Showing posts with label Ericsson. Show all posts
Showing posts with label Ericsson. Show all posts

Saturday 28 November 2015

5G, NFV and Network Slicing


5G networks have multifaceted requirements where the network needs to be optimised for data rate, delay and connection numbers. While some industry analysts suspect that these requirements cannot be met by a single network, vendors suggest that Network Slicing will allow all these requirements to be met by a single network.

Ericsson's whitepaper provides a good definition of what network slicing means:

A logical instantiation of a network is often called a network slice. Network slices are possible to create with both legacy platforms and network functions, but virtualization technologies substantially lower barriers to using the technology, for example through increased flexibility and decreased costs.
...
Another aspect of management and network slicing is setting up separate management domains for different network slices. This may allow for completely separate management of different parts of the network that are used for different purposes. Examples of use cases include mobile virtual network operators (MVNOs) and enterprise solutions. This kind of network slice would, in current Evolved Packet Core (EPC) networks, only cover the PDN gateway (PGW) and the policy control resource function (PCRF). However, for machine type communication (MTC) and machine-tomachine (M2M) solutions, it is likely that it would also cover the Mobile Management Entities (MMEs) and Serving Gateways (SGWs).


NGMN came out with the 5G whitepaper which touched on this subject too: 

Figure above illustrates an example of multiple 5G slices concurrently operated on the same infrastructure. For example, a 5G slice for typical smartphone use can be realized by setting fully-fledged functions distributed across the network. Security, reliability and latency will be critical for a 5G slice supporting automotive use case. For such a slice, all the necessary (and potentially dedicated) functions can be instantiated at the cloud edge node, including the necessary vertical application due to latency constraints. To allow on-boarding of such a vertical application on a cloud node, sufficient open interfaces should be defined. For a 5G slice supporting massive machine type devices (e.g., sensors), some basic C-plane functions can be configured, omitting e.g., any mobility functions, with contentionbased resources for the access. There could be other dedicated slices operating in parallel, as well as a generic slice providing basic best-effort connectivity, to cope with unknown use cases and traffic. Irrespective of the slices to be supported by the network, the 5G network should contain functionality that ensures controlled and secure operation of the network end-to-end and at any circumstance.


Netmanias has a detailed article on this topic which is quite interesting too, its available here.

Recently, South Korean operator SK Telecom and Ericsson concluded a successful trial of this technology, see here. Ericsson is also working with NTT Docomo on 5G including network slicing, see here.

Sunday 4 October 2015

Updates from the 3GPP RAN 5G Workshop - Part 2

I have finally got round to having a look at some more presentations on 5G from the recently concluded 3GPP RAN 5G Workshop. Part 1 of the series is here.
Panasonic introduced this concept of Sub-RAT's and Cradle-RAT's. I think it should be obvious from the picture above what they mean but you can refer to their presentation here for more details.


Ericsson has provided a very detailed presentation (but I assume a lot of slides are backup slides, only for reference). They have introduced what they call as "NX" (No compatibility constraints). This is in line to what other vendors have referred to as well that above 6GHz, for efficiency, new frame structures and waveforms would serve best. Their slides are here.



Nokia's proposal is that in the phase 1 of 5G, the 5G Access point (or 5G NodeB) would connect to the 4G Evolved Packet Core (EPC). In phase 2, both the LTE and the 5G (e)NodeB's would connect to the 5G core. Their presentation is available here.

Before we move on to the next one, I should mention that I am aware of some research that is underway, mostly by universities where they are exploring an architecture without a centralised core. The core network functionality would be distributed and some of the important data would be cached on the edge. There will be challenges to solve regarding handovers and roaming; also privacy and security issues in the latter case.
I quite like the presentation by GM research about 5G in connected cars. They make a very valid point that "Smartphones and Vehicles are similar but not the same. The presentation is embedded below.



Qualcomm presented a very technical presentation as always, highlighting that they are thinking about various future scenarios. The picture above, about phasing is in a way similar to the Ericsson picture. It also highlights what we saw in part 1, that mmW will arrive after WRC-19, in R16. Full presentation here.


The final presentation we are looking is by Mitsubishi. Their focus is on Massive MIMO which may become a necessity at higher frequencies. As the frequency goes higher, the coverage goes down. To increase the coverage area, beamforming can be used. The more the antennas, the more focused the beam could be. They have also proposed the use of SC-FDMA in DL. Their presentation is here and also embedded below.



Monday 24 August 2015

Some interesting presentations from ETSI Security workshop


ETSI held their security week from 22-26 June 2015 at their headquarters. There are lots of interesting presentations (see agenda [PDF]); I am embedding some here.


This is a good presentation providing a summary of the reasons for IoT security issues and some of the vulnerabilities that have been seen as a result of that.




The next one is The Threat landscape of connected vehicles and ITS (Intelligent Transportation Systems) integration in general



This presentation provides a good summary of the threats in the connected cars/vehicles which is only going to become more common. Some of these issues will have to be solved now before we move on to the autonomous vehicles in future. Security issues there will be catastrophic and many lives can be lost.

The final presentation is from 3GPP SA3 that provides a quick summary of security related work in 3GPP.



Tuesday 21 July 2015

TDD-FDD Joint Carrier Aggregation deployed


As per Analysis Mason, of the 413 commercial LTE networks that have been launched worldwide by the end of 2Q 2015, FD-LTE accounts for 348 (or 84%) of them, while TD-LTE accounts for only 55 (or 13%). Having said that, TD-LTE will be growing in market share, thanks to the unpaired spectrum that many operators secured during the auctions. This, combined with LTE-A Small Cells (as recently demoed by Nokia Networks) can help offload traffic from hotspots.

Light Reading had an interesting summary of TD-LTE rollouts and status that is further summarised below:
  • China Mobile has managed to sign up more than 200 million subscribers in just 19 months, making it the fastest-growing operator in the world today. It has now deployed 900,000 basestations in more than 300 cities. From next year, it is also planning to upgrade to TDD+ which combines carrier aggregation and MIMO to deliver download speeds of up to 5 Gbit/s and a fivefold improvement in spectrum efficiency. TDD+ will be commercially available next year and while it is not an industry standard executives say several elements have been accepted by 3GPP. 
  • SoftBank Japan has revealed plans to trial LTE-TDD Massive MIMO, a likely 5G technology as well as an important 4G enhancement, from the end of the year. Even though it was one of the world's first operators to go live with LTE-TDD, it has until now focused mainly on its LTE-FDD network. It has rolled out 70,000 FDD basestations, compared with 50,000 TDD units. But TDD is playing a sharply increasing role. The operator expects to add another 10,000 TDD basestations this year to deliver additional capacity to Japan's data-hungry consumers. By 2019 at least half of SoftBank's traffic to run over the TDD network.

According to the Analysis Mason article, Operators consider TD-LTE to be an attractive BWA (broadband wireless access) replacement for WiMAX because:

  • most WiMAX deployments use unpaired, TD spectrum in the 2.5GHz and3.5GHz bands, and these bands have since been designated by the 3GPP as being suitable for TD-LTE
  • TD-LTE is 'future-proof' – it has a reasonably long evolution roadmap and should remain a relevant and supported technology throughout the next decade
  • TD-LTE enables operators to reserve paired FD spectrum for mobile services, which mitigates against congestion in the spectrum from fixed–mobile substitution usage profiles.

For people who may be interested in looking further into migrating from WiMAX to TD-LTE, may want to read this case study here.


I have looked at the joint FDD-TDD CA earlier here. The following is from the 4G Americas whitepaper on Carrier Aggregation embedded here.

Previously, CA has been possible only between FDD and FDD spectrum or between TDD and TDD spectrum. 3GPP has finalized the work on TDD-FDD CA, which offers the possibility to aggregate FDD and TDD carriers jointly. The main target with introducing the support for TDD-FDD CA is to allow the network to boost the user throughput by aggregating both TDD and FDD toward the same UE. This will allow the network to boost the UE throughput independently from where the UE is in the cell (at least for DL CA).

TDD and FDD CA would also allow dividing the load more quickly between the TDD and FDD frequencies. In short, TDD-FDD CA extends CA to be applicable also in cases where an operator has spectrum allocation in both TDD and FDD bands. The typical benefits of CA – more flexible and efficient utilization of spectrum resources – are also made available for a combination of TDD and FDD spectrum resources. The Rel-12 TDD-FDD CA design supports either a TDD or FDD cell as the primary cell.

There are several different target scenarios in 3GPP for TDD-FDD CA, but there are two main scenarios that 3GPP aims to support. The first scenario assumes that the TDD-FDD CA is done from the same physical site that is typically a macro eNB. In the second scenario, the macro eNB provides either a TDD and FDD frequency, and the other frequency is provided from a Remote Radio Head (RRH) deployed at another physical location. The typical use case for the second scenario is that the macro eNB provides the FDD frequency and the TDD frequency from the RRH.

Nokia Networks were the first in the world with TDD-FDD CA demo, back in Feb 2014. In fact they also have a nice video here. Surprisingly there wasnt much news since then. Recently Ericsson announced the first commercial implementation of FDD/TDD carrier aggregation (CA) on Vodafone’s network in Portugal. Vodafone’s current trial in its Portuguese network uses 15 MHz of band 3 (FDD 1800) and 20 MHz of band 38 (TDD 2600). Qualcomm’s Snapdragon 810 SoC was used for measurement and testing.

3 Hong Kong is another operator that has revealed its plans to launch FDD-TDD LTE-Advanced in early 2016 after demonstrating the technology on its live network.

The operator used equipment supplied by Huawei to aggregate an FDD carrier in either of the 1800 MHz or 2.6 GHz bands with a TDD carrier in the 2.3 GHz band. 3 Hong Kong also used terminals equipped with Qualcomm's Snapdragon X12 LTE processor.

3 Hong Kong already offers FDD LTE-A using its 1800-MHz and 2.6-GHz spectrum, and is in the midst of deploying TD-LTE with a view to launching later this year.

The company said it expects devices that can support hybrid FDD-TDD LTE-A to be available early next year "and 3 Hong Kong is expected to launch the respective network around that time."

3 Hong Kong also revealed it plans to commercially launch tri-carrier LTE-A in the second half of 2016, and is working to aggregate no fewer than five carriers by refarming its 900-MHz and 2.1-GHz spectrum.

TDD-FDD CA is another tool in the network operators toolbox to help plan the network and make it better. Lets hope more operators take the opportunity to deploy one.

Sunday 7 June 2015

Nuggets from Ericsson Mobility Report


Ericsson mobility report 2015 was released last week. Its interesting to see quite a few of these stats on devices, traffic, usage, etc. is getting released around this time. All of these reports are full of useful information and in the old days when I used to work as an analyst, I would spend hours trying to dig into them to find gold. Anyway, some interesting things as follows and report at the end.

The above chart, as expected, data will keep growing but voice will get flatter and maybe go down, if people start moving to VoIP

Application volume shares, based on the data plan. This is interesting. If you are a heavy user, you may be watching a lot of videos and if you are a light user then you are watching just a few of them.

How about device sizes, does our behaviour change based on the screen size?

What about the 50 Billion connected devices, was it too much? Is the real figure more like 28 billion?

Anyway, the report is embedded below.



Sunday 19 April 2015

3GPP Release-13 work started in earnest


The 3GPP news from some months back listed the main RAN features that have been approved for Release-13 and the work has already started on them. The following are the main features (links contain .zip files):

  • LTE in unlicensed spectrum (aka Licensed-Assisted Access) - RP-150055
  • Carrier Aggregation enhancements - RP-142286
  • LTE enhancements for Machine-Type Communications (MTC) - RP-141865
  • Enhancements for D2D - RP-142311
  • Study Item Elevation Beamforming / Full-Dimension MIMO - RP-141831
  • Study Item Enhanced multi-user transmission techniques - RP-142315
  • Study Item Indoor positioning - RP-141102
  • Study Item Single-cell Point-to-Multipoint (SC-PTM) - RP-142205


Another 3GPP presentation from late last year showed the system features that were being planned for Rel-13 as shown above.

I have also posted a few items earlier relating to Release13, as follows:


Ericsson has this week published a whitepaper on release 13, with a vision for 'Networked Society':
The vision of the Networked Society, where everything that benefits from being connected will be connected, places new requirements on connectivity. LTE is a key component in meeting these demands, and LTE release 13 is the next step in the LTE evolution.
Their whitepaper embedded below:



It should be pointed out that 5G work does not start until Release-15 as can be seen from my tweet

xoxoxo Added Later (26/04/2015) xoxoxo
I came across this presentation from Keysight (Agilent) where Moray Rumney has provided information in much more detail.


Sunday 15 March 2015

Air-Ground-Air communications in Mission Critical scenarios

In-flight communications have always fascinated me. While earlier the only possibility was to use Satellites, a hot topic for in the last few years has been Air-Ground-Air communications.

Some of you may remember that couple of years back Ericsson showed an example of using LTE in extreme conditions. The video below shows that LTE can work in these scenarios.



Now there are various acronyms being used for these type of communications but the one most commonly used is Direct-Air-to-Ground Communications (DA2GC), Air-to-Ground (A2G) and Ground-to-Air (G2A).


While for short distance communications, LTE or any cellular technology (see my post on Flying Small Cells) may be a good option, a complete solution including communication over sea would require satellite connectivity as well. As I have mentioned in a blog post before, 75Mbps connectivity would soon be possible with satellites.

For those interested in working of the Air-Ground-Air communications, would find the presentation below useful. A much detailed ECC CEPT report from last year is available here.



The next challenge is to explore whether LTE can be used for Mission Critical Air Ground Air communications. 3GPP TSG RAN recently conducted study on the feasibility and the conclusions are as follows:

There is a common understanding from companies interested in the topic that:

  1. Air-to-Ground communications can be provided using the LTE standards (rel-8 and beyond depending on the targeted scenarios).
  2. 3GPP UE RF requirements might need to be adapted
  3. It may be possible to enhance the performance of the communications with some standards changes, but these are in most cases expected to be non-fundamental optimizations
  4. Engineering and implementation adaptations are required depending on the deployment scenario. In particular, the ECC report [1] comments that from implementation point of view synchronization algorithms are to be modified compared to terrestrial mobile radio usage in order to cope with high Doppler frequency shift of the targeted scenario. In addition, some network management adaptations might be needed. From engineering perspective the Ground base station antenna adjustment has to be matched to cover indicated aircraft heights above ground up to 12 km by antenna up-tilt. It is also expected that the inter-site distances would be dominated by the altitudes to be supported [5].
  5. A2G technology using legacy LTE has been studied and successfully trialed covering different kinds of services: Surfing, downloading, e-mail transmission, use of Skype video, audio applications and Video conferencing. Related results can be found in several documents from ECC and from companies [1], [2], [3]. The trials in [1] and [2] assumed in general a dedicated spectrum, and the fact that the communications in the aircraft cabin are using WIFI or GSMOBA standards, while LTE is used for the Broadband Direct-Air-to-Ground connection between the Aircraft station and the Ground base station.
  6. It is understood that it is possible to operate A2G communications over spectrum that is shared with ground communications. However, due to interference it is expected that the ground communications would suffer from capacity losses depending on the deployment scenario. Therefore, it is recommended to operate A2G communication over a dedicated spectrum.
  7. It can be noted that ETSI studies concluded that Spectrum above 6 GHz is not appropriate for such applications [4].
  8. LTE already provides solutions to allow seamless mobility in between cells. Cells can be intended for terrestrial UEs and cells intended for A2G UEs which might operate in different frequencies.
  9. Cell range in LTE is limited by the maximum timing advance (around 100km). Larger ranges could be made possible by means of implementation adaptations. 

Sunday 8 March 2015

LTE Category-0 low power M2M devices


While we have talked about different LTE categories, especially higher speeds, we have not yet discussed Category-0 or Cat-0 for M2M.

A recent news report stated the following:

CAT-1 and CAT-0 are lower speed and power versions of the LTE standard which dramatically extend the addressable market for carriers and chip makers alike. They introduce new IoT targeted features, extend battery operation and lower the cost of adding LTE connectivity.
“While chipsets supporting these lower categories are essential for numerous applications, including wearable devices, smart home and smart metering, there has been an industry development gap that we had anticipated two years ago,” said Eran Eshed, co-founder and vice president of marketing and business development at Altair. “We’ve worked hard to address this gap by being first to market with true CAT-1 and 0 chipsets featuring a power/size/cost combination that is a massive game-changer.”
Ericsson has an interesting presentation that talks about LTE evolution for cellular IoT. While Rel-12 Cat-0 would use the normal allocated bandwidth (upto 20MHz), Rel-13 plans further enhancements to save even more power by reducing the bandwidth to 1.4Mhz. Another possible saving of power comes from the use of Half Duplex (but its optional). There is a very interesting presentation from Mstar semiconductors on half duplex that I have blogged about here. Anyway, the presentation from Ericsson is here:



When we talk about 50 billion M2M devices, a question that I regularly ask is how many of them will be using cellular and how many will use other technologies. Its good to see that my skepticism is shared by others as well, see the tweet below.

Click on the pic.twitter.com/Z7s6wqxkBM to see the actual media.

Nokia has also got an interesting whitepaper on this topic which talks about optimizing LTE and the architectural evolution that will lead cellular LTE to become a compelling technology so that it can be widely adopted. That paper is embedded as well below.



Tuesday 3 February 2015

5G: A 2020 Vision


I had the pleasure of speaking at the CW (Cambridge Wireless) event ‘5G: A Practical Approach’. It was a very interesting event with great speakers. Over the next few weeks, I will hopefully add the presentations from some of the other speakers too.

In fact before the presentation (below), I had a few discussions over the twitter to validate if people agree with my assumptions. For those who use twitter, maybe you may want to have a look at some of these below:







Anyway, here is the presentation.

 

Sunday 20 July 2014

LA-LTE and LAA


Recently came across a presentation by Ericsson where they used the term LA-LTE. I asked a few colleagues if they knew or could guess what it means and they all drew blank. I have been blogging about Unlicensed LTE (a.k.a. LTE-U) on the Small Cells blog here. This is a re-branding of LTE-U

LA-LTE stands for 'Licensed Access' LTE. In fact the term that has now been adopted in a recent 3GPP workshop (details below) is Licensed Assisted Access (LAA).

Couple of months back I blogged in detail about LTE-U here. Since then, 3GPP held a workshop where some of the things I mentioned got officially discussed. In case you want to know more, details here. I have to mention that the operator community is quite split on whether this is a better approach or aggregating Wi-Fi with cellular a better approach.

The Wi-Fi community on the other hand is unhappy with this approach. If cellular operators start using their spectrum than it means less spectrum for them to use. I wrote a post on the usage of Dynamic Spectrum Access (DSA) Techniques that would be used in such cases to make sure that Wi-Fi and cellular usage does not happen at the same time, leading to interference.

Here is a presentation from the LTE-U workshop on Use cases and scenarios, not very detailed though.



Finally, the summary presentation of the workshop. As it says on the final slide "The current SI proposal focuses on carrier aggregation operations and uses the acronym LAA (Licensed Assisted Access)", you would be seeing more of LAA.


Friday 13 September 2013

LTE for Utilities and Smart Grids

This has been an area of interest for the last couple of years. Discussions have been centred around, "Is LTE fit for IoT?", "Which technology for IoT", "Is it economical to use LTE for M2M?", "Would small cells be useful for M2M?", etc.

Ericsson has recently published a whitepaper titled "LTE for utilities - supporting smart grids". One of the table that caught my eye is as follows:


LTE would be ideally suited for some of the "Performance class" requirements where the transfer time requirements is less than 100ms. Again, it can always be debated if in many cases WiFi will meet the requirements so should WiFi be used instead of LTE, etc. I will let you form your own conclusions and if you are very passionate and have an opinion, feel free to leave comment.

The whitepaper is embedded below:



Related posts:


Sunday 7 July 2013

500 Billion devices by 2030, etc...

Few weeks back in the LTE World Summit 2013, I heard someone from Ericsson mention that internally they think that by 2030 there will be 500 Billion Connected devices on the planet. The population projections for 2030 is somewhere around 8.5 Billion people worldwide. As a result the figure does not come much as a surprise to me.

John Cunliffe from Ericsson is widely credited for making the statement 50 Billion connected devices by 2020. Recently he spoke in the Cambridge Wireless and defended his forecast on the connected devices. He also provided us with the traffic exploration tool to see how the devices market would look up till 2018. Here is one of the pictures using the tool:



In terms of Cellular connectivity, we are looking at 9 Billion devices by 2018. The interesting thing to notice is that in 2017, there are still some 4 Billion feature phones. While in the developed world our focus is completely on Smartphones, its interesting to see new and existing SMS/USSD based services are still popular in the developing world. Some months back I heard about Facebook developing SMS/USSD based experience for Feature phones, I am sure that would attract a lot of users from the developing world.

One thing missing from the above is non-cellular connections which will make bulk of connectivity. Wi-Fi for example is a major connectivity medium for tablets. In fact 90% of the tablets have only WiFi connectivity. Bluetooth is another popular method of connectivity. While its mostly used in conjunction with phones, it is going to be a popular way of connecting devices in the Personal Area Network's (PAN's). So its no surprise that we will see 50 Billion connected devices but maybe not by 2020. My guess would be around 2022-23.

Monday 1 July 2013

Is it too early to talk '5G'


While LTE/LTE-A (or 4G) is being rolled out, there is already a talk about 5G. Last week in the LTE World Summit in Amsterdam, there was a whole track on what should 5G be without much technical details. Couple of months back Samsung had announced that they have reached 5G breakthrough. In my talk back in May, I had suggested that 5G would be an evolution on the Radio Access but the core will evolve just little. Anyway, its too early to speculate what the access technology for 5G would be.

Ericsson has published a '5G' whitepaper where they talk about the vision and why and what of 5G rather than going into any technical details. It is embedded below:


Wednesday 1 May 2013

Video: Quick summary of 3GPP Release 12 features

Ericsson recently posted a very good summary video of Release-12 features. My comments and more details are posted below the video:


You may have noticed that LTE Release 12 is also referred to as LTE-B as I posted in my blog post here. Unfortunately, this terminology is not supported by 3GPP which refers to all advancements of LTE as LTE-A. See comment on the post I just referred.

The Elevation Beamforming is also referred to as 3D-Beamforming or 3D-MIMO as I show here.

I havent written any posts on Dual connectivity and not exactly sure how it works but there is an interesting presentation on the Small Cells Enhancements in Release-12 on my blog here.

You can learn more about the WiFi and EPC Integration here.

Click on the following Direct Communications, Device to device (D2D) and Public Safety for more information on the topics.

There are many good presentations on Machine Type Communications (MTC) or M2M that are available on this label here.

Finally, I havent seen much about the lean carrier but now that I know, will add some information on this topic soon.

Related links:

Wednesday 23 January 2013

LTE-B, LTE-C, ... , LTE-X

Please make sure to read the comment from Kevin Flynn of 3GPP at the end


When I saw this picture above, I started wondering what LTE-B, etc. and started digging a bit deep. Came across this Ericsson presentation (embedded below) that shows the breakdown.

To just be sure that this is not Ericsson specific term, I also found a presentation by NTT Docomo (embedded below)
So I guess using LTE-B, LTE-C, etc. is better than saying 4.1G, 4.2G, etc. as we did in case of 3G/HSPA.


The presentations from Ericsson and NTT Docomo embedded below, available to download from Slideshare.






Saturday 25 August 2012

Friday 15 June 2012

Three Phases of WiFi Integration


From a presentation by Ericsson in the LTE World Summit 2012. Presentation available here.

Operator WiFi is becoming an important proposition and there are advantages and disadvantages of both of them. The above picture summarises the phases in which it may take place.

See also: