not be set.

The complete article from the NTT Docomo technical journal is embedded