Pages

Tuesday, November 11, 2014

New Spectrum Usage Paradigms for 5G

Sometime back I wrote a post that talked about Dynamic Spectrum Access (DSA) techniques for Small Cells and WiFi to work together in a fair way. The Small Cells would be using the ISM bands and Wi-Fi AP's would also be contending for the same spectrum. For those who may not know, this is commonly referred to as LTE-U but the correct term that is being used in standards is LA-LTE, see here for details.

IEEE Comsoc has just published a whitepaper that details how the spectrum should be handled in 5G to make sure of efficient utilisation. The whitepaper covers the following:

Chapter 2 – Introduction, the traditional approach of repurposing spectrum and allocating it to Cellular Wireless systems is reaching its limits, at least below the 6GHz threshold. For this reason, novel approaches are required which are detailed in the sequel of this White Paper.

Chapter 3 - Spectrum Scarcity - an Alternate View provides a generic view on the spectrum scarcity issue and discusses key technologies which may help to alleviate the problem, including Dynamic Spectrum Management, Cognitive Radios, Cognitive Networks, Relaying, etc. 

Chapter 4 – mmWave Communications in 5G addresses a first key solution. While spectrum opportunities are running out at below 6 GHz, an abundance of spectrum is available in mmWave bands and the related technology is becoming mature. This chapter addresses in particular the heterogeneous approach in which legacy wireless systems are operated jointly with mmWave systems which allows to combine the advantages of both technologies. 

Chapter 5 – Dynamic Spectrum Access and Cognitive Radio: A Current Snapshot gives a detailed overview on state-of-the-art dynamic spectrum sharing technology and related standards activities. The approach is indeed complementary to the upper mmWave approach, the idea focuses on identifying unused spectrum in time, space and frequency. This technology is expected to substantially improve the usage efficiency of spectrum, in particular below the 6GHz range. 

Chapter 6 – Licensed Shared Access (LSA) enables coordinated sharing of spectrum for a given time period, a given geographic area and a given spectrum band under a license agreement. In contract to sporadic usage of spectrum on a secondary basis, the LSA approach will guarantee Quality-of-Service levels to both Incumbents and Spectrum Licensees. Also, a clear business model is available through a straightforward license transfer from relevant incumbents to licensees operating a Cellular Wireless network in the concerned frequency bands. 

Chapter 7 – Radio Environment Map details a technology which allows to gather the relevant (radio) context information which feed related decision making engines in the Network Infrastructure and/or Mobile Equipment. Indeed, tools for acquiring context information is critical for next generation Wireless Communication systems, since they are expected to be highly versatile and to constantly adapt. 

Chapter 8 – D2DWRAN: A 5G Network Proposal based on IEEE 802.22 and TVWS discusses the efficient exploitation of TV White Space spectrum bands building on the available IEEE 802.22 standard. TV White Spaces are indeed located in highly appealing spectrum bands below 1 GHz with propagation characteristics that are perfectly suited to the need of Wireless Communication systems. 

Chapter 9 – Conclusion presents some final thoughts. 

The paper is embedded as follows:



No comments:

Post a Comment