Showing posts with label Videos. Show all posts
Showing posts with label Videos. Show all posts

Saturday 14 June 2014

AT&T on Mobile Security


Nice presentation from Ed Amoroso from AT&T outlining how the security is evolving to cope with the new technologies and threats. He points to encryption, containerization, proxy & virtualization as the four key pillars of technology for enabling operators to protect the network in a mobility era where the perimeter can no longer do the job it used to do.

Here is the video:

If you cant see the video, click on this link to watch it on Light Reading's website.

Saturday 5 April 2014

Some interesting April Fools' Day 2014 Technology Jokes

Its very interesting to see all the companies proposing very interesting concepts on the 1st of April. I was told that not everyone knows what April Fools day means so here is the link to Wikipedia.

Samsung Fly-Fi: Samsung has come up with some interesting ideas, the first being Wi-Fi for everyone powered by Pigeons. They have a website here with Video.

Power of Pigeons


Looks like since we have Pigeons everywhere, so they are always used in one way or the other. The best prank ever in my opinion was the PigeonRank by Google, back in 2002. I spent a few hours that day trying to figure out how they were actually doing it.

Smart Wear was always going to be the big thing. Quite a few smart wearables this year.

Bonobos has done a good job with with TechStyle. See video below:



Samsung has a glove called Samsung Fingers here. The best thing I liked was 'Talk to the Hand'

Samsung Fingers_Talk to the hand

HTC came up with similar concept called Gluuv



Toshiba's DiGiT is as interesting. See the video:


Virgin Mobile, Canada has come up with SmartKicks. See here.



Roku Watch is not too bad:


Virgin America even convinced Sir Richard Branson to appear in the April Fools ad along with Tony Faddell, the CEO of Nest. Funny Youtube video here.

Sony Power Food was just okay, video here.

Toshiba Spehere is a funny Gaming concept, see here.

Nokia reviewed its most popular phone 3310 with modern day features here. Coloured screen with 41Megapixel camera.

Google wants to Emojify the web here.

Google Japan has a magic hand here.

Selfiebot by Orbotix is a cool concept, here.

Twitter Helmet didnt make me laugh though. See here.

Is there some others that I missed? Please feel free to add it in the comments.

Saturday 15 March 2014

HSPA+ Carrier Aggregation



Came across Qualcomm's HSPA+ Carrier aggregation video (above) and whitepaper. Interesting to see that HSPA/HSPA+ is still growing. As per my earlier post, half of the connections in 2018 would be HSPA/HSPA+.

As can be seen in the picture above, there are quite a few features that may be of interest to the operators. Scalable UMTS is one such feature as I have put in the blog before.


You will notice that upto 4 bands can be aggregated. It would be interesting to see which operators have these bands available and if they would be willing to use HSPA+ CA with upto 4 bands. The presentation by Qualcomm is embedded below and is available to download from here.



Related posts:



Saturday 1 March 2014

Mobile, Context and Discovery - Ben Evans


An Interesting presentation and Video from Benedict Evans, both embedded below:



There is an interesting Q&A at the end of the talk in the video. You can directly jump to 27:30 marker for the Q&A. One of the interesting points highlighted by him, that I always knew but was not able to convey it across is there is no real point comparing Google and Apple. I am too lazy to type down so please jump to 45:10. One of the comment on the Youtube summarises it well:

"Google is a vast machine learning engine... and it spent 10-15 years building that learning engine and feeding it data"

So true. It is not Apple vs Google; it is not about the present. It is about the future (see Google's recent acquisitions for context). As Benedict says, if Google creates beautiful, meaningful and unique experiences for users, why would they do it only for Android, they would also have it on Apple devices. 

In the end, comparing Apple and Google is like comparing Apple(s) and Oranges :)



Sunday 1 December 2013

Quick summary on LTE and UMTS / HSPA Release-12 evolution by 3GPP



A quick summary from 3GPP about the Release-12 progress (Jun. 2014 release planned) from the recent ETSI Future Mobile Summit. Presentation and video embedded below





Tuesday 12 November 2013

Mobile Video Offload using Wi-Fi is the only solution in the coming years

A very interesting infographic from Skyfire some months back highlighted some very valid issues about Video on mobiles.


Personally, I do watch quite a bit of video on my phone and tablet but only when connected using Wi-Fi. Occasionally when I am out, if someone sends me video clip on Whatsapp or some link to watch Video on youtube, I do try and see it. Most of the time the quality is too disappointing. It could be because my operator has been rated as the worst operator in UK. Anyway, as the infographic above suggests, there needs to be some kind of an optimisation done to make sure that end users are happy. OR, the users cn offload to Wi-Fi when possible to get a better experience.

This is one of the main reasons why operators are actively considering offloading to Wi-Fi and have carrier WiFi solutions in place. The standards are actively working in the same direction. Two of my recent posts on the topic of 'roaming using ANDSF' and 'challenges with seamless cellular/Wi-Fi handover' have been quite popular.



Recently I attended a webinar on the topic of 'Video Offload'. While the webinar reinforced my beliefs about why offload should be done, it did teach me a thing or two (like when is a Hotspot called a Homespot - see here). The presentation and the Video is embedded below. Before that, I want to show the result of a poll conducted during the webinar where the people present (and I would imagine there were quite a few people) were asked about how they think MNO will approach the WiFi solution in their network. Result as follows:



Here is the presentation:



Here is the video of the event:


Tuesday 15 October 2013

What is Network Function Virtualisation (NFV)?


Software Defined Networking (SDN) and Network Function Virtualization (NFV) are the two recent buzzwords taking the telecoms market by storm. Every network vendor now has some kind of strategy to use this NFV and SDN to help operators save money. So what exactly is NFV? I found a good simple video by Spirent that explains this well. Here it is:


To add a description to this, I would borrow an explanation and a very good example from Wendy Zajack, Director Product Communications, Alcatel-Lucent in ALU blog:

Let’s take this virtualization concept to a network environment. For me cloud means I can get my stuff where ever I am and on any device –  meaning I can pull out my smart phone, my iPad, my computer – and show my mom the  latest pictures of  her grand kids.  I am not limited to only having one type of photo album I put my photos in – and only that. I can also show her both photos and videos together – and am not just limited to showing her the kids in one format and on one device.
Today in a telecom network is a lot of equipment that can only do one thing.  These machines are focused on what they are do and they do it really well – this is why telecom providers are considered so ‘trusted.’ Back in the days of landline phones even when the power was out you could always make a call.  These machines run alone with dedicated resources.  These machines are made by various different vendors and speak various languages or ‘protocols’ to exchange information with each other when necessary. Some don’t even talk at all – they are just set-up and then left to run.  So, every day your operator is running a mini United Nations and corralling that to get you to access all of your stuff.  But it is a United Nations with a fixed number of seats, and with only a specific nation allowed to occupy a specific seat, with the seat left unused if there was a no-show. That is a lot of underutilized equipment that is tough and expensive to manage.  It also has a shelf life of 15 years… while your average store-bought computer is doubling in speed every 18 months.
Virtualizing the network means the ability to run a variety of applications (or functions) on a standard piece of computing equipment, rather than on dedicated, specialized processors and equipment, to drive lower costs (more value), more re-use of the equipment between applications (more sharing), and a greater ability to change what is using the equipment to meet the changing user needs (more responsiveness).  This has already started in enterprises as a way to control IT costs and improve the performance and of course way greener.
To give this a sports analogy – imagine if in American football instead of having specialists in all the different positions (QB, LB, RB, etc), you had a bunch of generalists who could play any position – you might only need a 22 or 33 man squad (2 or 3 players for every position) rather than the normal squad of  53.   The management of your team would be much simpler as ‘one player fits all’ positions.   It is easy to see how this would benefit a service provider – simplifying the procurement and management of the network elements (team) and giving them the ability to do more, with less.

Dimitris Mavrakis from Informa wrote an excellent summary from the IIR SDN and NFV conference in Informa blog here. Its worth reading his article but I want to highlight one section that shows how the operators think deployment would be done:

The speaker from BT provided a good roadmap for implementing SDN and NFV:
  1. Start with a small part of the network, which may not be critical for the operation of the whole. Perhaps introduce incremental capacity upgrades or improvements in specific and isolated parts of the network.
  2. Integrate with existing OSS/BSS and other parts of the network.
  3. Plan a larger-scale rollout so that it fits with the longer-term network strategy.
Deutsche Telecom is now considered to be deploying in the first phase, with a small trial in Hrvatski Telecom, its Croatian subsidiary, called Project Terrastream. BT, Telefonica, NTT Communications and other operators are at a similar stage, although DT is considered the first to deploy SDN and NFV for commercial network services beyond the data center.
Stage 2 in the roadmap is a far more complicated task. Integrating with existing components that may perform the same function but are not virtualized requires east-west APIs that are not clearly defined, especially when a network is multivendor. This is a very active point of discussion, but it remains to be seen whether Tier-1 vendors will be willing to openly integrate with their peers and even smaller, specialist vendors. OSS/BSS is also a major challenge, where multivendor networks are controlled by multiple systems and introducing a new service may require risking several parameters in many of these OSS/BSS consoles. This is another area that is not likely to change rapidly but rather in small, incremental steps.
The final stage is perhaps the biggest barrier due to the financial commitment and resources required. Long-term strategy may translate to five or even 10 years ahead – when networks are fully virtualized – and the economic environment may not allow such bold investments. Moreover, it is not clear if SDN and NFV guarantee new services and revenues outside the data center or operator cloud. If they do not, both technologies – and similar IT concepts – are likely to be deployed incrementally and replace equipment that reaches end-of-life. Cost savings in the network currently do not justify forklift upgrades or the replacement of adequately functional network components.
There is also a growing realization that bare-metal platforms (i.e., the proprietary hardware-based platforms that power today’s networks) are here to stay for several years. This hardware has been customized and adapted for use in telecom networks, allowing high performance for radio, core, transport, fixed and optical networks. Replacing these high-capacity components with virtualized ones is likely to affect performance significantly and operators are certainly not willing to take the risk of disrupting the operation of their network.
A major theme at the conference was that proprietary platforms (particularly ATCA) will be replaced by common off-the-shelf (COTS) hardware. ATCA is a hardware platform designed specifically for telecoms, but several vendors have adapted the platform to their own cause, creating fragmentation, incompatibility and vendor lock-in. Although ATCA is in theory telecoms-specific COTS, proprietary extensions have forced operators to turn to COTS, which is now driven by IT vendors, including Intel, HP, IBM, Dell and others.


ETSI has just published first specifications on NFV. Their press release here says:

ETSI has published the first five specifications on Network Functions Virtualisation (NFV). This is a major milestone towards the use of NFV to simplify the roll-out of new network services, reduce deployment and operational costs and encourage innovation.
These documents clearly identify an agreed framework and terminology for NFV which will help the industry to channel its efforts towards fully interoperable NFV solutions. This in turn will make it easier for network operators and NFV solutions providers to work together and will facilitate global economies of scale.
The IT and Network industries are collaborating in ETSI's Industry Specification Group for Network Functions Virtualisation (NFV ISG) to achieve a consistent approach and common architecture for the hardware and software infrastructure needed to support virtualised network functions. Early NFV deployments are already underway and are expected to accelerate during 2014-15. These new specifications have been produced in less than 10 months to satisfy the high industry demand – NFV ISG only began work in January 2013.
NFV ISG was initiated by the world's leading telecoms network operators. The work has attracted broad industry support and participation has risen rapidly to over 150 companies of all sizes from all over the world, including network operators, telecommunication equipment vendors, IT vendors and technology providers. Like all ETSI standards, these NFV specifications have been agreed by a consensus of all those involved.
The five published documents (which are publicly available via www.etsi.org/nfv) include four ETSI Group Specifications (GSs) designed to align understanding about NFV across the industry. They cover NFV use cases, requirements, the architectural framework, and terminology. The fifth GS defines a framework for co-ordinating and promoting public demonstrations of Proof of Concept (PoC) platforms illustrating key aspects of NFV. Its objective is to encourage the development of an open ecosystem by integrating components from different players.
Work is continuing in NFV ISG to develop further guidance to industry, and more detailed specifications are scheduled for 2014. In addition, to avoid the duplication of effort and to minimise fragmentation amongst multiple standards development organisations, NFV ISG is undertaking a gap analysis to identify what additional work needs to be done, and which bodies are best placed to do it.
The ETSI specifications are available at: http://www.etsi.org/technologies-clusters/technologies/nfv

The first document that shows various use cases is embedded below:


Friday 12 July 2013

Monday 8 July 2013

Adaptive Video Streaming: Principles, Improvements and Innovation


An Interdigital presentation from last year explains the principle of adaptive streaming very well for those who would not know how it worked.


This process of adaptation could be improved based on the quality of coverage at any particular time.

Interdigital are proposing a further enhancement of improving the adaptation further based on the User behaviour. If for example the user is far away then the quality need not be great on the device. On the other hand if the user is very close-by, the quality should be as good as it can get. They have explained it in a whitepaper for whoever is interested here.

A video showing this method is embedded below:


Sunday 16 June 2013

Five Future Technologies (#FutureTech) we may see soon in our devices!

Remember 'Internet of Everything' rather than 'Internet of Things', here is a recent Cisco video explaining this vision:

You can read more on these topics on Cisco blogs.


Next is the self-healing technology:



Spray-on clothes
These will go very well with phones where you can spray paint phone covers and maybe if its possible to dissolve the skin and re-use it, it would be an added bonus.


Just think how the technology used to design Robots can enable flexible phones and other devices.




With sensors becoming smaller and cheaper, more of them are being put in our devices. Many years back people were saying that breath analysers could be available in mobiles but I guess there wasnt a business case for that. Also many of these sensors have come as part of Bluetooth add-ons to keep the cost/weight/size of the device down. Now there is a possibility of whole new range of sensors coming to our devices.

You can read more details on this here.


Finally, there is always one user who would ask me why is there no mention of LTE in the videos above so here is a **bonus** video.

I have to mention that this didnt sound very convincing to me as a selling point. Its like back in the year 2000, 3G was being sold as an enabler to the must have 'Video calling'.

Friday 7 June 2013

3GPP Public Safety focus in Rel-12


Public Safety is still a hot topic in the standards discussion and on this blog as well. Two recent posts containing presentations have been viewed and downloaded like hotcakes. See here and here.

3GPP presented on this topic in the Critical Communications World that took place last month. The following is from the 3GPP press release:

The ’Critical Communications World’ conference, held recently in Paris, has focused largely on the case for LTE standardized equipment to bring broadband access to professional users, by meeting their high demands for reliability and resilience.
Balazs Bertenyi, the 3GPP SA Chair, reported on the latest status of the first 3GPP features for public safety, in particular those covering Proximity services (Direct mode) and Group call. He spoke of the need to strike a balance between more or less customisation, to make use of commercial products while meeting the specific requirements for Public Protection and Disaster Relief (PPDR).
To ensure that these needs are met, Balazs Bertenyi called for the wholehearted participation of the critical communications community in 3GPP groups, by sending the right people to address the technical questions and obstacles that arise during the creation of work items.

A presentation and video from that event is embedded below:




For more details see here.

Wednesday 1 May 2013

Video: Quick summary of 3GPP Release 12 features

Ericsson recently posted a very good summary video of Release-12 features. My comments and more details are posted below the video:


You may have noticed that LTE Release 12 is also referred to as LTE-B as I posted in my blog post here. Unfortunately, this terminology is not supported by 3GPP which refers to all advancements of LTE as LTE-A. See comment on the post I just referred.

The Elevation Beamforming is also referred to as 3D-Beamforming or 3D-MIMO as I show here.

I havent written any posts on Dual connectivity and not exactly sure how it works but there is an interesting presentation on the Small Cells Enhancements in Release-12 on my blog here.

You can learn more about the WiFi and EPC Integration here.

Click on the following Direct Communications, Device to device (D2D) and Public Safety for more information on the topics.

There are many good presentations on Machine Type Communications (MTC) or M2M that are available on this label here.

Finally, I havent seen much about the lean carrier but now that I know, will add some information on this topic soon.

Related links:

Monday 8 April 2013

Interference Management in HetNets


Interference Management is a big topic in HetNet's. An earlier blog post here on similar topic was very popular. The above picture shows a Heterogeneous cellular network topology incorporating different forms of small cell deployments as an overlay on the macrocell network. Small cells would generally use secure tunnels back to the core network using existing broadband infrastructure. Whereas in the HCS (Hierarchical Cell Structures), different layers have different frequencies, thereby not causing radio frequency interference, in HetNets same frequencies can be used between different layers. The same frequencies can cause radio frequency Interference and necessitates the use of advanced Interference avoidance techniques.

CTTC has another interesting presentation on Interference Management in HetNets that I am embedding below as slides and video:





Thursday 14 March 2013

What is WebRTC and where does it fit with LTE and IMS

This simple video from MWC should give an idea on what WebRTC is and can do:


So what exactly WebRTC is in technical terms. Here is a recent presentation from WebRTC Conference and Expo



And here is another presentation that explains where it fits in with the LTE Architecture.



Dean Bubley from Disruptive Analysis has writted extensively on this topic and his recent post "Is the telephony "threat" from VoIP & WebRTC about competition or contextualisation?" is an interesting read.

Iain Sharp from Netovate recently pointed out that 3GPP have 'nearly' approved a work item for WebRTC access to IMS.

It would be interesting to see how operators will view WebRTC. As an opportunity or as a threat. Please feel free to air your opinions via comments.

Monday 11 March 2013

DAS or 'Small Cells' and What is DAS anyway?

Its been a while I posted something on DAS (a.k.a. Distributed Antenna System). The articles I have posted have been mainly from AT&T and are here, here and here.

Picture source: The IET

Recently I read something interesting from IDG here:
According to Rob Bruce, Chief Operating Officer at distributed antenna system (DAS) vendor Axell Networks, a building is an asset, and that asset wants to deliver all the services it can in the simplest and most economical way.
"You wouldn't put five separate lighting systems into a building because there are five separate tenants in that building. You would put one in, and it becomes a utility for that building," Bruce told Techworld.
"Our view of life is it's the same for cellular coverage. You put one system in which covers the building. That is then a utility for the building, and operators can then connect into that infrastructure - that's how a DAS system works."
Bruce said that small cells are very good for single operator environments, when a single operator wants to add some capability into a particular area. But if they want to put multiple technologies into that environment then they have to put in multiple small cells.
So if a company in the UK wants to put GSM, UMTS and LTE into an office block, it has to install three small cells. If it wants to make that truly operator agnostic, it will probably have to put in 12 units, because each of the four operators uses at least three spectrum bands.
Axell Wireless recently installed a multi-operator DAS in The Shard in London, using 20 remote units to cover the whole building. Bruce claimed that, if the same thing had been done using small cells, it would involve over 100 units.
"So the building owner is saying I've got 100 lumps of intelligent electronics gadgetry that is scattered all over my building, and there's 4 different operators wanting access to all those different things in private flats, hotels and offices - it's just an operational nightmare," said Bruce.
Complete article is available here.

This is an interesting point because the Small Cells are still not evolved enough so that a single one can serve multiple operators, etc. Note that I am differentiating the closed residential femtocells from the public access small cells. Maybe a service such as FaaS or 'Femto as a Service' can help solve this problem. Based on my previous sentences, some of you may say that it should be called Small Cell as a Service (SCaaS) rather than FaaS but unfortunately that term has come to mean something else as can be seen here.

While initially the in-building solutions were mainly for coverage reasons, this may no longer be the only reason. Capacity is also an issue, especially in-building. Small cells can certainly help in the capacity area much more than DAS. Fortunately as most new phones are coming with inbuilt Wi-Fi chipsets and WiFi is available indoors in plenty, the capacity issue may no longer be a problem indoors. Again this is an area where we can have lots of discussions and each party with a vested interest can argue their case.

Here are couple of interesting videos from youtube that explain DAS:




There is also an interesting presentation by NEC in the Small Cell Americas event, embedded below:



Friday 8 March 2013

802.11u, Passpoint and Hotspot 2.0 (HS 2.0)

Came across this interesting Video on Youtube explaining 802.11u that is embedded below.




A bit more detailed presentation on the same topic by Ruckus is also embedded below:


Related posts:


Tuesday 5 March 2013

Technologies from Mobile World Congress 2013 (#MWC13)

If you liked the Gadgets roundup from yesterday then you would like this one as well:



You can read more about this topic here.



You can read more about this here.











You can read more about this here.


Finally:

Saturday 23 February 2013

Google Glasses - take two

Picture source: Guardian

So nearly after a year of my Google Glass post, looks like Google is ready to ship some of these glasses to some competition winners for $1500. Even the Facebook founder Mark Zuckerberg is excited and cant wait to get his hands on it.

There is also this new video showing 'How it Feels' wearing Glass and everytime I go back to youtube, the count increases by 100K. Embedded below:


My two main concerns are that I have to speak loudly to the glass which may not be convenient in public places or in front of others and the other being that when many people will have these devices, my Glass may pickup command from another user.

Sometime back there was a discussion on 'Bone conduction audio'. This will allow the user to hear from the Glass without the need of a headphone or speakers, I guess a similar kind of technology is needed in place of a mic. The Glass can sense that the user who is wearing it is talking instead of someone else. It should also solve the need to speak to speak loudly to the Glass.