Monday 15 March 2010

Qualcomm's FLO on the go...

Qualcomm's FLO TV is a reality in the U. S. of A. This is the advert which was being shown in the Superbowl




Many popular channels like the CNN are available real time. The following is a review from CNET.




Not everyone is enthusiastic, which is understandable considering the high cost.

I remember reading a research couple of years back which said that users are willing to pay a maximum of £5 for any service like the Internet or Mobile TV over their phone. Personally I think that is right and maybe in the next few months we may see the subscription prices dropping.

I would be interested in hearing from people who have experienced the FLO service first hand.

Friday 12 March 2010

Motorola (Concept) Phone that will help capture memories


A bit old new but new for me.

The idea, known as the Motorola 2033 Concept Series, was based around what mobile phones might look like in the year 2033.

The 2033 concept would allow for the device to capture memories directly from the user’s brain, through a process Motorola calls "organic memory capture". And if that wasn't enough, the 2033 concept would also allow users' to completely augment their eyesight through a process called Second Sight.

More concept phones here.

Thursday 11 March 2010

HSPA+ to reach 168Mbps in Release-10


Just when we thought that we have squeezed every bit out of HSPA, a surprise waiting is the speeds of upto 168Mbps in the downlink. Going back to the 3G Americas report, there is a section in the end that details HSPA+ enhancements for Rel-10:

Rel-8 introduced dual-carrier HSDPA operation in the downlink while Rel-9 similarly introduced dual-carrier HSUPA operation in the uplink and also enhanced the dual-carrier HSDPA operation by combining it with MIMO.

Further enhanced multi-carrier HSDPA operation is being specified for Rel-10, where the base station will be able to schedule HSDPA transmissions over three or four carriers simultaneously to a single user with the carriers are spread over one or two frequency bands. Solutions specified in earlier releases can be reused to a large extent. The difference is that now it is possible to configure a UE with one primary serving cell and up to three secondary serving cells. As in earlier releases, the secondary serving cells can be activated and deactivated dynamically by the base station using so-called “HS-SCCH orders.” With MIMO transmission on all four carriers, the peak rate would be doubled to 168 Mbps compared to Rel-9 and for typical bursty traffic the average user throughput would also experience a substantial increase.

Remember, I posted a blog on data rates calculation? The maximum data rate in Release-8 HSDPA is 42Mbps. With Dual-carrier operation, this could be doubled to 84Mbps. As you can probably guess, with 4 carriers, this will become 168Mbps ;)

For people who are less technically inclined, can check this Ericsson presentation on HSPA+ data rates. For people who may become sleepless without some technical references can check this report from RAN WG#1 meeting#59. If you are not sure what RAN WG#1 is, check quick tutorial on 3GPP here.

Going back to the 3GPP report, section 5.4 lists the details of 4 carriers HSDPA. It would be interesting to see what happens in cases where initially there were 4 carriers but then in a particular spot it changed to 2 carriers, and vice-versa. People who have yet to work on LTE may not have to worry too much as HSPA is being future proofed against the threats of LTE and WiMAX.

Interestingly enough, HSPA+ offers a better and cleaner solution at the moment especially with regards to voice calls and handing over to GSM then LTE or WiMAX.

It wont come as a surprise if the HSPA+ camp are able to pull out some new tricks from their bag just in time for Release-11.

Tuesday 9 March 2010

3GPP and Broadband Forum Collaboration on Fixed Mobile Convergence Standards

Fixed/Mobile Convergence (FMC) was the key topic that brought 3GPP and the Broadband Forum together for their first joint workshop, held February 18-19 in San Francisco. The two-day workshop was attended by 120 industry experts, who reviewed over 40 contributions focused primarily on use cases and joint requirements.

The attendees, primarily 3GPP and Broadband Forum members, also included representatives from ETSI TISPAN, ATIS and other standards bodies. The diverse group came together with a shared goal; to start the process of aligning new FMC work in each organization to best address both fixed and wireless management requirements. The two days spent together allowed the group to identify the key issues at hand and the work that needs to be done. With words of appreciation and encouragement from workshop co-chairs, Stephen Hayes of 3GPP and Dave Allan of the Broadband Forum, each organization took away work items that address both near term and long term next steps for both 3GPP and the Broadband Forum.


Through liaison communications and technical contributions into each organization, joint requirements will be shared, and another workshop is envisioned for the future after a scope and gap analysis is performed by the organizations.

Workshop documents and presentations are at available…on line

Presentations & Papers from the Workshop:

Monday 8 March 2010

Evolution of 3G Networks: The Concept, Architecture and Realisation of Mobile Networks beyond UMTS

This book has a title that can be a bit misleading but the main focus is on LTE network. One of the main problems that I generally notice is the lack of understanding of the bigger picture from the network point of view. This book can help fill that gap. The book starts with Mobile Network Evolution in General and moves to explain the evolved 3GPP network.
The different layers and interfaces have been explained quite well and the concepts have been well illustrated with the diagrams. A lot of books have diagrams that are verbatim copy of the standards of illustrated in a complicated way, these have been avoided in this book. To illustrate my point lets look at this image below that shows example arrangement of bearers with multiple PDN connectivity.
Later on the signalling for different scenarios have been explained in a rather nice way. For example of we look at PDN connectivity again, its rather simply explained.
There are many examples of signalling and once they are complete, there is a chapter looking at different protocols like GTP, PMIP, DIAMATER, SCTP, etc.
The book is a bit pricey though but worth the investment if your focus is on the signalling side of things and if you are required to understand the concepts quite well. You can also have a look at the book n google books as embedded below:

Saturday 6 March 2010

Bluetooth 4.0 promises to be more successful than Bluetooth 3.0

Apparently the Bluetooth 3.0 has a problem that it consumes too much power so even though the specs have been available for quite some time, they haven't been rolled out.

The Bluetooth Special Interest Group has said that the new version, Bluetooth 4.0, could be launching in the 4th quarter of this year with devices such as headsets, phones and PC’s all getting the technology.

The latest specification allows devices with smaller batteries to utilise Bluetooth. Previous versions of BT required that a device had at lease a AAA or larger capacity battery to function. The new 4.0 specifications allow for smaller devices that require coin-cell batteries to run.

As well as utilising less power, the device also has higher speed data transfer. Version 3.0 was launched last year although it kind of fell flat on it’s face due to the power requirements needed. Version 4.0 fixes those problems.

The new specification will carry the high-speed Wi-Fi feature introduced with Bluetooth 3.0. That allows devices to jump onto Wi-Fi 802.11 networks, where it can transfer data at up to 25Mbits per second.

Hopefully with the lower power requirements and the options to switch to 802.11 networks we should start seeing more devices using the Bluetooth specification.

However, Forrester Research analyst Charles Golvin believes the new standard nonetheless holds considerable appeal.

"These protocols are designed to be very efficient because they are delivering small bits of data," Golvin told PC World, adding that current technologies expended far too much energy to transmit data over short distances. “They'd be like pulling out a cannon to kill a mouse,” Golvin said.

Despite being certified nearly a year ago, the first Bluetooth 3.0+HS devices have yet to appear on the market.

Thursday 4 March 2010

Sprint, Verizon and Mobile Healthcare



In US, Sprint and Verizon are going head to head with their 4G (sic.) offering. Sprint has a WiMAX network from its Clearwire joint venture while Verizon is soon to roll out LTE.

During the ongoing Healthcare Information and Management System Society or HIMSS annual conference being held in Atlanta, the CEO of Sprint Nextel, Dan Hesse mentioned that the 4G (sic.) technology will play an important part in helping to transform healthcare to a greater height.

With wireless technology being an essential part of everyday life for nearly 277 million Americans, it is changing the paradigm of how healthcare is administered. Internet savvy consumers today expect immediate access to health information and care anytime, anyplace. Last year, 89 percent of wireless Internet users sought health information online*. Similarly, caregivers are using smartphones equipped with medical applications for instant, secure access to lab results, x-rays, vital signs, drug-to-drug interactions, and other vital medical records. These trends further validate the key role that wireless will play in shaping the future of healthcare by enabling innovative and cost-effective approaches in delivering quality care.

If I had to pick the one industry facing the biggest gap between need for change and use of wireless to facilitate that change, it would be healthcare,” Hesse said. Most industries spend between 6 percent and 8 percent of their revenues on telecom, but healthcare only spends 2 percent or 3 percent on it, he said. Darwin said that survival of the fittest is not about the strongest or the most intelligent — it’s about the most responsive to change, Hesse explained, and consumers are beginning to drive a lot of the change in healthcare. Healthcare spending on telecom will jump from $8.6 billion to $12.4 billion in the next few years, Hesse predicted, and two-thirds of that increase in spending will be from wireless apps and services.

What if we had asked the healthcare industry to partner with the wireless industry back in 1986, Hesse asked as he held up a massive mobile phone from that year. What if I said we could monitor patients and look at EKGs on one of these? The timing couldn’t be better for healthcare and wireless to work together, Hesse said as he took out a smartphone from his pocket. Today two-thirds of physicians use a smartphone like this one and soon more than 80 percent of them will.

What use cases does Hesse see for the wireless tools his industry offers?

> E-prescribing — Physicians’ bad hand writing causes some 4 percent of errors found in prescriptions. Hesse said a doctor friend of his realized the first time he saw a Palm PDA that it was the same size as his prescription pad and once it got Internet connectivity it would eventually eliminate the handwritten prescription. Hesse said e-Prescribing could save $20 billion annually.

> Instant, secure access to vital signs – Hesse pointed to AirStrip’s fetal heart rate monitor as a perfect example of vital sign remote monitoring that is in the market today.

> Advanced mobile apps for consumers – In just a few years we have gone from going online to look up home remedies for various ailments, Hesse said, to using apps like flu radar which can tell us how many cases of the flu have been diagnosed in our area. Hesse also pointed to the app currently being researched that encourages the end user to cough into the phone’s microphone so it can compare the sound to its database of coughs and come up with a preliminary diagnosis.

> Ultrasound probe that plugs right into a cell phone — Ultrasound exams could be conducted nearly anywhere and pipe the images to doctors that could also be nearly anywhere, Hesse predicted as he showed images of an ultrasound probe that connects to a cell phone. This will not only cut costs for ultrasounds, especially in developing market but also make it easier for EMTs and other healthcare workers who are away from hospitals to have a tool to use on the go.

> Wireless video monitors for virtual, in-home visits — While this one didn’t seem to leverage the real benefits of wireless, Hesse told a story of a nurse who had gained too much weight to be able to come into work anymore. After a short while of being detached from her former colleagues she became depressed over the situation and much less engaged in our own care. She then became part of a program that used wireless video monitors to enable two-way communications between patients in their home and physicians and nurses at care facilities. After receiving frequent virtual visits using the system, she took control of her health decisions, lost the weight and made it back to work.

> Virtual coaches on your handset — Hesse described another patient who had Type 2 diabetes, a regimen of oral medications and high blood pressure. In order to adhere to our routine she participated in a program with Sprint’s partner Welldoc to track her adherence. Welldoc offered her a virtual coach application that reminded and encouraged her to stay on track.

> Mobile enterprise for pandemic situations — During the H1N1 scare, Hesse said Sprint encouraged its workers to work from home or remotely to stem any potential spread of the flu virus among its ranks. Unlike businesses that have not adopted mobility tools for the enterprise, Sprint was able to restrict travel and encourage working from home without disrupting their employees’ workflow and progress. They had the mobile connectivity and devices to work from anywhere.

> mVisum for remote access to images, charts — Sprint partner mVisum enables clinicians to view charts, x-rays and other images right from their smartphones. Hesse said a cardiologist might be alerted through mVisum on his BlackBerry of an ambulance en route with a patient whom the paramedics suspected had suffered a heart attack. If the ambulance had wireless connectivity it could send that EKG to the cardiologist’s phone via mVisum and the clinician could prepare for the patient’s arrival knowing what needed to be done ahead of time. In those types of situations the time saved is extremely valuable.

> Intel Health Guide for remote visits and monitoring — Hesse said that moving more patients out of the hospital and back into their homes not only reduces costs overall by also improves opportunities. A woman with a high-risk pregnancy should not be moved in many cases, but she has to move in order to visit her doctor. Instead, hospitals could provide patients with Intel’s Health Guide, a tablet-like device with a touch screen that aims to make it easy for patients to track their vital signs and monitor their biometrics through peripheral devices. Physicians can make remote visits through the Health Guide.

> 4G wireless-enabled video cameras – Imagine video cameras with 4G wireless connectivity that can help patients learn how to apply their skin medication. A similar camera could be installed in an operating room to live broadcast surgeries in high definition. If it were installed in an ambulance, the EMTs could live broadcast stats, triage and more so that the clinicians at the care facility could prepare for their arrival.

> Intelligent medicine or pills with wireless embedded — “Soon i will be able to hold up a pill with wireless embedded into it,” Hesse said. The pill could also include a video camera and could send data and images straight to a doctor’s wireless device.

> 4G phones with Blu-Ray quality screens — Everyone always points to the cell phone screen’s small size or low resolution as reasons why images aren’t very useful on that platform. Hesse said HD, Blu-Ray quality resolution is coming to 4G phones.

“There are a lot of unsung heroes here today in this room,” Hesse said. “In the sometimes bitter debates on the subject of healthcare, too often we forget how important the job is of those people who deliver care.”

“To quote Yogi Berra, ‘The future ain’t what it used to be,’” Hesse said. With all the potential that Hesse pointed to and the fact that ten mobile phones are manufactured per every baby born today, the future is increasingly wireless. The future of HIMSS is wireless. And the industry can finally put the 1970s behind it.

More on the Sprint Mobile Healthcare solution at www.sprint.com/healthcare

Verizon Business has launched an information technology platform that enables the digital sharing of physician-dictated patient notes.

The Verizon Medical Data Exchange, launched Wednesday (March 3) at the Healthcare Information and Management Systems Society annual conference in Atlanta, provides a way for medical transcriptionists to share digitized patient notes detailing patients' care and treatment with doctors, hospitals and other health care providers. Until now, the lack of an interoperable, nationally available platform has made it difficult to share these notes, which primarily form the basis of electronic health records.

Verizon Business developed the platform for the Medical Transcription Service Consortium under an agreement announced last November. Founding consortium members MD-IT and MedQuist currently are using the platform. By August, when the Medical Data Exchange is expected to be in use by all of the consortium's members, 350,000-plus physicians, more than 2,700 clinics and nearly 2,500 hospitals will be supported.

The Medical Transcription Industry Association estimates that its members create and electronically archive nearly 60 percent of the more than 1.2 billion clinical notes produced in the U.S. each year. Approximately 25 percent of these records currently are shared among health care providers, including other physicians, hospitals and insurance companies.

Verizon Wireless offers customers in the healthcare industry an extensive portfolio of products and services that run on the company's reliable Evolution-Data Optimized (EV-DO) Revision A (Rev. A) network, including:

PatientKeeper® – PatientKeeper's mobility products support all operations systems while connecting physicians to patient information across inpatient and ambulatory environments. With PatientKeeper, physicians save time, increase revenue and enhance patient care. PatientKeeper enables physicians to interactively manage patient information across multiple locations, view clinical results, enter charges, sign out patients, and enter and order prescriptions, all from their smartphones.

EPOCRATES Rx for Android and Palm OS – Doctors, nurses and other healthcare professionals who use Verizon Wireless smartphones with the Android™ OS, such as DROID by Motorola or DROID ERIS™ by HTC, or devices that run on the Palm® webOS™ platform, including Palm® Pre™ Plus and Palm Pixi™ Plus, can leverage this mobile drug reference application to get prescription and safety information for thousands of brand name and generic drugs instantly. The application also offers Pill ID, which helps identify a drug based on physical characteristics such as color, shape and imprint code; table and calculators; and drug interaction information.

Medicine Central and Evidence Central – Unbound Medicine offers two applications for Verizon Wireless Android, BlackBerry®, Palm and Windows Mobile® devices.

Medicine Central is a collection of disease, drug and test information with literature tracking for mobile devices. The application features The 5-Minute Clinical Consult, A to Z Drug Facts, Drug Interaction Facts, Pocket Guide to Diagnostic Tests, and MEDLINE Journals.

Evidence Central supports effective evidence-based medical practice by integrating analysis with the latest research. Clinicians can access Evidence-Based Medicine Guidelines, Cochrane Abstracts, EE+ POEMs (Patient-Oriented Evidence that Matters from Essential Evidence Plus), and MEDLINE Journals anytime, anywhere.

Motion Computing® C5 Mobile Clinical Assistant (MCA) – Running on Windows® 7, the C5 is a hospital-grade device proven to enhance clinician satisfaction, improve point of care documentation, increase clinician productivity, and improve clinical documentation accuracy. The MCA is now available with embedded Verizon Wireless Mobile Broadband capability to stay connected to hospital information and the Internet.

More on Verizon Mobile Healthcare Solution at www.verizonwireless.com/healthcare

Wednesday 3 March 2010

Commercial Mobile Alert System (CMAS) in Release-9

I have blogged about Public Warning System and covered CMAS as part of that earlier.

The following is an extract from 3G Americas white paper, "3GPP Mobile Broadband Innovation Path to 4G: Release 9, Release 10 and Beyond: HSPA+, SAE/LTE and LTE-Advanced,":

In response to the Warning, Alert, and Response Network (WARN) Act passed by Congress in 2006, the Federal Communications Commission (FCC) established the Commercial Mobile Alert Service (CMAS) to allow wireless service providers who choose to participate, to send emergency alerts as text messages to their users who have CMAS capable handsets.

The FCC established a Commercial Mobile Service Alert Advisory Committee (CMSAAC) for the development of a set of recommendations for the support of CMAS. The CMSAAC recommendations were included as the CMAS Architecture and Requirements document in the FCC Notice of Proposed Rule Making (NPRM) which was issued in December 2007. In 2008, the FCC issued three separate Report and Order documents detailing rules (47 Code of Federal Regulations [CFR] Part 10) for CMAS. The FCC CMAS First Report and Order specifies the rules and architecture for CMAS. The FCC CMAS Second Report and Order establishes CMAS testing requirements and describes the optional capability for Noncommercial Educational (NCE) and public broadcast television stations distribute geo-targeted CMAS alerts. The FCC CMAS Third Report and Order defined the CMAS timeline, subscriber notification requirements for CMSPs, procedures for CMSP participation elections and the rules for subscriber opt-out. The FCC also issued a CMAS Reconsideration and Erratum document.

The CMAS network will allow the
Federal Emergency Management Agency (FEMA), to accept and aggregate alerts from the President of the United States, the National Weather Service (NWS), and state and local emergency operations centers, and then send the alerts over a secure interface to participating commercial mobile service providers (CMSPs). These participating CMSPs will then distribute the alerts to their users. between the issuance of the second and third Report & Order documents.

As defined in the FCC CMAS Third Report and Order, CMSPs that voluntarily choose to participate in CMAS must begin an 18 month period of development, testing and deployment of the CMAS no later than 10 months from the date that the Government Interface Design specifications available. On December 7, 2009, the CMAS timeline of the FCC CMAS Third Report and Order was initiated
with the announcement by FEMA and the FCC that the Joint ATIS/TIA CMAS Federal Alert GW to CMSP GW Interface Specification (J-STD-101) has been adopted as the Government Interface Design specification referenced in the FCC CMAS Third Report and Order.

Participating CMSPs must be able to target alerts to individual counties and ensure that alerts reach customers roaming outside a provider’s service area. Participating CMSPs must also transmit alerts with a dedicated vibration cadence and audio attention signal. Emergency alerts will not interrupt calls in progress. CMAS supports only English text-based alert messages with a maximum displayable message size of 90 English characters.


For purposes of CMAS, emergency alerts will be classified in one of three categories:

1. Presidential Alerts. Any alert message issued by the President for local, regional, or national emergencies and are the highest priority CMAS alert

2. Imminent Threat Alerts. Notification of emergency conditions, such as hurricanes or tornadoes, where there is an imminent threat to life or property and some immediate responsive action should be taken

3. Child Abduction Emergency/AMBER Alerts. Alerts related to missing or endangered children due to an abduction or runaway situation

The subscribers of participating CMSPs may opt out of receiving Imminent Threat and Child Abduction/AMBER alerts, but cannot opt out from Presidential Alerts.

The following figure shows the CMAS Reference Architecture as defined in the FCC CMAS First Report and Order:


Reference Point C is the secure interface between the Federal Alert GW and the Commercial Mobile Service Provider (CMSP) GW. The Reference Point C interface supports delivery of new, updated or canceled wireless alert messages, and supports periodic testing of the interface. This interface is defined in the
J-STD-101, the Joint ATIS/TIA CMAS Federal Alert GW to CMSP GW Interface Specification.

Federal Government entity (i.e. FEMA) responsible for the administration of the Federal Alert GW. FEMA will perform the function of aggregating all state, local, and federal alerts and will provide one logical interface to each CMSP who elects to support CMAS alerts.

For GSM and UMTS systems, wireless alert messages that are received by CMSP GWs will be transmitted to targeted coverage areas using GSM-UMTS Cell Broadcast Service (CBS). The CMAS functionality does not require modifications to the 3GPP-defined Cell Broadcast Service.

The ATIS WTSC-G3GSN Subcommittee is developing the CMAS via GSM-UMTS Cell Broadcast Service Specification. The purpose of this standard is to describe the use of the GSM-UMTS Cell Broadcast Service for the broadcast of CMAS messages. The standard includes the mapping of CMAS application level messages to the Cell Broadcast Service message structure.

The ATIS WTSC-G3GSN Subcommittee is developing the Cell Broadcast Entity (CBE) to Cell Broadcast Center (CBC) Interface Specification. The purpose of this standard is to define a standard XML based interface to the Cell Broadcast Center (CBC). The CMSP Alert GW will utilize this interface to provide the CMAS Alert message information to the CBC for broadcast via CBS.

The ATIS WTSC-G3GSN Subcommittee has developed the Implementation Guidelines and Best Practices for GSM/UMTS Cell Broadcast Service Specification and this specification was approved in October 2009. The purpose of this specification is to describe implementation guidelines and best practices related to GSM/UMTS Cell Broadcast Service regardless of the application using CBS. This specification is not intended to describe an end-to-end Cell Broadcast architecture, but includes clarifications to the existing 3GPP CBS standards as well as “best practices” for implementation of the 3GPP standards. CMAS is an example of an application that uses CBS.

J-STD-100, Joint ATIS/TIA CMAS Mobile Device Behavior Specification, defines the common set of requirements for GSM, UMTS, and CDMA based mobile devices behavior whenever a CMAS alert message is received and processed. A common set of requirements will allow for a consistent user experience regardless of the associated wireless technology of the mobile device. Additionally, this common set of requirements will allow the various local, state, and Federal level government agencies to develop subscriber CMAS educational information that is independent of the wireless technology.

CMAS VIA LTE/EPS

In order to comply with FCC requirements for CMAS, CMSPs have a need for standards development to support CMAS over LTE/EPS as it relates to the network-user interface generally described as the “E-Interface” in the CMAS Reference Architecture. The intent of ATIS WTSC-G3GSN is to build upon LTE text broadcast capabilities currently being specified by 3GPP for the Public Warning System (PWS).

3GPP STANDARDS

3GPP TS 22.268. Public Warning System (PWS) Requirements, covers the core requirements for the PWS and covers additional subsystem requirements for the Earthquake and Tsunami Warning System (ETWS) and for CMAS. TS 22.268 specifies general requirements for the broadcast of Warning Notifications to broadcast to a Notification Area that is based on the geographical information as specified by the Warning Notification Provider. This specification also defines specific CMAS requirements based on the three Reports & Orders issued to date by the FCC.

3GPP TS 23.401. GPRS enhancements for E-UTRAN access, specifies the Warning System Architecture for 3GPP accesses and the reference point between the Cell Broadcast Center (CBC) and Mobility Management Entity (MME) for warning message delivery and control functions. This TS identifies the MME functions for warning message transfer (including selection of appropriate eNodeB), and provides Stage 2 information flows for warning message delivery and warning message cancel. The architecture and warning message delivery and control functions support CMAS.

3GPP TS 29.168. Cell Broadcast Center interfaces with the EPC – Stage 3, specifies the procedures and application protocol between the Cell Broadcast center and the MME for Warning Message Transmission, including the messages, information elements and procedures needed to support CMAS.

3GPP TS 36.300. E-UTRA and E-UTRAN – Overall description – Stage 2, specifies the signaling procedures for the transfer of warning messages from the MME to the eNodeB. The signaling procedures support CMAS operations.

3GPP TS 36.331. E-UTRA Radio Resource Control (RRC) – Protocol specification, specifies the radio resource control protocol for UE-to-E-UTRAN radio interface and describes CMAS notification and warning message transfer.

3GPP TS 36.413. E-UTRAN – S1 Application Protocol (S1AP), specifies the E-UTRAN radio network layer signaling protocol between the MME and eNodeB, and describes the warning message transfer needed for CMAS.

3GPP participants are working to complete these specifications and other UE procedures for supporting PWS and CMAS.

ATIS WTSC-G3GSN will develop a Standard for a CMAS via LTE Broadcast Capability Specification. This Standard will map the CMAS application level messages to the LTE warning message transfer protocol (i.e. for CMAS).

This ATIS WTSC-G3GSN effort has an anticipated completion date of December 31, 2010. This takes into account the time needed for completion of the ongoing 3GPP standards development on warning message broadcast for LTE.

ATIS WTSC G3GSN and TIA TR45.8 Subcommittees in conjunction with FEMA will also be jointly developing a testing certification specification for the Reference Point C interface between the Federal Alert GW and the CMSP GW based upon the requirements defined in J-STD-101. This specification has an anticipated completion date of December 31, 2010.

Tuesday 2 March 2010

Practical innovation, Radical innovation and Incremental innovation at the Mobile World Congress



There has been a lot of coverage of mobile world congress. I have said before that the event was a success and also that we, as an industry are adding value when there is so much economic chaos around us. GSMA also validates this trend by their statistics and attendee numbers GSMA Releases Congress Visitor Stats

If there was an underlying theme for the event, then I think it was 'practical innovation' i.e. innovation designed to solve problems. This is a more interesting trend which I genuinely like. However, there is also space for radical innovation and also incremental innovation. Hence, I will discuss innovation in these themes below. By 'incremental innovation', I mean changes that take a few years to manifest but are significant. Most changes in the devices, networks and infrastructure will be in this space. The challenge for incremental innovation is: Customers may be overtaken by more nimble/sometimes imperfect. And then, there is radical innovation which may be a game changer

I will provide a series of links to announcements that caught my eye in the show (and afterwards). But first, a note of caution: Let's not forget what happened to Palm AFTER the MWC. Last year, Palm was an 'innovator' with much talk of its 'comeback'. Today, there is an overall doom and gloom around Palm. . Palm's products may be good .. But does it matter when the industry is moving so fast and customers have so much choice? Will developers continue to support a waning platform? Today, we see excellent new devices from Samsung, Microsoft, HTC and others which were not present a year ago. All this means that the rate of change has increased. This is a matter for optimism but also caution as the woes of Palm demonstrate.

Firstly, before we discuss further, some of the big announcements. Again, I provide links so that I don't duplicate much of what we have seen before.

Major announcements

Carriers Connect to Rival Apple's App Store

Moblin + Maemo + Linux Foundation = MeeGo

VOIP and Skype. See the white paper written by me and Chetan on the tipping point for VOIP

Wholesale Applications Community

Vodafone calls for tiered mobile-bandwidth pricing

Windows Phone 7 Series

Also see my talk as well: Is Twittter the glue for the Internet of things?

Practical innovation


Orange Healthcare joins the mHealth Alliance to develop mobilehealth solutions in west africa

Telefónica Internacional selects NEC as strategic partner to promote Cloud Computing solutions in Latin America

GSMA Announces Winners of the 15th Annual Global Mobile Awards

RIM to offer free BlackBerry Enterprise Server


mHealth potential: More questions than answers


Radical innovation

Access SIM-Based Services Just by Tapping or Shaking the Mobile Phone

An Accelerometer 1,000x More Sensitive Than the iPhone's

Elsemobile

Growvc launches with an innovative model for mobile startups


Incremental innovation which could be pointers to bigger trends

DEVICES

Huawei and Acer add high-end phones to Android mix

Microsoft to let you install apps on memory card sticks

Huawei unveils first HSPA+ Android phone

Samsung Wave review

Adobe joins LiMo Foundation, adds Flash support to LiMo platform

10 things the iPhone can learn from Mobile World Congress

Qualcomm's Dual-Core 1.5GHz Snapdragon: Smartphones Are About to Go Hyperspeed

The best phones, stunts, and demos of Mobile World Congress

Motorola milestone

LG Licenses Push Email from Good

Layar Looks to Create the App Store of Mobile Augmented Reality


Nokia chief: we want to be all things to all consumers again

The Android Who Cried Wolf

Vodafone To Sell Sub-$15 Phone in Developing Countries

RIM shows off the new WebKit-powered BlackBerry browser

Gallery: Biggest Smartphone News From Barcelona

LG: No plans for a proprietary OS

The Puma phone
Samsung's Wave Is Bada-Full

Samsung's About to Own More of the TV Market Than Any Company in 60 Years


NETWORKS

Alcatel-Lucent beefs up carrier apps strategy

Movial Selected as LG-Nortel Partner to Provide Rich Multimedia Communications Application and Touch Screen Optimized Mobile Browser

Gemalto Innovation: Gemalto Launches "Device Service Link" to Facilitate Access to Mobile Broadband

OneAPI Gains Momentum as GSMA Announces Commercial Pilot with Leading Mobile Operators in Canada

LTE-Advanced specs to be published in 2011

Huawei show first triple-mode LTE modem

GSMA Outlines Progress with RCS Initiative

40 Companies Back GSMA's Voice Over LTE Fix

OneAPI Standardizes Carrier Billing APIs Across Networks


Monday 1 March 2010

GSM-UMTS Network migration towards LTE


Another interesting white-paper from 3G Americas. The following from their press release:

A 3rd Generation Partnership Project (3GPP) specification, LTE will serve to unify the fixed and mobile broadband worlds and will open the door to new converged multimedia services. As an all-IP-based technology, LTE will drive a major network transformation as the traditional circuit-based applications and services migrate to an all-IP environment, though introducing LTE will require support and coordination between a complex ecosystem of application servers, devices/terminals and interaction with existing technologies. The report discusses functionality and steps GSM-UMTS network operators may use to effectively evolve their networks to LTE and identifies potential challenges and solutions for enabling the interaction of LTE with GSM, GPRS and UMTS networks.

“This white paper reveals solutions that facilitate a smooth migration for network operators as they deploy LTE,” stated Chris Pearson, president of 3G Americas. “3GPP has clearly defined the technology standards in Release 9 and Release 10, and this paper explores the implementation of these standards on 3GPP networks.”



A reported
130 operators around the world have written LTE into their technology roadmaps. In December 2009, TeliaSonera launched the world’s first LTE networks in Norway and Sweden and an estimated 17 operators are expected to follow in its footsteps in 2010.

“LTE is receiving widespread support and powerful endorsements from industry leaders around the world, but it is important to keep in mind that the evolution to LTE will require a multi-year effort,” Pearson said. “LTE must efficiently and seamlessly coexist with existing wireless technologies during its rise to becoming the leading next-generation wireless technology.”

Operators planning LTE deployments must consider the implications of utilizing LTE in an ecosystem comprising 2G, 3G and future “4G” wireless technologies. Therefore, operators planning an LTE deployment will need to offer multi-technology devices with networks that allow mobility and service continuity between GSM, EDGE, HSPA and LTE.