Showing posts with label Spectrum. Show all posts
Showing posts with label Spectrum. Show all posts

Wednesday 5 September 2012

Qualcomm's 1000x Challenge

Qualcomm has been promoting the '1000x' challenge and has recently held a webinar to make everyone aware of how 1000 times efficiency may be achieved. I think there is always a scope of achieving a better efficiency but putting a figure may not necessarily give the desired results. Anyway, here are the slides.



You can listen to the webinar here. The promotional video is available here.

A writeup on this topic by Steven Crowley is available here.

Tuesday 8 May 2012

WiFi: Standards, Spectrum and Deployment

Yesterday, IEEE published its fourth revision to 802.11. The updates include faster throughput, improved cellular hand-offs, and better communication between vehicles in addition to other improvements.The following from IEEE website:

The new IEEE 802.11-2012 revision1 has been expanded significantly by supporting devices and networks that are faster, more secure, while offering improved Quality of Service and, improved cellular network hand-off. IEEE 802.11 standards, often referred to as “Wi-Fi®,” already underpin wireless networking applications around the world, such as wireless access to the Internet from offices, homes, airports, hotels, restaurants, trains and aircraft around the world. The standard’s relevance continues to expand with the emergence of new applications, such as the smart grid, which augments the facility for electricity generation, distribution, delivery and consumption with a two-way, end-to-end network for communications and control.

IEEE 802.11 defines one MAC and several PHY specifications for wireless connectivity for fixed, portable and mobile stations. IEEE 802.11-2012 is the fourth revision of the standard to be released since its initial publication in 1997. In addition to incorporating various technical updates and enhancements, IEEE 802.11-2012 consolidates 10 amendments to the base standard that were approved since IEEE 802.11’s last full revision, in 2007. IEEE 802.11n™, for example, defined MAC and PHY modifications to enable much higher throughputs, with a maximum of 600Mb/s; other amendments that have been incorporated into IEEE 802.11-2012 addressed direct-link setup, “fast roam,” radio resource measurement, operation in the 3650-3700MHz band, vehicular environments, mesh networking, security, broadcast/multicast and unicast data delivery, interworking with external networks and network management.

“The new IEEE 802.11 release is the product of an evolutionary process that has played out over five years and drawn on the expertise and efforts of hundreds of participants worldwide. More than 300 voters from a sweeping cross-section of global industry contributed to the new standard, which has roughly doubled in size since its last published revision,” said Bruce Kraemer, chair of the IEEE 802.11 working group. “Every day, about two million products that contain IEEE 802.11-based technology for wireless communications are shipped around the world. Continuous enhancement of the standard has helped drive technical innovation and global market growth. And work on the next generation of IEEE 802.11 already has commenced with a variety of project goals including extensions that will increase the data rate by a factor of 10, improve audio/video delivery, increase range and decrease power consumption.”

1 IEEE 802.11™-2012 “Standard for Information technology--Telecommunications and information exchange between systems Local and metropolitan area networks--Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications”


The following is from a presentation by Agilent in LTE World Summit last year. It summarises the 802.11 standards, the Spectrum available and deployment use cases.







Thursday 12 April 2012

Whitespaces Standards


Continuing on the same topic of whitespaces from yesterday, we try and see who is working on the standardisation of whitespaces

IETF Protocol to Access White Space database (PAWS)

The charter for this WG was established 14 June 2011. Generally, the IETF strives to utilise established protocols rather than develop new ones. The objecives of this WG are:
  • Standardise a mechanism for discovering a white space database
  • Standardise a mechanism for accessing a white space database
  • Standardise query and response formats to be carried over the database access method
  • Ensure that the discovery mechanism, database access method and query response formats have appropriate security levels in place.
The WG goals are:
  • April 2012 Submit ‘Use-cases and Requirements for Accessing a Radio White Space Database’ to the IESG for publication as Informational. The current draft of this document is here: http://datatracker.ietf.org/doc/draft-ietf-paws-problem-stmt-usecases-rqmts/
  • December 2012, Submit ‘Accessing a Radio White Space Database’ to the IESG for publication as a Proposed Standard.

ETSI Reconfigurable Radio Systems (RRS)


The ETSI Technical Committee (TC) on Reconfigurable Radio Systems (RRS) has the responsibility for standardization activities related to Reconfigurable Radio Systems encompassing system solutions related to Software Defined Radio (SDR) and Cognitive Radio (CR), to collect and define the related Reconfigurable Radio Systems requirements from relevant stakeholders and to identify gaps, where existing ETSI standards do not fulfil the requirements, and suggest further standardization activities to fill those gaps.

IEEE Dynamic Spectrum Access Networks Standards Committee (DySPAN-SC)


The scope of the IEEE Dynamic Spectrum Access Networks Standards Committee (DySPAN-SC), which was formerly IEEE SCC41 until 2010, includes the following [1]:
  • dynamic spectrum access radio systems and networks with the focus on improved use of spectrum,
  • new techniques and methods of dynamic spectrum access including the management of radio transmission interference, and
  • coordination of wireless technologies including network management and information sharing amongst networks deploying different wireless technologies.
In December 2010 the IEEE SCC41 was re-organized as IEEE DySPAN-SC and its sponsor was changed from the IEEE Standards Coordinating Committee (SCC) to the IEEE Communications Society Standards Development Board (CSDB).
Included in the IEEE DySPAN SC are following working groups[1]:
  • 1900.1 Working Group on Definitions and Concepts for Dynamic Spectrum Access: Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum Management
  • 1900.2 Working Group on Recommended Practice for Interference and Coexistence Analysis of In-Band and Adjacent Band Interference and Coexistence Between Radio Systems
  • 1900.4 Working Group on Architectural Building Blocks Enabling Network-Device Distributed Decision Making for Optimized Radio Resource Usage in Heterogeneous Wireless Access Networks
  • 1900.5 Working Group on Policy Language and Policy Architectures for Managing Cognitive Radio for Dynamic Spectrum Access Applications
  • 1900.6 Working Group on Spectrum Sensing Interfaces and Data Structures for Dynamic Spectrum Access and other Advanced Radio Communication Systems
  •  P1900.7 White Space Radio Working Group: Radio Interface for White Space Dynamic Spectrum Access Radio Systems Supporting Fixed and Mobile Operation
  • Ad hoc group on Dynamic Spectrum Access in Vehicular Environments (DSA-VE)
DySPAN SC is currently one of the most active standardization bodies for dynamic spectrum access radio systems and networks. 


CEPT/ECC WG Spectrum Engineering (SE), project team SE43

The ECC WGSE (Spectrum Engineering) has set up a special project dealing with cognitive radio matters. The SE43 was set up in May 2009 and finished its work in January 2011 by completing the ECC Report “Technical and Operational Requirements for the Possible Operation of Cognitive Radio Systems in the ‘White Spaces’ of the Frequency Band 470-790 MHz”The WG SE adopted the ECC Report 159 on white space devices for publication, in January 2011. This report can be downloaded from the undefinedCEPT/ECC website.

The main focus of the report is, as the title suggest, on coexistence with incumbent or primary systems. It contains definitions of “White Space”, cognitive radio and introduces the term “White Space Device” – WSD. The latter being the term used for the cognitive radio unit. The definition of “White Space” is taken from CEPT Report 24 “Technical considerations regarding harmonisation options for the Digital Dividend “ The report defines different scenarios for CR operation in terms of WSD types (personal/portable, home/office and public access points) and also discusses the three well known types of cognitive techniques: spectrum sensing, geo-location and beacons.
The report is focussed on protection of four possible incumbent systems: broadcast systems (BS), Program making and special events (PMSE), radio astronomy (RAS) and aeronautical radio navigation systems (ARNS). Comprehensive data on possible sensing and separation distances are given, and ends in operational and technical characteristics for white spaces devices to operate in the band. An estimate of available white space is also included.


Wightless


Weightless operates in an 8MHz-wide channel, to fit into the slots used for broadcast TV (and will thus have to squeeze into 6MHz if used across the pond where TV is smaller). Weightless is a Time Division Duplex (TDD) protocol, so access point and clients take turns to transmit.

When the hub device checks with the national database, it supplies a location and receives a list of 8MHz slots which aren't being used to transmit TV in that location. Weightless will hop between available slots every second or so, skipping any which turn out to be too cluttered (though periodically checking back in case they've cleared).

Showing its M2M roots, a Weightless access point only pages connected devices every 15 minutes, so those devices only need power up the radio four times an hour. Neul reckons that running the radio for two seconds at such intervals results in power consumption roughly equal to the decay rate of an idle battery, so being connected (and idle) has no perceivable impact on battery life.

That means a single Weightless hub can run connections to hundreds devices, across a network spanning 10km or so. Those devices could easily have a battery life measured in years, and be capable of responding with megabytes of data within 15 minutes.

A device which wants to connect to the network won't want to wait that long, and neither will one with something to report. In such circumstances the client can pick up a transmitted frame, which comes every second or two, and register an interest in sending some data upstream.

The security side of Weightless has yet to be worked out, with mutual authentication being considered more important than encrypting the content. Having someone listening in to a meter reading isn't that important, having someone faking a reading is, and content can always be encrypted at a higher level (Weightless will happily carry IPv4 and IPv6 packets).

Once on the network, a device has to wait for the hub to say when it can talk, though it has the chance to request communication slots. The speed of transmission is dependent on the quality of the signal. Each frame is addressed in a basically encoded header; all other devices can switch off their radios once they know the frame isn't addressed to them, and if the receiving device is nearby (as established by the signal strength) then the rest of the frame can be tightly encoded in the knowledge that little will be lost en route.

That means a Weightless hub can speak to hundreds of devices on the same network, with the speed of connection varying between devices. A receiver near the hub might therefore get 10Mb/sec or better, but one operating on the same network, from the same hub, could be running at a few hundred Kb in the same timeframe.


Wednesday 11 April 2012

Whitespace Spectrum Management Issues

BT has been conducting a "White Space" trial in Isle of Bute, UK. Initial report suggests that the results are not very impressive. The following is from ISP Review:


Early feedback from BT’s trial of ‘White Space‘ (IEEE 802.22) wireless broadband technology on the Isle of Bute suggests that the service, which delivers internet access by making use of the unused radio spectrum that exists between Digital TV channels, still has a lot of problems to overcome, not least in terms of its sporadic performance.

In theory the 802.22 specification suggests that download speeds of up to 22Mbps per channel (Megabits per second) could be possible and some UK trials claim to have reached around 16Mbps, which is incidentally a long way off the UK’s chosen definition for superfast broadband (24Mbps+).
But separate reports from both PC Pro and the BBC today found that the service, which is complicated to deliver due to the ever changing spectrum and the risk of causing interference to DTV services, could struggle to deliver its top speeds.

At present BT’s implementation claims to be offering speeds of up to 10Mbps per channel, which will soon be upgraded to 15Mbps, but this reduces down to a maximum of just 4Mbps when 6km away from the transmitter. New tests at various points on the Isle of Bute showed speeds varying between just 1.5Mbps and 6Mbps (the latter was recorded within sight of BT’s mast).
In fairness White Space solutions are designed to target the last 10% of the UK where the government has so far only committed to a minimum download speed of just 2Mbps for all (Universal Service Commitment), which is a very low target. In addition White Space tech appears to deliver strong upload speed that is, in some cases, symmetrical. That makes it good for video conferencing and other upload dependent tasks.



As Fierce Broadband Wireless suggests, the low speeds could also be due to pre-standard gear that will just improve as time goes on.

The main reason for using this shared whitespace spectrum is due to the fact that the total amount of spectrum is limited and we want to make use of every available free spectrum to increase capacity of the overloaded networks.

Michael Fitch from BT recently spoke in our Cambridge Wireless Small Cells SIG event. The slide from his presentations neatly lays out the vision for shared spectrum.


In theory, even though this looks simple, in practice managing the database is a challenge by itself. The embedded slides below (Page 17 onwards) show the problems and the complexity associated with the database.
Time will tell how efficient and practical using whitespaces is.

Wednesday 28 March 2012

Platinum Band: Sub 1GHz Frequency Band


Was listening to the Softbank webcast earlier about why they are so happy on receiving the 900MHz spectrum. The extract from slidepack summarises the advantages on this 'Platinum Band'

Monday 12 March 2012

Problems with 800MHz in UK and Spectrum to be auctioned


Even though 800MHz provides far better coverage than 2.1GHz (as shown above), it is going to be difficult to rollout LTE on 800MHz in the short term. The main reason being that there are quite a few other devices that use the frequencies or the frequencies neighbouring the 800MHz band and the interference may stop them working. A chart of the users is shown below.


It would be interesting to see when the rollouts in 800MHz would happen.

According to Ofcom, the following spectrum will be available in the UK:


• 250MHz of spectrum:
    • 2x30MHz paired at 800MHz
    • 2x70MHz paired at 2.6GHz
    • 50MHz unpaired at 2.6GHz
• (Also 2x15MHz of 1800MHz spectrum to be divested by EE)
• Starts to become available from Jan 2013
    • 800MHz expected to be available across whole of the UK by end of 2013
    • 2.6GHz across majority of UK by end of 2013 with remaining areas asap thereafter



All these topics were recently covered in a Cambridge Wireless event on Mobile Broadband SIG: Mobile Broadband in Rural Areas. The presentations are available here to view and download.

Tuesday 8 November 2011

Devices may require support for over 40 RF Bands to be used universally


Interesting picture from Qualcomm presentation in 4G World that shows that for Universal use, a device may have to support over 40 RF bands (which may not be physically possible and may also be overly expensive)

Related posts:


Saturday 29 October 2011

'Twisted Radio Waves': Could they be the way out of Spectrum Crunch?


A recent infograph from PCMag.com, summarises the Spectrum Crunch that we may be facing soon. Though in reality its not as bad as it may seem initially, we still have to find a way out of this. Carrier Aggregation can only help to a certain extent as we still need spectrum to do the aggregation.

The following is from a recent article in discover magazine:

Italian astrophysicist Fabrizio Tamburini says a solution may lie in making better use of the frequencies already in use. In a recent paper, he demonstrated a potential way to squeeze 100 times more bandwidth out of existing frequencies.

The idea is to twist radio waves like corkscrews and create multiple subfrequencies, distinguished by their degree of twistedness. Each subchannel carries discrete data sets. “You can tune the wave with a given frequency as you normally do, but there is also a fingerprint left by the twist,” Tamburini says. He and Swedish colleague Bo Thidé hit upon the approach while studying waves warped by the immense gravity of black holes. This past June, the scientists set up a custom dish in Venice and successfully broadcast video encoded in both twisted and normal radio waves across St. Mark’s Basin. (Note this type of wave-twisting is fundamentally different from the better-known circular polarization of light.)

The next step is to design small, cheap smartphone antennas that can transmit and receive the warped signals. If the industry’s appetite for bandwidth is any indication, it may not be long before twisted-radio technology shows up in your new gadgets.

If you are a Physics buff, you can check the paper out here.

The picture above is from Wikipedia section on Light orbital angular momentum.

Saturday 20 August 2011

Lobbying for more Spectrum

The following Video is prepared by Mobile Future which is a coalition in the US of some major companies and have been lobbying for increase in the availability of the Spectrum.