Pages

Thursday, December 17, 2020

Conditional Handover (Rel. 16) Explained

Although a couple of SON mobility robustness features have been introduced in LTE radio networks it is still a common problem in some network areas that a high number of handover failures leads to higher drop rates and large numbers of RRC Re-Establishments.

Often these problems occur due to quickly changing radio conditions in the handover preparation phase or after handover execution attempt. 

SON algorithms cannot cope with these dynamic changes of the environment, but improvement is possible if the UE itself is enabled to constantly monitor the radio quality during the handover procedure and finally select the best possible target cell from a list of candidate neighbors. This new feature defined in 3GPP Release 16 for both, NG RAN (5G SA NR) as well as E-UTRAN (LTE), is called "Conditional Handover". The figure below illustrates how it works.

(click on the picture to enlarge)

Step 1 is the RRC Measurement Report indicating that handover to a neighbor cell is required. However, this message contains a list of candidate neighbor cells.

In the figure it is assumed that each of these candidate cells is controlled by a different gNB. Hence, 3 XnAP Handover Preparation procedures are performed and each potential target gNB allocates radio resources for the UE and provides a handover command (NR RRC Reconfiguration message) that is sent back to the source gNB (step 2).

In step 3 the source gNB builds the conditional handover command, which is a NR RRC Reconfiguration message that contains a list of conditional reconfiguration options plus additional RRC measurement configurations that enable the UE to find out which of the possible target cells is the best fit. 

In step 4 the UE makes its handover decision and moves to the cell controlled by target gNB 1.

Here it sends in step 5 the NR RRC Reconfiguration Complete message. 

The target gNB 1 detects the handover completion based on the reception of the NR RRC Reconfiguration Complete message, performs NGAP Path Switch procedure (not shown in figure) and triggers the release of the UE context in source gNB on behalf of sending the XnAP UE Context Release message (step 6).

With this information the source gNB also detects the successful handover completion and orders in step 7 the release of the radio resources provided by target gNB 2 and 3 to which it sends the new XnAP Conditional Handover Cancel message.

As mentioned before the conditional handover is also possible for LTE radio connections. In this case X2AP is used instead of XnAP and LTE RRC instead of NR RRC.

The conditional handover can be performed for all kind of intra-eNB/gNB handover and X2/Xn handover. However, S1/N2 (NG-C) conditional handover is not allowed.


No comments:

Post a Comment