Pages

Sunday, August 31, 2008

Femtocells With LTE and their commercialization

Over the past few months LTE is gaining real momentum and the LTE camp is expanding. Companies who have decided to consider LTE as their 4G technology are doing everything possible to make LTE a big success.

Femtocells is another one of the most talked technology these days. In the past one year itself Femtocells has gained lots of strength and they are already in the process of commercialization. Giants like Verizon, T-Mobile, and Sprint have already announced their offering of femtocell products and service plans sometime this year. A few big announcements like this in the femtocell arena should give Femtocell market some good momentum. Some of you might already be aware that Qualcomm made a significant yet unknown investment in ip.access' Oyster 3G systems, which uses the residential broadband connection to deliver a 3G signal in the home. The move is seen as validating the femtocell concept, especially since Qualcomm is so adept at making the right technology investments.

With the work on LTE in full progress and femtocells strengthening its ground, industry is very comfortable with the idea of having Femtocells in LTE.

Analysts consider LTE as a major boost to the future success of femtocells. In order to take femtocells further with LTE and to make them big success the joint testing of a reference design against the LTE standard was proposed.

Considering the proposal seriously the joint testing was conducted by picoChip, a U.K based femtocell silicon developer; mimoOn a German-based SDR specialist; and the test equipment vendor Agilent Technologies. The objective behind the test was to verify that the femtocell reference design met the requirements of the LTE standard as measured by the recently developed 3GPP LTE modulation analysis option from Agilent.

The above joint testing triggered enough confidence in the industry and hence the idea of having Femtocells on LTE. Based on the joint testing picoChip and mimoOn, which have been co-operating on the reference design for the past 12 months, recently announced the availability of what they suggest are the first LTE femtocell and picocell reference designs, the PC8608 Home eNodeB and PC8618 eNodeB respectively. The design is based upon the same hardware platforms as picoChip's WiMAX products.

Going further PicoChip unveiled its first reference designs for LTE femtocells and picocells, which will enable the company's existing femtocell customers, which include ip.access and Ubiquisys, to upgrade to LTE.

3GPP is well aware of all the developments in the femtocells and is busy in developing the specifications with regards to femtocells in LTE.
To end the squabbling The Third Generation Partnership Project (3GPP) has adopted an official architecture for 3G femtocell home base stations and started work on a new standard for home base stations.

The 3GPP wants to have the new standard done by the end of this year, which appears to be an aggressive time schedule given the fact that vendors had various approaches to building a femtocell base station.


The agreed upon architecture follows an access network-based approach, leveraging existing standards, called IU-cs and Iu-ps interfaces, into the core service network. The result is a new interface called Iu-h.

The architecture defines two new network elements, the femtocell and the femtocell gateway. Between these elements is the new Iu-h interface. This solution was backed by Alcatel-Lucent, Kineto Wireless, Motorola and NEC.

However with every new standard the old or existing architecture comes under review. With this new standard all of the femtocell vendors who had their own design in place, must go back and change their access point and network gateway equipment to comply with the new standard interface. I think in doing so vendors can bring themselves in line with the global standard.
All femtocell vendors will have to make changes to their access points. Alcatel-Lucent, Motorola, NEC, and those that already use Kineto's GAN approach, such as Ubiquisys, will have the least work to do. Ubiquisys has already announced that it will have products ready that support the new standard by December of this year.

Now as the standard is been decided companies can work on their designs based on the standard and can think of introducing the products in the market.

T-Mobile is moving fast in that direction and it has chosen two German cities, Cologne and Bonn to test the commercial feasibility of 3G femtocells. The operator will be the first to conduct trials of the technology in Germany, albeit that numerous trials have already taken place elsewhere in Europe.

While T-Mobile demonstrated femtocells at the giant CeBIT exhibition earlier this year, this trial is aimed at testing how consumers react to the plug-and-play characteristics of femtocells. Having achieved positive feedback from earlier tests, T-Mobile is now continuing to explore the area of deep indoor coverage and enhance in buildings femtocells coverage for UMTS and HSPA (High Speed Packet Access). This will definitely boost both data transmissions and telephony.

T-Mobile’s earlier results from the above tests suggest there might be a limited commercial deployment of femtocells later in the year. T-Mobile is reported as seeing femtocells having 'a lot of potential'.

Femtocells are widely perceived as a solution for mobile operators to boost in-building 3G coverage without the high costs associated with increasing the size of their macro networks. Femtocells are very much the hot topic of the mobile industry at present and are expected to have a high profile at the forthcoming Mobile World Congress in Barcelona, Spain. Femtocell does present another front for revenues and companies are investing in femtocells.
In March of this year the T-Mobile Venture Fund made a strategic investment in Ubiquisys, a developer of 3G femtocells, joining Google and original investors Accel Partners, Atlas Venture and Advent Venture Partners.

Cisco and Intel recently invested in femtocell company ip.access and Qualcomm has put money into Airvana.

T-Mobile said it plans to test Ubiquisys' femtocell technology in trials in Germany, the Netherlands and the U.K. in the coming months. Meanwhile, its U.S. subsidiary is using WiFi hotspots in the home as an alternative to a femtocell solution to improve coverage in the home. Once T-Mobile launches its 3G network in the U.S. we could see both femtocells and WiFi.
However I am not sure whether T-Mobile in its latest trial in Germany used devices provided by Ubiquisys.

The commercial deployment of femtocells has taken another step forward following the adoption by the Femto Forum of a worldwide standard that defines the real-time management of femtocells within households. Members of the Forum have agreed to implement the Broadband Forum's TR-069 CPE WAN management protocol standard which is already in use with around 30 million devices having been defined in 2004 for the broadband community. The basis of the TR-069 standard is to enable CPE devices to be easily deployed and configured reliably but, more importantly, in high volumes, something that has worried operators planning to position the femtocell as user installable.The Femto Forum claims that TR-069 has proven itself to provide consumers with a method of easy installation and self provisioning, while enabling the operator to run diagnostics and conduct remote firmware and service upgrades with millions of end-user devices, in a cost-effective manner. The two groups now plan to define extensions to TR-069 to add additional femtocell capability to the standard.
It is an exciting time for the femtocell industry with commercialization in sight. The industry hopes are even higher with femtocells in LTE will provide even better services to the customers.

No comments:

Post a Comment