Showing posts with label White Papers and Reports. Show all posts
Showing posts with label White Papers and Reports. Show all posts

Sunday 18 November 2012

Quick Introduction to LTE-Advanced

An article written by me for the Mobile Europe magazine where I try and explain LTE-A without going in technical details. This also includes the state of market on who is doing what.


Friday 26 October 2012

Developing and Integrating a High Performance HetNet

I have seen on Twitter some people think that HetNets (Heterogeneous Networks) is just a new name for the Hierarchical Cell Structures (HCS). The main difference between then is that while HCS requires all layers to have different frequencies, HetNets can use the same or the different frequency. In case the same frequency is used, there needs to be a way to manage interference between the different layers. In fact the term 'layers' is hardly used with HetNets as there is nothing strictly hierarchical with different types of cells that co-exist in a HetNet. Typically a HetNet comprises of Macro cells, Micro/Pico cells, other Small Cells (including Femtocells) and WiFi as well (if used to offload traffic).

This recent whitepaper from 4G Americas is an excellent source to understand more about HetNets



Available to download from Slideshare here.

Monday 27 February 2012

Voice over HSPA (VoHSPA) and CS over HSPA (CSoHS)


4G Americas has recently released a whitepaper entitled, "Delivering voice over HSPA". This paper describes the technological features that are being developed to make Voice over HSPA (VoHSPA) a reality. It describes the two potential options for VoHSPA. The first option leverages IP Multimedia Subsystem (IMS) technology developed in conjunction with Long Term Evolution (LTE), and is referred to as IMS Voice over HSPA or simply IMS Voice. The other option delivers voice by modifying existing circuit-switch based techniques so that those communications can be transmitted over an HSPA infrastructure, and is referred to as CS Voice over HSPA (CSoHS). Both the options are shown in the picture above. Note that there is no discussion about Over the top (OTT) type voice services like Skype, etc. 

The chief among benefits anticipated from VoHSPA are increases in the spectral efficiency of mobile networks. With these new techniques, voice calls can be delivered more efficiently from a spectral standpoint over Packet Switched (PS) rather than Circuit Switched (CS) networks freeing up radio resources for additional data traffic.


The 4G Americas report defines work completed by the GSMA for a minimum mandatory set of features defined in existing 3GPP Release 8 specifications (IR 58: IMS Profile for VoHSPA) that should be implemented in order to insure an interoperable, high quality, IMS-based telephony service over an HSPA radio access layer. In the white paper, 4G Americas recommends additional features, above the minimum mandatory features in IR 58, for VoHSPA either under an IMS or a CS approach, in order to minimize packet losses and variations in packet arrival times that can impair the quality of voice communications.

The whitepaper is available to download from here.

Monday 16 January 2012

HSPA vs LTE

Interesting report to remind the differences between HSPA and LTE available here.

Wednesday 26 October 2011

New 4G Americas whitepaper on HSPA evolution in 3GPP standards

Some forecasts put HSPA at over 3.5 billion subscribers by the end of 2016. Operators with HSPA and LTE infrastructure and users with HSPA and LTE multi-mode devices will be commonplace. There are 412 commercial deployments of HSPA in 157 countries, including 165 HSPA+ networks. Thus, with the continued deployment of LTE throughout the world, and the existing ubiquitous coverage of HSPA in the world, HSPA+ will continue to be enhanced through the 3GPP standards process to provide a seamless solution for operators as they upgrade their networks. While LTE, with 33 commercial deployments to date and over 250 commitments worldwide, will be the mobile broadband next generation technology of choice for HSPA, EV-DO, WiMAX and new wireless operators, HSPA will continue to be a pivotal technology in providing mobile broadband to subscribers.

The white paper explains that as 3GPP specifications evolve, their advanced features help to further the capabilities of today’s modern mobile broadband networks. With each release there have been improvements such as better cell edge performance, increased system efficiencies, higher peak data rates and an overall improved end-user experience. 3GPP feature evolution from Rel-7 to Rel-10 has pushed possible HSPA peak data rates from 14 Mbps to 168 Mbps. Continued enhancements in 3GPP Rel-11 will again double this capability to a possible peak data rate of 336 Mbps:
  • Rel-7: 64QAM or 2X2 MIMO => 21 or 28 Mbps
  • Rel-8: DC + 64QAM or 2X2 MIMO + 64QAM => 42 Mbps
  • Rel-9: DC + 2X2 MIMO + 64QAM => 84 Mbps
  • Rel-10: 4C + 2X2 MIMO + 64QAM => 168 Mbps
  • Rel-11: (8C or 4X4 MIMO) + 64QAM => 336 Mbps
“If operators are able to gain new additional harmonized spectrum from governments, they will no doubt deploy LTE, However, it is clear that HSPA+ technology is still exceptionally strong and will continue to provide operators with the capability to meet the exploding data usage demands of their customers in existing spectrum holdings,” Pearson said.

The paper is embedded as follows:

This paper and other similar papers are available to download from the 3G4G website here.

Tuesday 18 October 2011

HD Voice - Next step in the evolution of voice communication

Nearly 2 years back I blogged about Orange launching HD Voice via the use of AMR-WB (wideband) codecs. HD voice is already fully developed and standardized technology and has so far been deployed on 32 networks in almost as many countries.

People who have experienced HD voice say it feels like they are talking to a person in the same room. Operators derive 70 percent of their revenue from voice and voice-related services, and studies show that subscribers appreciate the personal nature of voice communication, saying it offers a familiar and emotional connection to another person.

HD voice is also a reaction to the competition faced by the operators from OTT players like Skype.

Below is an embed from the recent whitepaper by Ericsson:



For more information also see:



Wednesday 5 October 2011

Simultaneous Voice and LTE (SVLTE)


When LTE is an overlay to a CDMA/EV-DO network, the current de facto standard for voice delivery is Simultaneous Voice and LTE (SVLTE). In this arrangement, voice service is deployed as a 1x service running in parallel with LTE data services. For this solution to work, the handset needs to have two radios that are on simultaneously. The problem that is obvious is that the power consumption would generally be higher as two radios are on when the voice call is ongoing. The advantage (and I think its a big advantage) is that the data speeds are not affected by ongoing voice call and at the same time the state machine is simple.

For some reason this idea is not very popular for the 2G/3G evolution to LTE as the reliance will be on the CS Fallback. I had discussed this idea in the LTE World Summit and had blogged about it, you can read more details and comments here.

There is also a recent whitepaper from Huawei that covers these issues going towards VoLTE. Its available here.

Edit 06/10/11: Changed the acronym of SVLTE from 'Simultaneous Voice Over LTE' to 'Simultaneous Voice and LTE' as this is correct and referred to elsewhere.

Friday 30 September 2011

Macrocells or Metrocells?

Just went through Alcatel-Lucent strategic paper on whether to go for more Macrocell sites or rather have Metrocells instead.

A good description of Metrocells is available in the document:

Metro cells, the latest evolution in small cells, are based on the same low cost femtocell technology that has been successfully used in home and enterprise cells, but with enhanced capacity and coverage. With higher processing and transmit power, the first generation of metro cells is engineered to serve from 16 to 32 users and provide a coverage range from less than 100 meters in dense urban locations to several hundred meters in rural environments. However, unlike home and enterprise cells, metro cells are owned and managed by a MSP and typically used in public or open access areas to augment the capacity or coverage of a larger macro network.

Available in both indoor and outdoor versions, metro cells are plug-and-play devices that use Self-Organizing Network (SON) technology to automate network configuration and optimization, significantly reducing network planning, deployment and maintenance costs. While indoor versions use an existing broadband connection to backhaul traffic to a core network, outdoor versions may be opportunistically deployed to take advantage of existing wireline or wireless sites and backhaul infrastructure, such as Fiber-to-the-Node (FTTN), Fiber-to-the-Home (FTTH), Very-high-speed Digital Subscriber Line (VDSL) street cabinets, and DSL backbone.

Since metro cells use licensed spectrum and are part of the MSP’s larger mobility network, they provide the same trusted security and quality of service (QoS) as the macro network. With seamless handovers, users can roam from metro cells to the macro network and vice versa. Metro cells also deliver the same services as the macro network (for example, voice, Short Message Service (SMS), and multimedia services), and support application programming interfaces (APIs), that may be used for developing new, innovative services. In short, metro cells promise to be the ideal small cells for network offloading.

For more details on the whitepaper see: http://www.slideshare.net/zahidtg/metro-cells-whitepaper



Saturday 10 September 2011

Friday 2 September 2011

Multipoint HSDPA / HSPA

The following is from 3GPP TR 25.872 - Technical Specification Group Radio Access Network; HSDPA Multipoint Transmission:

HSPA based mobile internet offerings are becoming very popular and data usage is increasing rapidly. Consequently, HSPA has begun to be deployed on more than one transmit antenna or more than one carrier. As an example, the single cell downlink MIMO (MIMO-Physical layer) feature was introduced in Release 7. This feature allowed a NodeB to transmit two transport blocks to a single UE from the same cell on a pair of transmit antennas thus improving data rates at high geometries and providing a beamforming advantage to the UE in low geometry conditions. Subsequently, in Release-8 and Release-9, the dual cell HSDPA (DC-HSDPA) and dual band DC-HSDPA features were introduced. Both these features allow the NodeB to serve one or more users by simultaneous operation of HSDPA on two different carrier frequencies in two geographically overlapping cells, thus improving the user experience across the entire cell coverage area. In Release 10 these concepts were extended so that simultaneous transmissions to a single UE could occur from four cells (4C-HSDPA).

When a UE falls into the softer or soft handover coverage region of two cells on the same carrier frequency, it would be beneficial for the non-serving cell to be able to schedule packets to this UE and thereby improving this particular user’s experience, especially when the non-serving cell is partially loaded. MultiPoint HSDPA allows two cells to transmit packets to the same UE, providing improved user experience and system load balancing. MultiPoint HSDPA can operate on one or two frequencies.

Click to enlarge

There is also an interesting Qualcomm Whitepaper on related topic that is available to view and download here. The following is from that whitepaper:

The simplest form of Multipoint HSPA, Single Frequency Dual Cell HSPA (SFDC-HSPA), can be seen as an extension to the existing DC-HSPA feature. While DC-HSPA allows scheduling of two independent transport blocks to the mobile device (UE) from one sector on two frequency carriers, SFDC-HSPA allows scheduling of two independent transport blocks to the UE from two different sectors on the same carrier. In other words, it allows for a primary and a secondary serving cell to simultaneously send different data to the UE. Therefore, the major difference between SFDC-HSPA and DC-HSPA operation is that the secondary transport block is scheduled to the UE from a different sector on the same frequency as the primary transport block. The UE also needs to have receive diversity (type 3i) to suppress interference from the other cell as it will receive data on the same frequecny from multiple serving cells.Figure 1 llustrates the high-level concept of SFDC-HSPA.

In the case where the two sectors involved in Multipoint HSPA transmission belong to the same NodeB (Intra-NodeB mode), as illustrated in Figure 2, there is only one transmission queue maintained at the NodeB and the RNC. The queue management and RLC layer operation is essentially the same as for DC-HSPA.

In the case where the two sectors belong to different NodeBs (Inter-NodeB mode), as illustrated in Figure 2, there is a separate transmission queue at each NodeB. RLC layer enhancements are needed at the RNC along with enhanced flow control on the Iub interface between RNC and NodeB in order to support Multipoint HSPA operation across NodeBs. These enhancements are discussed in more detail in Section 4. In both modes, combined feedback information (CQI and HARQ-ACK/ NAK) needs to be sent on the uplink for both data streams received from the serving cells. On the uplink, the UE sends CQIs seen on all sectors using the legacy channel structure, with timing aligned to the primary serving cell.

When two carriers are available in the network, there is an additional degree of freedom in the frequency domain. Dual Frequency Dual Cell HSPA (DFDC-HSPA) allows exploiting both frequency and spatial domains by scheduling two independent transport blocks to the UE from two different sectors on two different frequency carriers. For a DC-HSPA capable UE, this is equivalent to having independent serving cells on the two frequency carriers. In Figure 3, UE1 is in DC-HSPA mode, whereas UE2 is in DFDC-HSPA mode.

Dual Frequency Four-Cell HSPA (DF4C-HSPA) can be seen as a natural extension of DFDC-HSPA, suitable for networks with UEs having four receiver chains. DF4C-HSPA allows use of the four receiver chains by scheduling four independent transport blocks to the UE from two different sectors on two different frequency carriers. DF4C-HSPA is illustrated in Figure 4.

Like SFDC-HSPA; DFDC-HSPA and DF4C-HSPA can also be intra-NodeB or inter-NodeB, resulting in an impact on transmission queue management, Iub flow control and the RLC layer.

Advantages of Multipoint transmission:
* Cell Edge Performance Improvement
* Load balancing across sectors and frequency carriers
* Leveraging RRU and distributed NodeB technology

Multipoint HSPA improves the performance of cell edge users and helps balance the load disparity across neighboring cells. It leverages advanced receiver technology already available in mobile devices compatible with Release 8 and beyond to achieve this. The system impact of Multipoint HSPA on the network side is primarily limited to software upgrades affecting the upper layers (RLC and RRC).


Friday 22 July 2011

Mobility Robustness Optimization to avoid Handover failures

The following is from 4G Americas Whitepaper on SON:


Mobility Robustness Optimization (MRO) encompasses the automated optimization of parameters affecting active mode and idle mode handovers to ensure good end-user quality and performance, while considering possible competing interactions with other SON features such as, automatic neighbor relation and load balancing.

There is also some potential for interaction with Cell Outage Compensation and Energy Savings as these could also potentially adjust the handover boundaries in a way that conflicts with MRO. While the goal of MRO is the same regardless of radio technology namely, the optimization of end-user performance and system capacity, the specific algorithms and parameters vary with technology.

The objective of MRO is to dynamically improve the network performance of HO (Handovers) in order to provide improved end-user experience as well as increased network capacity. This is done by automatically adapting cell parameters to adjust handover boundaries based on feedback of performance indicators. Typically, the objective is to eliminate Radio Link Failures and reduce unnecessary handovers. Automation of MRO minimizes human intervention in the network management and optimization tasks.

The scope of mobility robustness optimization as described here assumes a well-designed network with overlapping RF coverage of neighboring sites. The optimization of handover parameters by system operators typically involves either focused drive-testing, detailed system log collection and postprocessing, or a combination of these manual and intensive tasks. Incorrect HO parameter settings can negatively affect user experience and waste network resources by causing HO ping-pongs, HO failures and Radio Link Failures (RLF). While HO failures that do not lead to RLFs are often recoverable and invisible to the user, RLFs caused by incorrect HO parameter settings have a combined impact on user experience and network resources. Therefore, the main objective of mobility robustness optimization should be the reduction of the number of HO-related radio link failures. Additionally, sub-optimal configuration of HO parameters may lead to degradation of service performance, even if it does not result in RLFs. One example is the incorrect setting of HO hysteresis, which may results in ping-pongs or excessively delayed handovers to a target cell. Therefore, the secondary objective of MRO is the reduction of the inefficient use of network resources due to unnecessary or missed handovers.

Most problems associated with HO failures or sub-optimal system performance can ultimately be categorized, as either too-early or too-late triggering of the handover, provided that the required fundamental network RF coverage exists. Thus, poor HO-related performance can generally be categorized by the following events:

* Intra-RAT late HO triggering
* Intra-RAT early HO triggering
* Intra-RAT HO to an incorrect cell
* Inter-RAT too late HO
* Inter RAT unnecessary HO

Up to Release 9, a UE is required to send RLF report only in case of successful RRC re-establishment after a connection failure. Release 10 allows support for RLF reports to be sent even when the RRC reestablishment does not succeed. The UE is required to report additional information to assist the eNB in determining if the problem is coverage related (no strong neighbors) or handover problems (too early, too late or wrong cell). Furthermore, Release 10 allows for precise detection of too early / wrong cell HO.

Saturday 18 June 2011

Benefit of 1.4GHz for Mobile Downlink

Significant benefits could flow from use of 1.4 GHz band for a supplemental mobile downlink for enhanced multi-media and broadband services, according to a study by Plum Consulting conducted for Ericsson and Qualcomm.

The study by Plum Consulting shows that using the 1.4 GHz band (i.e. 1452-1492 MHz also called 1.5 GHz by the European Parliament or the L-band by the CEPT) for terrestrial supplemental mobile downlink could generate a net present value for Europe of as much as EUR54 billion over a 10 year period.

The band is currently allocated for use by digital audio broadcasting (DAB) services in most European countries -- part of the band is allocated to terrestrial networks and part is allocated to satellite networks. None of these services have developed in the band. Rather in all countries in Europe the satellite part of the band is unused and this is also the case in the terrestrial component in most countries.

There could be up to eight times as much data being downloaded than is being uploaded in mobile networks. This imbalance is expected to grow, as rich mobile content is increasingly made available and as consumer demand continues to soar. The study found that the use of the 1.4 GHz band as a supplemental downlink band for mobile applications is shown to drastically ease capacity, to enable considerably higher user data rates, to substantially enhance the user experience and to provide significant economic benefits.


The value of releasing the 1.4 GHz band depends on whether other substitute spectrum may become available in the next 5 to 10 years. Starting from today, all countries in Europe have planned or are planning to release the 800 MHz and 2.6 GHz bands in the next two years. There is equipment available for use in both bands and services are already deployed in some countries.

Which other bands might be released over the next 10-15 years? Table 3-2 gives a number of candidate bands, ordered by the likely timing for release, including the 1.4 GHz band for completeness. In each case, we summarise the current status of the band, initiatives that suggest it might be a candidate for future release and our views on the possible timing of deployment based on the difficulty of clearing the band and the harmonisation/standardisation initiatives that would need to be undertaken before equipment would be mass produced for the band.

The white paper is embedded below for reference: