Showing posts with label Release 12. Show all posts
Showing posts with label Release 12. Show all posts

Wednesday 1 May 2013

Video: Quick summary of 3GPP Release 12 features

Ericsson recently posted a very good summary video of Release-12 features. My comments and more details are posted below the video:


You may have noticed that LTE Release 12 is also referred to as LTE-B as I posted in my blog post here. Unfortunately, this terminology is not supported by 3GPP which refers to all advancements of LTE as LTE-A. See comment on the post I just referred.

The Elevation Beamforming is also referred to as 3D-Beamforming or 3D-MIMO as I show here.

I havent written any posts on Dual connectivity and not exactly sure how it works but there is an interesting presentation on the Small Cells Enhancements in Release-12 on my blog here.

You can learn more about the WiFi and EPC Integration here.

Click on the following Direct Communications, Device to device (D2D) and Public Safety for more information on the topics.

There are many good presentations on Machine Type Communications (MTC) or M2M that are available on this label here.

Finally, I havent seen much about the lean carrier but now that I know, will add some information on this topic soon.

Related links:

Monday 1 April 2013

The 'Phantom Cell' concept in LTE-B


One of the LTE-B proposals by NTT Docomo is this 'Phantom Cell' concept. A recent article from the IEEE Communications Magazine expands this further:


Phantom Cell Concept — In the current deployments, there are a number of capacity solutions for indoor environments such as WiFi, femtocells, and in-building cells using distributed antenna systems (DAS). However, there is a lack of capacity solutions for high-traffic outdoor environments that can also support good mobility and connectivity. Thus, we propose the concept of macro-assisted small cells, called the Phantom Cell, as a capacity solution that offers good mobility support while capitalizing on the existing LTE network. In the Phantom Cell concept, the C-plane/U-plane are split as shown in Fig. The C-plane of UE in small cells is provided by a macrocell in a lower frequency band, while for UE in macrocells both the C-plane and U-plane are provided by the serving macrocell in the same way as in the conventional system. On the other hand, the Uplane of UE in small cells is provided by a small cell using a higher frequency band. Hence, these macro-assisted small cells are called Phantom Cells as they are intended to transmit UE-specific signals only, and the radio resource control (RRC) connection procedures between the UE and the Phantom Cell, such as channel establishment and release, are managed by the macrocell.

The Phantom Cells are not conventional cells in the sense that they are not configured with cell specific signals and channels such as cell-ID-specific synchronization signals, cell-specific reference signals (CRS), and broadcast system information. Their visibility to the UE relies on macrocell signaling. The Phantom Cell concept comes with a range of benefits. One important benefit of macro assistance of small cells is that control signaling due to frequent handover between small cells and macrocells and among small cells can be significantly reduced, and connectivity can be maintained even when using small cells and higher frequency bands. In addition, by applying the new carrier type (NCT) that contains no or reduced legacy cell-specific signals, the Phantom Cell is able to provide further benefits such as efficient energy savings, lower interference and hence higher spectral efficiency, and reduction in cellplanning effort for dense small cell deployments.

To establish a network architecture that supports the C/U-plane split, and interworking between the macrocell and Phantom Cell is required. A straightforward solution to achieve this is to support Phantom Cells by using remote radio heads (RRHs) belonging to a single macro eNB. This approach can be referred to as intra-eNB carrier aggregation (CA) using RRHs. However, such a tight CA-based architecture has some drawbacks as it requires single-node operation with low-latency connections (e.g., optical fibers) between the macro and Phantom Cells. Therefore, more flexible network architectures should be investigated to allow for relaxed backhaul requirements between macro and Phantom Cells and to support a distributed node deployment with separated network nodes for each (i.e., inter-eNB CA).


Thursday 14 March 2013

What is WebRTC and where does it fit with LTE and IMS

This simple video from MWC should give an idea on what WebRTC is and can do:


So what exactly WebRTC is in technical terms. Here is a recent presentation from WebRTC Conference and Expo



And here is another presentation that explains where it fits in with the LTE Architecture.



Dean Bubley from Disruptive Analysis has writted extensively on this topic and his recent post "Is the telephony "threat" from VoIP & WebRTC about competition or contextualisation?" is an interesting read.

Iain Sharp from Netovate recently pointed out that 3GPP have 'nearly' approved a work item for WebRTC access to IMS.

It would be interesting to see how operators will view WebRTC. As an opportunity or as a threat. Please feel free to air your opinions via comments.

Wednesday 27 February 2013

Wi-Fi & Packet Core (EPC) Integration

Yesterday I wrote a blog post on whether Wi-Fi is the third RAN in the Metrocells blog. Today I am posting this excellent presentation that details how this Wi-Fi integration with EPC will be done.



Thursday 14 February 2013

Scalable UMTS (S-UMTS) to accelerate GSM Refarming


Looks like a good idea from LTE will possibly be applied to UMTS/HSPA and it will also help accelerate the re-farming of GSM spectrum. A recent presentation from Qualcomm below:



Available to download from here.

Monday 11 February 2013

Revisiting Coordinated Multi-point (CoMP) Technology

Looks like I re-visit CoMP every Q1 of the year. Couple of years back, I had posted a primer on CoMP here and last year I had a slide on schemes and deployments here. With Release-11 out of the door and  Release-12 getting in full swing in the standards, its time to re-visit this topic in a bit more detail. There are couple of presentations, one completely devoted to this topic and one that has a section on it. Both of them can be downloaded from slideshare.


Thursday 31 January 2013

Monday 28 January 2013

Overview of 3GPP Release-12 Study Item UPCON

Mobile operators are seeing significant increases in user data traffic. For some operators, user data traffic has more than doubled annually for several years. Although the data capacity of networks has increased significantly, the observed increase in user traffic continues to outpace the growth in capacity. This is resulting in increased network congestion and in degraded user service experience. Reasons for this growth in traffic are the rapidly increasing use of smart phones and tablet like devices, and the proliferation of data applications that they support, as well as the use of USB modem dongles for laptops to provide mobile Internet access using 3GPP networks. As the penetration of these terminals increases worldwide and the interest in content-rich multi-media services (e.g. OTT video streaming services) rises, this trend of rapidly increasing data traffic is expected to continue and accelerate.


Here are couple of presentations on this topic:







Related blog posts:

Friday 11 January 2013

The four C's of Release-12 enhancements

Mid last year, I did a post on the LTE Rel-12 workshop and later another post on the progress.  Late last year, 3GPP posted a news item that the Rel-12 will be available by June 2014 and the main areas of focus will be as follows:


Exploiting new business opportunities

  • Public Safety and Critical Communications 
    — Group Communications (GCSE_LTE)
  • Proximity Services, including both Public Safety and Commercial aspects (ProSe)
  • Machine Type Communications 
    — UE Power Consumption, Small Data and Device Triggering (MTCe_UEPCOPMTCe_SDDTE )

WiFi integration

  • Network Selection aspects (WLAN_NS)
  • S2a Mobility with GTP for WLAN (FS_SaMOG)
  • Optimized Offloading to WLAN in 3GPP-RAT mobility (FS_WORM)

System capacity and stability

  • User plane congestion (UPCON)
  • Core Network Overload (FS_CNO)
In addition to those three areas, other features can still be considered for completion in the Release 12 timeframe. The SA2 Working Group - responsible for Architecture - will produce time budgets to see whether further priority could be put on;
  • Pure IMS features that can run in parallel with key items
  • Policy and Charging Control for supporting fixed broadband access networks, PCC for fixed terminals (P4C BB1 and BB2)
  • Application Based Charging (FS_ABC)
  • User Monitoring Control Enhancements (FS_UMONC)
  • LIPA Mobility and SIPTO at the Local Network (LIMONET)
  • Operator Policies for IP Interface Selection (OPIIS)
Working Group SA2 will provide time budgeting information, for the selected features, at the next Plenary meeting - TSG#59, in March 2013.


Nokia Siemens Networks (NSN) has published their own whitepaper on 'LTE Release 12 and Beyond' (available on Slideshare here).

The following is their take on the four C's:


Release 12 enhancements focus on the four areas of Capacity, Coverage, Coordination (between cells), and Cost. Improvements in these areas are based on using several technology enablers: small cell enhancements, macro cell enhancements, New Carrier Type (NCT) and Machine-Type Communications (MTC). These enablers are described in this paper.

Customer experience, capacity and coverage will be improved with small cell enhancements, based on inter-site Carrier Aggregation, LTE-WLAN integration and macro cell enhancements. Small cell enhancements are also known as enhanced local access.

NCT helps achieve the required changes in the physical layer and initially provides base station energy savings, flexibility in deployment and ways to reduce interference in heterogeneous networks (HetNets).

Improvements in capacity and a more robust network performance are achieved by 3D Beamforming/MIMO (Multiple Input Multiple Output), advanced user equipment (UE) receivers and evolved Coordinated Multipoint (CoMP) techniques, as well as through Self-Organizing Networks for small cell deployments.

Finally, new spectrum footprint and new business will be opened up by optimizing the system for Machine-Type Communications, as well as by, for example, using LTE for public safety.


The whitepaper is available on Slideshare here.

Wednesday 5 December 2012

Quick update on 3GPP Release-12 progress

Some months back, I blogged about the 3GPP Rel-12 workshop, since then there has been progress on the Rel-12 features. Here is a quick update from 3GPP:



You can download the PPT from Slideshare.

Other related posts:


Monday 5 November 2012

3GPP Standards Self Organizing Networks

The following is a presentation by 3GPP on Self-Organising Networks in the SON Conference 2012:



A basic tutorial on SON is available also on 3GPP website here.

A detailed list of 3GPP work items on SON is available to view and download from here.

Friday 5 October 2012

3D-Beamforming and 3D-MIMO

When I did the summary from Rel-12 workshop, one of the feature proposed by many companies was the feature on 3D MIMO/Beamforming. Here is a quick introduction from different presentations.




A presentation by China mobile lists the motivations and Challenges is embedded below:





Wednesday 19 September 2012

"No-Edge Networks" and Multi-Stream Aggregation (MSA)

The following is from Huawei press release:


The LTE-Advanced Multi-Stream Aggregation (MSA) technology standard is capable of increasing data rates at the cell's edge. A key component of Huawei's "No-Edge Networks" concept, MSA technology coordinates macro cells to improve user data rates at the cell's edge and also between heterogeneous networking scenarios to improve peak rates and simplify mobile management to ensure a consistent user experience.

With the development of mobile broadband, operators are mostly concerned about user experience. With mobile coverage, should able to enjoy the same quality of services no matter where they are. However, with mobile communication systems, the most challenging issue is system performance at the cell's edge.

The concept behind Huawei's MSA technology is that the user is always able to receive downlink data and aggregate downlink data streams from a cell or cell group with the best signal quality. A similar method applies to uplink data, where the user always transmits uplink data to a cell or cell group with the best signal quality. The uplink data streams are aggregated on the network side.

Huawei's MSA technology reduces the number of handovers, lowering device power transmission and increasing device standby time. These advantages are in accordance with the concept of delivering a "borderless network" and "green" wireless communications. It's expected that MSA technology will improve system performance at the cell's edge by almost 30%.

MSA technology is especially suitable for macro-micro HetNets. In hotspot area, macro cells provide basic LTE coverage while the micro cells provides capacity enhancement. The use of MSA technology allows users to receive controlled signaling from macro cells and services from best quality HetNet cell. Users at any location within the network can then enjoy fast and stable data services with ultra broadband, zero waiting and ubiquitous connectivity. MSA technology brings users high speeds and high quality as well as a simple service experience.

The advanced MSA technology proposed by Huawei is set to become a key feature of the evolution to 3GPP LTE-Advanced standards. Huawei has contributed 293 core standards to the 3GPP LTE/LTE-Advanced standardization process, 20% of the global total and the most of any other company.

I wasnt able to find much information but there is this couple of slides that were submitted in Rel-12 workshop that is embedded below:




What do you think of this feature?

Tuesday 24 July 2012

LTE-Direct (rebranded Flashlinq) by Qualcomm

I blogged about Flashlinq before and also about the Proximity based Services (ProSe) and AllJoyn which probably is part of Release-12. Qualcomm is now proposing LTE-Direct that looks like a rebranded Flashlinq here. A video of that is embedded here.


From PCWorld:


Qualcomm is promoting a peer-to-peer cellular technology as a potential new standard called LTE Direct, which it says would make location-based services faster and more efficient.
The proposal grew out of FlashLinq, a system Qualcomm developed in its own labs. FlashLinq lets two cellular devices communicate over the air without relying on a fixed network infrastructure. Qualcomm sees two main applications for the technology: public safety communications in areas where mobile networks are down or unavailable, and a "discovery mode" that provides information about what interesting things and people are nearby. Qualcomm is primarily interested in the discovery mode, which it says has more commercial potential.
LTE Direct eliminates steps in the location process, allowing users to find things more quickly, Qualcomm says. Though the technology can be used for ongoing communication at high speeds, including streaming video, in discovery mode it would only broadcast tiny 128-bit packages of data. Those packages, called "expressions," would contain basic information about the device or user. Each LTE Direct device would look for expressions nearby, choosing among them using filters customized for the user or for specific applications.
"What you do is, every so often, you broadcast this 128 bits of information, which are expressing your desire ... so devices and services around you can listen to (your expressions) and figure out what you're interested in," said Mahesh Makhijani, senior director of technical marketing at Qualcomm.
Mobile consumers as well as businesses could send and receive expressions. If an application detects an expression that's relevant to what it does, that application can then go into action, providing something to the user. For example, if two friends have devices that are sending out expressions, then a social-networking app that both of them use might pop up notifications for each saying the other friend is nearby. A classic example of an application that might take advantage of discovery mode is the location check-in app Foursquare, Makhijani said.
Decentralized process
Current location-based services rely on a central database of location data. Every party's location, determined by GPS or other methods, has to be collected in that database and then sent out to other interested parties who request it, Makhijani said. LTE Direct finds nearby devices directly over the air.
Finding a match between one user and other people or services nearby is also quicker, because "service layer" information is contained in the 128-bit expression, Makhijani said. That service layer information determines whether something is of interest to you, such as whether someone uses Facebook and is a friend, or whether your favorite store nearby is offering a deal. To determine these things with LTE Direct, it's not necessary to query a central server over the Internet or even to establish a dedicated connection with the nearby device, he said.
LTE Direct isn't intended to provide exact location or replace GPS for finding out exactly where you are, but it could complement existing location systems and speed up the process of finding out where you are, Makhijani said. Its benefits include the speed of proximity-based location as well as its ability to work indoors, where GPS often has trouble getting a fix because it relies on satellites, he said.

Sunday 8 July 2012

3GPP based 'Sponsored Data Connectivity'


One of the features being investigated and added is the Sponsored Data Connectivity feature in the Evolved Packet System. This feature has lots of backers as this is deemed to be a new source of revenue for the operators.

In Release-10 one of the items for this is titled 'Policy Enhancements for Sponsored Connectivity and Coherent Access to Policy related Databases (PEST)'

The justification for PEST is as follows:


With the emerging of innovative IP services, the transactional data usage is becoming more and more prevalent on the mobile. For example, the user downloads a purchased ebook from an online store; the user purchases and downloads a game from an operator store; the user views free trailer clip from an online library to determine whether to buy the entire movie or not. In many cases, the Sponsor (e.g., Application service provider) pays for the user’s data usage in order to allow the user to access the Application Service Provider’s services. This enables additional revenue opportunities for both the Application service providers and the operators.


In particular, such dynamic data usage provided by the Sponsor allows the operator to increase revenues from the users with limited data plans. The user may have limited data plans allowing only a nominal data volume per month and the Sponsor may dynamically sponsor additional volume for the user to allow access to the services offered by the Application service providers.


The PCC framework can be enhanced to enable such use cases, in particular, it allows the operator to provide service control based on such sponsored services. For example, it allows a dynamic IP flow to be excluded from the user’s data plan since a Sponsor might sponsor the data usage for the identified IP flows. For example, the user may use the limited data plan to browse an online store for interested books; but once a book is purchased, the data usage for downloading the book can be granted for free. In addition, the IP flow may also be granted certain level of QoS (e.g. video streaming).



TR 23.813 studied the feasibility of these scenarios of sponsored connectivity in the key issue 1 and converged into a set of extensions to the PCC procedures which will allow the operator to provide sponsored connectivity to sponsor entities.


In addition to Key Issue 1, SA2 also studied the feasibility of Key issue 2 - Coherent access to Policy related databases within TR 23.813. It enables UDR (User Data Repository) in the PCC architecture as an optional functional entity where PCC related subscriber data can be stored and retrieved by the PCRF through the Ud interface. This deployment scenario does not require SPR and allows the PCRF access to the PCC related subscriber data stored in the UDR.

In Release-12 PEST is linked to another new feature titled, 'Interworking between Mobile Operators using the Evolved Packet System and Data Application Providers (MOSAP)'

The Justification of this is as follows:


Mobile operators have to deal with increasing flexibility of data services delivery on different devices. 


The data services could be hosted by the mobile operators in their data centers within 3GPP domain or could be hosted by 3rd party data application providers that could be outside of the mobile operator domain. 


Current practices involve individual mobile operators negotiating agreements with data application providers resulting in proprietary additional functionalities in 3GPP networks which results in  non-standard 3GPP interfaces. With the advent of new models of services delivery like cloud computing and Application Stores, it is important that the mobile operator minimises upgrades to the network  and associated backend integration. 


Also the mobile operator has the opportunity to explore various charging models in this interworking scenario with data service providers. 


Sample services/capabilities that mobile operators can provide to data application providers are customised billing/charging, promotional services, group addressing capabilities, identity services, statistics, etc.


This WI proposes to enable the mobile operator to use enhanced functionalities and interfaces to meet the needs of the rapidly changing industry models. The WI is expected to develop requirements and architectural frameworks for authentication, authorization, policy, charging, mobility and session continuity aspects for various interworking scenarios.


The existing schemes for authentication/authorization and charging need to be studied and updated/enhanced, when deemed necessary, by liaising with other 3GPP Working Groups/SDOs/fora in charge of them.


This WI was de-prioritised in Rel-11. The Rel-12 work will take into consideration the new TS 23.682 developed in Rel-11 (Architecture Enhancements to facilitate communications with Packet Data Networks and Applications).

What are you your thoughts on sponsored data connectivity?

xoxoxoxoxoxo  Added on 08/07/2012 - 14.00 xoxoxoxoxoxo



I had a quick discussion with Dean Bubley on twitter and here is what he thinks:

Key question is what use cases & how the biz model / sponsor interaction works. 1-800 model is a #UselessCase for example. I think tollfree/1-800 apps is a nice idea, but totally unworkable when you drill into the practicalities. There are a few corner-cases & niche exceptions (eg govt-supplied apps) but proposed case for general apps / content is a chimera. 

More details on what Dean Bubley means is on his blog post here.

The comment at the end is very interesting, summarising the hurdles that exist in providing 'Toll-free data'.

My belief is that since the operators are running out of the options in generating new revenues, they may make a compromise and find a middle ground for making the 'Sponsored-data' to work

Monday 18 June 2012

3GPP Release-12 and beyond


3GPP Recently held a workshop on "Release 12 and Onward" to identify common requirements for future 3GPP radio access technologies. The goal of the workshop is to investigate what are the main changes that could be brought forward to evolve RAN toward Release 12 and onward. It is recommended that presentations in the workshop include views on:
- Requirements
- Potential technologies
- Technology roadmap for Releases 12, 13 and after

The discussions from the workshop should be used to define the work plan for Release 12 and onward in TSG-RAN.

The list of presentations and links, etc. are below and I have also embedded the Summary and Draft report, both of which can be downloaded from 3GPP website or slideshare. Here is a list of different topics and the presentations that covered them:


AdHoc Networks
AdHoc Networks - RWS-120035


Antennas, Beamforming, Transmitters, Receivers
3D-beamforming - RWS-120002
Vertical sectorization/3D beamforming via AAS - RWS-120005
Advanced receivers and joint Tx/Rx optimisation - RWS-120005
Network assistance for IC receivers - RWS-120005
Support of Active Antenna Systems - RWS-120006
Advanced transmitter beamforming - RWS-120010
Advanced receiver cancellation - RWS-120010
Vertical and 3D beamforming - RWS-120011
MIMO Enhancements - RWS-120014
New antenna configurations and 3D MIMO - RWS-120014
UE AAS (Active Antenna System) [Detailed] - RWS-120015 / RWS-120049
Cloud of Antennas (CoA) Concept - RWS-120016
Support of Massive MIMO Technology - RWS-120016
Full Dimension MIMO (FD-MIMO) System [Detailed] - RWS-120021 / RWS-120046
Cloud-RAN: Benefits and Drawbacks - RWS-120021 / RWS-120046
Further Enhanced Receivers - RWS-120022
Multiple antenna evolution - RWS-120025
3D beamforming - RWS-120026
Vision of 3D MIMO - RWS-120029
Massive MIMO & 3D MIMO - RWS-120034
Potential MIMO Enhancements - RWS-120035
Advanced Antenna Technology - RWS-120035
DL MIMO Enhancement - RWS-120037
Performance Requirement for 8Rx at eNB - RWS-120037
UE Receiver Enhancements - RWS-120039
DL MU-MIMO Enhancement - RWS-120039
Enhancement of MIMO, CoMP - RWS-120040
Advanced MIMO - RWS-120040
MIMO and COMP - RWS-120041
Role of Advanced Receivers - RWS-120041
Advanced Interference Handling - RWS-120041
Interference Suppression Subframes (ISS) and IRC Receiver [Detailed] - RWS-120051


Applications (Apps)
Efficiency for diverse small data applications - RWS-120011
Device Service/Application Awareness - RWS-120018
I-Net:”I”-centric mobile network design philosophy - RWS-120024
Application Aware Comm - RWS-120036 / RWS-120050


Backhaul and Relay
Relay backhaul enhancement - RWS-120011
LTE Backhaul - RWS-120013
Relay - RWS-120025
CoMP, backhaul and X2 interface - RWS-120027 / RWS-120048
Mobile Relay And Relay Backhaul Enhancement - RWS-120029


Baseband
Baseband resource pooling and virtualization - RWS-120011


Capacity and Coverage
Higher system capacity - RWS-120010
Capacity for Mobile Broadband: Requirements and Candidate technologies - RWS-120012
Increase N/W capacity by 1000 times - RWS-120020
Coverage Enhancement - RWS-120037
Capacity Enhancement - RWS-120038 / RWS-120047
Cell-edge Throughput Improvement - RWS-120038 / RWS-120047


Carrier Aggregation, Flexible Bandwidths and Multiflow
LTE multiflow / Inter-site CA - RWS-120002
LTE/HSDPA Carrier Aggregation - RWS-120002
Multiflow Enhancements - RWS-120002
Multi-Stream Aggregation - RWS-120006
Provide mechanisms for Flexible Bandwidth Exploitation - RWS-120008
Carrier aggregation enhancement - RWS-120019
Inter-eNB Carrier Aggregation - RWS-120021 / RWS-120046
Evolution of Carrier Aggregation - RWS-120036 / RWS-120050
CA of Alternative Spectra - RWS-120042


Cells, Carriers, C/U Planes
C/U plane split & Phantom cell - RWS-120010
Phantom cell by single/separate nodes - RWS-120010
Phantom cell: Other topics - RWS-120010
New Carrier Type for Primary Component Carrier - RWS-120011
Flexible/Reconfigurable Cells - RWS-120023
New carrier-type (NCT) enhancements - RWS-120026
Amorphous cells - RWS-120034
New Carrier Types - RWS-120035
Non-Orthogonal Access - RWS-120039
Dynamic Area Construction for UE - RWS-120040


Cognitive Radio
Cognitive radio - RWS-120034
Cognitive Networking - RWS-120036 / RWS-120050


Coordinated MultiPoint (CoMP)
CoMP Enhancements - RWS-120014
CoMP/ICIC enhancement - RWS-120019
CoMP Enhancements - RWS-120023
CoMP enhancements - RWS-120026
CoMP Technologies - RWS-120027 / RWS-120048
Enhanced CoMP - RWS-120029
Potential CoMP Enhancements - RWS-120035
CoMP - RWS-120037
CoMP Enhancement for Indoor Environment - RWS-120040
Overhauling DL CoMP - RWS-120042


Device, Handsets, UE's
Additional UE Enhancements - RWS-120018
Coordination : Multi-mode UE - RWS-120024


D2D / Device-to-Device
Device-to-Device - RWS-120003
LTE Device to Device - Proximity Based Services - RWS-120004
LTE device to device - RWS-120007
LTE direct communication - RWS-120007
Device-to-Device Communications - RWS-120014
D2D Discovery/Communication - RWS-120016
3GPP Proximity Services (ProSe) / D2D - RWS-120022
Device-to-Device communications - RWS-120026
Device-to-Device communication - RWS-120036 / RWS-120050


Data Rates and Throughputs
Higher data rate and user-experienced throughput - RWS-120010
Fairness of user throughput - RWS-120010


Deployments
LTE in Local Area Deployments & Enhancements - RWS-120004
Energy Efficient Local Area Deployments - RWS-120004
Scaling for Mass Deployment - RWS-120008
Flexible and cost-efficient NW deployments - RWS-120010
Considerations on dense NW deployment - RWS-120019


Energy Consumption, Efficiency and Savings
Energy efficiency - RWS-120005
Reduce energy consumption - RWS-120008
Energy Saving - RWS-120014
UE Power Saving - RWS-120036 / RWS-120050
NB Power Saving - RWS-120036 / RWS-120050
Energy Saving Enhancements with CoMP - RWS-120040
Energy Saving with Centralized eNB - RWS-120040


Herogeneous Networks (HetNets)
Optimisation of Het Nets performance - RWS-120005
Improved Support for Heterogeneous Networks - RWS-120006
Network hyper-densification: LTE HetNet2.0 - RWS-120007
Multi-layer HetNet Deployments - RWS-120016
HetNet for HSPA - RWS-120017
HetNet Enhancements - RWS-120023
HetNet Mobility - RWS-120029
Small cells & HetNet - RWS-120031
HetNet - RWS-120037
HetNet Enhancements for HeNB - RWS-120040


HSDPA / HSUPA / HSPA+ Enhancements
HSPA UL Enhancements - RWS-120003
Uplink Enhancements - RWS-120006
UMTS evolution: enhancing CS voice on DCH - RWS-120007
High Speed Packet Access - RWS-120012
HSPA RRM enhancement - RWS-120024
HSPA+ further evolution - RWS-120034


Interworking (HSPA, LTE)
Coordination : HSPA/LTE e-interworking - RWS-120024
Inter-RAT Coordination/CA - RWS-120037


Local-Area Access (Small Cells)
Local-Area Access - RWS-120003
LTE in Local Area Deployments & Enhancements - RWS-120004
LTE Local Area Enhancements - RWS-120004
LTE Local Area Enhancement Areas - RWS-120004
enhanced Local Area (eLA) - RWS-120010
Local Area Enhancements - RWS-120022
Improved Local Area Mobility - RWS-120022


LTE
LTE for Nomadic and Fixed Use - RWS-120018
E-PDCCH enhancement - RWS-120019
Efficiency : Paging Optimization - RWS-120024


LTE Hotspot and Indoor Enhancements (LTE-Hi)
Hotspot and Indoor Enhancements (LTE-Hi) - RWS-120006
Hotspot/indoor Scenario (LTE-Hi) - RWS-120025
Indoor & Hotspot Enhancements (LTE-Hi) [Detailed] - RWS-120029
Possible Study Items for Indoor Environment - RWS-120040


M2M / Machine Type Communications (MTC)
Machine Type Communications - RWS-120003
Improved Support for MTC - RWS-120006
Machine-to-Machine: The Internet of Things - RWS-120014
Machine Type Communications: a new ecosystem - RWS-120014
Wireless MTC and RAN optimizations for MTC - RWS-120016
Low-Cost MTC UE - RWS-120017
MTC + eDDA (enhanced Diverse data application) - RWS-120019
Further Enhancements to Support MTC - RWS-120023
MTC - RWS-120025
MTC enhancements - RWS-120026
M2M - RWS-120029
MTC and migration of traffic from 2G - RWS-120031
Machine Type Communications enhancements - RWS-120034
Machine Type Communications - RWS-120035
Extension triggered by growing M2M traffic - RWS-120038 / RWS-120047
LTE-based M2M - RWS-120041


MBMS / eMBMS
eMBMS Enhancements - RWS-120007
eMBMS - RWS-120013
UHD Multimedia Broadcast/Multicast Service - RWS-120036 / RWS-120050


Mesh Networks
Mesh Networks - RWS-120018


Network Density
Network density: Scenarios - RWS-120010


Network Architecture and Operation
Easier network operation, tolerance to failure - RWS-120005
System Architecture - RWS-120032
Evolution of LTE Networks - RWS-120034


Positioning
Positioning Enhancements - RWS-120006


Public Safety
Public Safety - RWS-120030
Operation of Public Safety System via LTE - RWS-120031
Public safety’s future in LTE [Detailed] - RWS-120033


Self Organising Networks (SON) and Minimisation of Drive Testing (MDT)
SON Evolution - RWS-120002
Enhanced MDT - RWS-120011
Network Self-Optimisation - RWS-120014
SON and MDT - RWS-120017
HetNet SON - RWS-120029
MDT & Energy Saving - RWS-120029
Autonomous Interference Coordination - RWS-120029
Large scale multi-layer centralized cooperative radio - RWS-120034
MDT Enhancement - RWS-120036 / RWS-120050
SON Enhancements - RWS-120036 / RWS-120050
MDT and eDDA - RWS-120041


Small Cells (HNB/HeNB)
UMTS evolution: small cells - RWS-120007
Wide & Local area enhancements - RWS-120010
Small Cells - RWS-120014
Small Cell Enhancement in Rel-12 - RWS-120021 / RWS-120046
HeNB Enhancement - RWS-120036 / RWS-120050
Efficient Usage of Macro and Small Cells - RWS-120038 / RWS-120047
Low-cost Low Power Nodes (LC-LPN) - RWS-120038 / RWS-120047
Small-Cell Improvements: System Aspects - RWS-120041


Spectrum
Enhanced spectrum efficiency - RWS-120005
Spectrum efficiency: eLA topics - RWS-120010
Scenarios for spectrum extension - RWS-120010
Spectrum and spectrum usage - RWS-120012
Wider Spectrum Utilization - RWS-120016
Spectral efficiency for LTE - RWS-120017
New Spectrum for Mobile Broadband Access - RWS-120021 / RWS-120046
Enabling Technologies for New Spectrum - RWS-120021 / RWS-120046
Radio Propagation - RWS-120021 / RWS-120046
Opportunistic Use of Unlicensed Spectrum for D2D Local Traffic - RWS-120023
Flexible Spectrum Utilization - RWS-120024
Spectrum Related: New Bands And CA Band Combinations - RWS-120029
Spectrum - RWS-120032
Hybrid access scheme - RWS-120034
Spectrum - RWS-120035
Spectrum and Transmission Efficiency - RWS-120039
Spectrum-Agile LTE - RWS-120041


TDD / TD-LTE
TD-LTE - RWS-120014
TDD-specific aspects - RWS-120014
TDD adaptive reconfiguration - RWS-120034
Efficient Usage of Dual Duplex Modes - RWS-120038 / RWS-120047
LTE TDD Small-Cell versus WiFi - RWS-120041


Testing
Testing and Certification - RWS-120022


Traffic and Signalling Overhead
Efficient support of diverse traffic characteristics - RWS-120005
Efficient support for variety of traffic types - RWS-120010
Enhancements for variety of traffic types - RWS-120010
Very high traffic (and signalling) scenarios - RWS-120017
Control Plane Overhead Reduction - RWS-120021 / RWS-120046
Further Enhancements to Support Diverse Data Applications - RWS-120023
Efficiency : Small data services in high mobility - RWS-120024


User Experience
Improve User experience - RWS-120009
User Challenges - RWS-120032


Video streaming, call
RAN Enhancements for Video Streaming QoE - RWS-120023
RAN Enhancements for Internet Video Call - RWS-120023


WiFi / WLAN
Cooperation between LTE/HSPA and WiFi - RWS-120005
Unlicensed spectrum: LTE & WLAN - RWS-120007
LTE integration with other RATs - RWS-120014
WiFi integration: For Beyond Rel-12 - RWS-120017
LTE-WLAN Interworking - RWS-120023
Coordination With WiFi - RWS-120029
Smarter opportunistic usage of Wi-Fi - RWS-120031
LTE TDD Small-Cell versus WiFi - RWS-120041


Others
Other identified techniques for LTE - RWS-120005
Efficient Transactions - RWS-120035
Link Enhancement Considerations - RWS-120035
Intra-RAT cooperation / Inter-RAT cooperation - RWS-120036 / RWS-120050


Here is the summary from the workshop:

Complete list of Presentations

RWS-120002Release 12 and beyond for C^4 (Cost, Coverage, Coordination with small cells and Capacity)NSN
RWS-120003Views on Rel-12Ericsson & ST-Ericsson
RWS-120004LTE evolving towards Local Area in Release 12 and beyondNokia Corporation
RWS-120005Views on Release 12Orange
RWS-120006Views on Rel-12 and onwards for LTE and UMTSHuawei Technologies, HiSilicon
RWS-1200073GPP RAN Rel-12 & BeyondQualcomm
RWS-120008New Solutions for New Mobile Broadband ScenariosTelefonica
RWS-120009Telecom Italia requirements on 3GPP evolutionTelecom Italia
RWS-120010Requirements, Candidate Solutions & Technology Roadmap for LTE Rel-12 OnwardNTT DOCOMO, INC.
RWS-120011Where to improve Rel-12 and beyond: Promising technologiesNEC
RWS-120012Deutsche Telekom Requirements and Candidate TechnologiesDeutsche Telekom
RWS-120013Release 12 Prioritization ConceptsDish Networks
RWS-120014Towards LTE RAN EvolutionAlcatel-Lucent
RWS-120015UE AAS (Active Antenna System)Magnolia Broadband
RWS-120016Requirements and Technical Considerations for RAN Rel.12 & OnwardsFujitsu Limited
RWS-120017Operator requirements on future RAN functionalityTeliaSonera
RWS-120018AT&T View of Release 12 in the North America MarketplaceAT&T
RWS-120019Major drivers, requirements and technology proposals for LTE Rel-12 OnwardPanasonic
RWS-120020Efficient spectrum resource usage for next-generation N/WSK Telecom
RWS-120021Technologies for Rel-12 and onwardsSamsung Electronics
RWS-120022LTE Rel-12 and BeyondRenesas Mobile Europe
RWS-120023LTE Rel-12 and Beyond: Requirements and Technology ComponentsIntel
RWS-120024Considerations on further enhancement and evolution of UMTS/LTE network in R12 and onwardsChina Unicom
RWS-120025Views on LTE R12 and BeyondCATT
RWS-120026A proposal for potential technologies for Release 12 and onwardsETRI
RWS-120027A view on requirements on Rel-12 and onwards from an operator’s viewpointSoftbank Mobile
RWS-120028India market Requirements for Rel. 12 and beyondCEWiT
RWS-120029Views on LTE Rel-12 & BeyondCMCC
RWS-120030LTE addressing the needs of the Public Safety CommunityIPWireless
RWS-120031Vodafone view on 3GPP RAN Release 12 and beyondVodafone
RWS-120032An Operator’s View of Release 12 and BeyondSprint
RWS-120033Public Safety Requirements for Long Term Evolution REL-12U.S. Department of Commerce
RWS-120034Views on 3GPP Rel-12 and BeyondZTE
RWS-120035Considerations for LTE Rel-12 and beyondMotorola Mobility
RWS-120036LG’s view on evolution of LTE in Release 12 and beyondLG Electronics
RWS-120037Views on REL-12 and OnwardsChina Telecom
RWS-120038KDDI’s Views on LTE Release 12 onwardsKDDI
RWS-120039Evolving RAN Towards Rel-12 and BeyondSHARP
RWS-120040Views on enhancement of system capacity and energy efficiency toward Release12 and onwardHitachi
RWS-120041Beyond LTE-A: MediaTek’s view on R12MediaTek
RWS-120042Potential Technologies and Road Map for LTE Release 12 and BeyondITRI, HTC
RWS-120043New concept to maximize the benefit of interference rejection at the UE receiver: interference suppression subframes (ISS)Broadcom
RWS-120046Technologies for Rel-12 and onwardsSamsung Electronics
RWS-120047KDDI’s Views on LTE Release 12 onwardsKDDI
RWS-120048A view on Rel-12 and onwards from an operator’s viewpointSoftbank Mobile
RWS-120049UE AAS (Active Antenna System)Magnolia Broadband
RWS-120050LG’s view on evolution of LTE in Release 12 and beyondLG Electronics
RWS-120051New concept to maximize the benefit of interference rejection at the UE receiver: interference suppression subframes (ISS)Broadcom

More technically minded people want to explore the 3GPP website for the workshop links here: http://3gpp.org/ftp/workshop/2012-06-11_12_RAN_REL12/

Draft report that gives more insight into the presentations as follows: