Pages

Saturday, 23 April 2016

5G & Accident Free Driving


ETSI recently held a workshop titled "5G: From Myth to Reality". There were some interesting presentations and discussions, hopefully I will get a chance to write a bit more about it.

One interesting presentation was how 5G will make accident free driving a reality. While the current approach is to use the 802.11p standards that uses the license exempt 5.9GHz band, there is a possibility of enhancements based on 5G


As the final 2 slides say, What could be the use cases for 5G in vehicles? The answer suggested:

  • Map update for highly automatic driving - Instantly update the map of vehicle's surrounding. The challenge of this use case is that the vehicle is currently in the tile that needs to be updated, hence a very quick update is required. 
  • Precise Positioning high speed, no GPS, support for vehicles without high precision location tracking like cars 
  • Audio / Video Streaming (Entertainment) 
  • Online Gaming - side jobs 
  • Sensor- and State Map Sharing (Sensor Raw Data) - Transmit raw sensor data such that others can use their own classifiers to infer decisions
  • Camera and Radar sharing to improve visibility, including See-Through Share sensor information to augment ego vehicle's view. Allows for better visibility in presence of obstructing vehicles, heavy rain / fog, etc. 
  • Short-Term Sensor sharing for crash mitigation - Mitigate crash between multiple vehicle by last-minute traffic exchange 
  • Traffic forwarding using cars as relays Extend coverage or improve efficiency by using the car as a relay 
  • Teleoperated Driving "Let car be controlled by off-site driver / car operator e.g. car sharing, taxi operator, …“ 
  • Augemented Reality, e.g. Daytime-Visibility at night)

Here is the complete presentation, let me know what you think:



Sunday, 17 April 2016

NTT Docomo's 5G Treasure Trove


NTT Docomo's recent technical journal has quite a few interesting 5G articles. While it is well known that 5G will be present in Japan in some or the other shape by 2020, for the summer Olympics, NTT Docomo started studying technologies for 5G in 2010. Some of these have probably ended in 4.5G, a.k.a. LTE-Advanced Pro.

While there are some interesting applications and services envisioned for 5G, I still think some of these can be met with LTE-A and some of them may not work with the initial versions of 5G

As far as 5G timetable is concerned, I recently posted a blog post on this topic here. Initial versions of 5G will have either little or no millimetre wave (mmWave) bands. This is because most of these would be finalised in 2019 after WRC-19 has concluded. It may be a touch challenge to move all the existing incumbents out of these bands or agree of a proper sharing mechanism.

'5G+' or '5G phase 3' will make extensive use of these higher frequency bands extensively in addition to the low and mid frequency bands. For anyone not familiar with different 5G phases, please see this earlier post here.

Enhanced LTE (or eLTE) is probably the same as LTE-Advanced Pro. Docomo believes that the initial 5G deployment would include new RAT but existing 4G core network which would be enhanced later for 5G+. Some of this new RAT technologies are discussed as well.

Core Network evolution is another interesting area. We looked at a possible architecture evolution here. To quote from the magazine:

The vision for future networks is shown in Figure 3. A future network will incorporate multiple radio technologies including LTE/LTE-Advanced, 5G New Radio Access Technology (RAT), and Wi-Fi, and be able to use them according to the characteristics of each service.

Utilizing virtualization technologies, network slices optimized for service requirements such as high efficiency or low delay can be created. Common physical devices such as general-purpose servers and Software Defined Network (SDN) transport switches will be used, and these networks will be provided to service providers. Network slices can be used either on a one service per network basis to increase network independence for originality or security, or with multiple services on one slice to increase statistical multiplexing gain and provide services more economically.

The specific functional architecture and the network topology for each network slice are issues to be studied in the future, but in the case of a network slice accommodating low latency services, for example, GateWay (GW) functions would need to be relatively close to radio access, service processing would be close to terminals, and routing control capable of finding the shortest route between terminals would be necessary to reduce latency. On the other hand, a network slice providing low volume communications to large numbers of terminals, such as with smart meters, would need functionality able to transmit that sort of data efficiently, and such terminals are fixed, so the mobility function can be omitted. In this way, by providing network slices optimized according to the requirements of each service, requirements can be satisfied while still reducing operating costs.

The magazine is embedded below and available to download from here:





See Also:

Saturday, 2 April 2016

Some interesting April Fools' Day 2016 Technology Jokes

When I posted April Fools' jokes on the blog last couple of years (see 2014 & 2015) , they seem to be very popular so I thought its worth posting them this year too. If I missed any interesting ones, please add in comments.


The one I really liked best is the Samsung Internet of Trousers (IoT) featuring:

Wi-Fly: Gone are the days of unnoticed, unzipped trouser zippers upon exiting the restroom. Should your fly remain open for more than three minutes, the ZipARTIK module will send a series of notifications to your smartphone to save you from further embarrassment.

Get Up! Alert: Using pressure sensors, Samsung’s intelligent trousers detect prolonged periods of inactivity and send notifications to ‘get up off of that thing’ at least once an hour. Should you remain seated for more than three hours, devices embedded in each of the rear pockets send mild electrical shocks to provide extra motivation.

Keep-Your-Pants-On Mode: Sometimes it’s easy to get carried away with the moment. The Samsung Bio-Processor in your pants checks your bio-data including your heart rate and perspiration level. If these indicators get too high, Samsung’s trousers will send you subtle notifications as a reminder of the importance of keeping your cool.

Fridge Lock: If the tension around your waist gets too high, the embedded ARTIK chip module will send signals to your refrigerator to prevent you from overeating. The fridge door lock can then only be deactivated with consent from a designated person such as your mother or significant other.



Microsoft has an MS-DOS mobile in mind for this day. I wont be surprised if a real product like this does become popular with older generation. I personally wouldn't mind an MS-DOS app on my mobile. Here is a video:





It would have been strange if we didnt have a Robot for a joke. Domino's have introduced the Domimaker. Here's how it works:





T-Mobile USA is not shy pulling punches on its rivals with the Binge On data plan where it lets people view certain video channels without using up their data. Here is the video and more details on mashable.



Samsung ExoKinetic helps your phone self-charge

Google had quite a few pranks as always. I will ignore 'mic drop' which backfired and caused them headache.

Google Express has a new delivery mechanism, just for the April Fool's day. (There has to be one drone idea)





Google Cardboard Plastic is an interesting one too. Here is the video:


Finally, its the Google Fiber Teleportation.



Other interesting ones: