Showing posts with label NTT DoCoMo. Show all posts
Showing posts with label NTT DoCoMo. Show all posts

Wednesday 23 February 2011

Circuit Switched Fallback (CSFB): A Quick Primer

I have explained CSFB with basic signalling here and there is a very interesting Ericsson whitepaper explaining all Voice issues in LTE here.

The following CSFB details have been taken from NTT Docomo Technical Journal:

The basic concept of CS Fallback is shown in Figure 1. Given a mobile terminal camping on LTE, a mobile terminating voice call arrives at the terminal from the existing CS domain via EPC. On receiving a paging message, the mobile terminal recognises that the network is calling the mobile terminal for CS-based voice and therefore switches to 3G. The response confirming the acceptance of a call request is then sent from the mobile terminal to the 3G-CS system, and from that point on, all call control for the voice service is performed on the 3G side.

The CS Fallback consists of a function to notify a mobile terminal of a call request from the CS domain and combined mobility management functions between CS domain and EPC for that
purpose. The network architecture of CS Fallback is shown in Figure 2.


One of the remarkable characteristics of the EPC supporting CS Fallback is that it connects the Mobile Switching Center (MSC) and Visited Location Register (VLR) in the 3G CS domain
with the Mobility Management Entity (MME), which provides EPC mobility management functionality. The interface connecting MSC/VLR and MME is called an SGs reference point. This
interface is based on the concept of the Gs reference point that exchanges signalling with MSC, which connects to the Serving General Packet Radio Service Support Node (SGSN), a 3G
packet switch. The SGs provides nearly all the functions provided by the existing Gs.

The CS Fallback function uses this SGs reference point to transfer the mobile terminating call requests from the CS domain to LTE. It also provides combined mobility management
between the 3G CS domain and the EPC to enable this transfer to take place.


Combined Mobility Management between CS Domain and EPC Network:

A mobile communications network must always know where a mobile terminal is located to deliver mobile terminating service requests to the mobile user on the mobile terminating side. The procedure for determining terminal location is called “mobility management". As a basic function of mobile communications, 3G and LTE each provide a mobility management function.

To complete a call using the CS Fallback function, the CS domain needs to know which LTE location registration area the mobile terminal is currently camping on. To this end, the MME must correlate mobility management control of the CS domain with that of EPC and inform MSC/VLR that the mobile terminal is present in an LTE location registration area.

The 3G core network already incorporates a function for linking mobility management of the CS domain with that of the Packet Switched (PS) domain providing packet-switching functions. As described above, the CS domain and PS domain functions are provided via separate switches. Thus, if combined mobility management can be used, the mobility management procedure for the terminal only needs to be performed once, which has the effect of reducing signal traffic in the network. This concept of combined mobility management is appropriated by the CS Fallback function. Specifically, MSC/VLR uses the same logic for receiving a location registration request from SGSN as that for receiving a location registration request from MME. This achieves a more efficient combined mobility management between the CS domain and EPC while reducing the development impact on MSC.

As described above, a mobile terminal using LTE cannot use 3G at the same time. This implies that the MME, which contains the LTE location registration area (Tracking Area (TA)), is unable to identify which MSC/VLR it should send the mobility management messages to from the TA alone. To solve this problem, the mapping of TAs and 3G Location Areas (LA) within MME has been adopted. The concept behind TA/LA mapping is shown in Figure 3. Here, MME stores a database that manages the correspondence between physically overlapping TAs and LAs. This information is used to determine which MSC/VLR to target for location registration.

The combined TA/LA update procedure for CS fallback is shown in detail in Figure 4. First, the mobile terminal sends to the MME a Tracking Area Update (TAU) request message indicating a combined TAU and the current TA in which the mobile terminal is currently present (Fig. 4 (1)). The MME then performs a location update procedure towards Home Subscriber Server (HSS), which is a database used for managing subscriber profiles (Fig. 4 (2)). Next, the MME uses the TA/LA correspondence database to identify the corresponding LA and the MSC/VLR that is managing that area, and uses the SGs reference point to send a Location Area Update (LAU) request message to the MSC/VLR together with the LA so identified (Fig. 4 (3)). The MSC/VLR that receives the LAU request message stores the correspondence between the ID of the MME originating the request and an ID such as the International Mobile Subscriber Identity (IMSI) that identifies the subscriber (Fig. 4 (4)). This enables the MSC/VLR to know which MME the mobile terminal is currently connected to and that the mobile terminal is camping on LTE. Following this, the MSC/VLR performs a location registration procedure with the HSS (Fig. 4 (5)). Finally, the MSC/VLR informs the MME of temporary user identity (Temporary Mobile Subscriber Identity (TMSI)), which is used at the time of a mobile terminating call in the CS domain, and indicates that location registration has been completed. The MME then informs the mobile terminal of the TMSI and of the LA that the mobile terminal has been registered with thereby completing combined location registration (Fig. 4 (6) (7)).

CS Fallback Call Control Procedures - Mobile Originating Call:


To originate a voice call using the CS Fallback function, a mobile terminal in the LTE location registration area must first switch (fall back) to 3G. The mobile-originating voice call procedure is shown in Figure 5. To originate a call, the mobile terminal begins by sending a CS fallback service request message to the MME (Fig. 5 (1)). Since a packet-communications transmission path (bearer) must always exist in EPC for the purpose of providing an always-on connection, the bearer also has to be handed over to 3G. To accomplish this, the MME issues a handover command to the mobile terminal in LTE and initiates a handover procedure (Fig. 5 (2)). The mobile terminal changes its radio from LTE to 3G during this procedure (Fig. 5 (3)). On completion of handover, the mobile terminal issues an originating request for voice service to the MSC/VLR. A voice-call connection is then established using an existing calloriginating procedure on 3G and the CS Fallback procedure is completed (Fig. 5(4)).

CS Fallback Call Control Procedures - Mobile Terminating Call:

The mobile terminating voice call procedure using CS Fallback is shown in Figure 6. When the MSC/VLR receives a message indicating the occurrence of a mobile terminating call (Fig. 6 (1)), the MSC/VLR identifies the corresponding MME from the call information received (Fig. 6 (2)). Then, the MSC/VLR sends a paging message (Fig. 6 (3)) towards the MME. Next, the MME sends a paging message to the mobile terminal in LTE (Fig. 6 (4)). This paging message includes an indication that the call is a CS service, and on identifying the call as such, the mobile terminal sends a CS fallback service request signal to the MME (Fig. 6 (5)). Following this, a handover procedure to 3G as described above takes place (Fig. 6 (6), (7)). The mobile terminal that is now switched to 3G sends a paging response message to the MSC/VLR at which it is registered (Fig. 6 (8)). Finally, an existing mobile terminating call procedure on 3G is executed and the CS Fallback procedure is completed (Fig. 6 (9)).

Monday 21 February 2011

MBMS in LTE Release-9

From NTT Docomo Technical Journal:

MBMS is a bearer service for broadcast/multicast transmission of data, to transmit the same information to all interested UEs in an area over a common bearer. Note that MBMS has been supported in UTRA since Release 6.


LTE Release 9 supports basic MBMS functionality not requiring complex control. One of the main features is support for MBMS Single Frequency Network (MBSFN) transmission. With MBSFN transmission eNBs in the MBSFN area transmit the same signal simultaneously using the same time-frequency resource. The UE receives the combined signals as a single, strong signal, improving coverage and signal quality without much additional complexity in the UE. By applying MBSFN transmission, a 3GPP study concluded that to provide 95% coverage with a packet error rate of 1%, a spectral efficiency of 3 bit/s/Hz or greater can be achieved.

The logical architecture for MBMS in LTE is shown in Figure 4. The MBMS gateway (GW) distributes data received from the Broadcast Multicast Service Center (BMSC) to the relevant eNBs by IP multicast. The Multi-Cell Multicast Coordination Entity (MCE) specifies the radio resources to be used by eNBs comprising the MBSFN and ensures that the content is synchronized. To support MBMS, logical channels, namely Multicast Traffic Channel (MTCH) and Multicast Control Channel (MCCH), and a transport channel, namely Multicast Channel (MCH), are defined (Figure 5).

Thursday 17 February 2011

Friday 3 December 2010

Presentation: IMS for 3G Voice Services and Migration Strategies

Very interesting presentation from NTT DoCoMo in the IMS workshop I blogged about yesterday. It shows their strategy to move from legacy core network to an All IP Network (AIPN).


Saturday 31 July 2010

NTT DoCoMo announces 'Crossy'

NTT DoCoMo unveiled the brand name and logo of its forthcoming LTE next-generation mobile service for the Japanese market, which is scheduled to launch in December. The brand name is written Xi™ and read “crossy.” The logo is shown below.


The “X” denotes both “connection” and “infinite possibility,” and the “i” both “individual user” and “innovation.” The logo, which resembles the infinity symbol, aligns the letters in a single stream to embody the bonds that organically link people, goods and information, and lead to new innovation.

DOCOMO’s Xi LTE service will offer downlinks of up to 75 Mbps, approximately 10 times faster than the company’s current FOMA™ 3G service. Initially, Xi will be available in the Tokyo, Nagoya and Osaka areas, but coverage eventually will be expanded to other major cities and then additional areas of the nation. Xi users will be seamlessly handed over to the FOMA network whenever they leave a Xi service area.

Xi handsets, billing plans and other details will be announced later.

Meanwhile the world got its fourth commercial LTE network this week, and its first outside the Nordic region - in the unlikely telecoms hotspot of Uzbekistan.

The Uzbek launch came from Russian giant MTS, and shows how some emerging global telecoms players plan to leapfrog rivals by deploying LTE or WiMAX in markets where 3G is under-developed, and then harness that experience for their mainstream territories. MTS follows TeliaSonera's three LTE commercial switch-ons (in Sweden and Norway plus a soft launch in Finland).

MTS calls its new network "the first fully operational 4G network in the CIS and Central Asia" and is it initially available in the central zone of capital Tashkent, boasting theoretical peak speeds of up to 100Mbps using dongles. The network runs in the 2.5-2.7GHz band and the equipment comes from Huawei.

Monday 19 July 2010

NTT DoCoMo: Core Network Evolution and Voice Strategy

Presentation by Seizo ONOE, Senior Vice President and Managing Director of R&D Strategy Department NTT DOCOMO, INC. in LTE World Summit 2010 on the 18th May 2010

Thursday 24 June 2010

NTT DoCoMo for LTE Femtocells next year


Its been nearly couple of years since I blogged about starting LTE with femtocells initially and then moving onto Macro network. It had initial momentum but didnt take off for one reason or another. In the ongoing Femtocells World Summit, Yoshiyuki Yasuda, NTT DoCoMo's managing director said that they plan to roll out LTE Femtocells next year mainly to fill the coverage gaps in the LTE Network they will be rolling out later this year.

Those who read this blog regularly would have noticed my recent post about NTT DoCOMo's LTE initiatives here. I have also been promoting LTE femtocells idea as can be seen in my blogs here, here and here. My belief is that femtocells could be very valuable to iron out the problems present in devices, networks or the technology. Also they provide seamless coverage and offer better data security.

Light Reading has interesting analysis on this topic:

Which vendors can serve up the LTE femtos in time? NEC Corp., which is already one of DoCoMo's LTE vendors, has revealed plans for an LTE home base station that will be available for friendly user trials at the end of 2011, and a commercial product is expected in 2012.

Other vendors that are involved in DoCoMo's LTE rollout that could have a shot at meeting the carrier's next-gen femto demands are Fujitsu Ltd., Ericsson AB, and Nokia Siemens Networks, and Stoke Inc. , which supplies an LTE base station aggregation gateway to the Japanese operator.

DoCoMo's current femto vendor is Mitsubishi, which supplies little 3G home base stations to DoCoMo for its MyArea service that launched in November 2009.

DoCoMo's Yasuda said that when the carrier wants to deploy LTE femtos in the 2011-2012 timeframe, it will have deployed 1,500 LTE macrocell base stations during 2010 and 2011. By 2013, it plans to cover 30 percent of the population with LTE. By 2014, DoCoMo plans to cover 70 percent of the population with 15,000 LTE base stations.


Sunday 1 November 2009

30 years for the first commercial mobile network in Dec.

Tomi recently posted a blog on Birthdays and how the first commercial network will complete 30 years. It was first of December 1979, that the world's first commercial cellular automated (and 'modern') mobile telecoms network went live in Tokyo Japan, launched by NTT.ANd yes the mobile phone subscriber count will hit 4.6 billion by the end of the year. We passed a billion users in 2002, so it only took 23 years to hit a billion mobile phones on the planet.


While looking for the photo of the original phone, I came across one of the earliest phones used by Martin Cooper of Motorola. He is known to have made the first public call in USA over36 years back. Wikipedia has a section on the Motorola DynaTAC in the picture above.

Here is the comparison of DynaTAC with the earlier model of iPhone.

And last but by no means least, the mobile internet is 10 years old. Launched by NTT DoCoMo of Japan in 1999, its iconic iMode mobile internet was the first mobile-optimized internet service and spawned countless copies and today counting all the WAP users etc, has over a billion users. That in only ten years.. Domo Arigato, NTT DoCoMo, you have invented the fastest technology to spread to a billion users.

Thursday 29 October 2009

LTE definitely needed and coming next year...dont mention Voice and SMS please


The unremitting growth in data traffic will bring about a 3G network capacity crisis for some mobile network operators as early as 2010. This dire scenario, according to a new study from Unwired Insight, will only be avoided by the early deployment of LTE, and the acceptance that additional LTE spectrum will be required to satisfy this demand.

With 3G traffic volumes set to increase by a factor of 20 by 2015--driven by many technology factors and also dramatic reductions in mobile data pricing--Alastair Brydon, co-author of the new study, points to the example of mobile broadband pricing that has fallen as low as US$2 per gigabyte, "which is nearly half a million times smaller than the price per gigabyte of an SMS message."

Brydon believes that early LTE will be necessary for the following reasons:

  • As 2G users continue to migrate to 3G services, the available capacity per 3G user will decline rapidly in networks utilising HSPA, to less than 100MB per user per month in some cases. LTE will be essential to counter this decline.
  • While LTE promises peak data rates of over 100Mbps, this is only possible with wide allocations of spectrum, and particularly good radio conditions. Average data rates from practical LTE networks will be nowhere near the peak values.
  • Network operators will have an insatiable appetite for LTE spectrum, to stand any chance of keeping up with forecast traffic demand. For some operators, 10MHz of spectrum will be able to support forecast traffic levels only until 2011. A further 10MHz will be needed by 2012 and another 10MHz in 2013.
Unwired Insight claims LTE's ability to relieve the capacity constraints of HSPA networks will be limited initially, until operators can acquire additional spectrum and seed a sufficient number of LTE devices in the market place. "But, we don't expect to see LTE handsets until 2011," the company warns.

Fourteen operators have committed to LTE rollouts next year, up from 10 in March, the research firm said. It predicts the LTE network gear market will be worth more than $5 billion by 2013, dominated by E-UTRAN macrocell (eNodeB) deployments.

It also expects the LTE customer base to top 72 million by 2013, mostly users with laptops, netbooks or dongles, with the first smartphones expected to hit the market after 2011.

In another forecast, Informa Telecoms and Media said Japan would account for more than half of Asia's 14.4 million LTE subscribers by 2015.

NTT DoCoMo, Japanese rival eMobile and China Mobile will be the first to launch LTE in the region, Informa said, with Hong Kong's CSL likely to follow soon after.

But rollouts in the region may be hindered by delays, as Japan and Hong Kong are so far the only Asian countries to have awarded spectrum for LTE.

Regulators in other nations are scrambling to free up enough spectrum, Informa added. Even in Japan, there is not enough 2100MHz spectrum available to support DoCoMo's full LTE plans, so it will use its newly allocated 1.5GHz for LTE from 2010.

According to news sources in South Korea, LG Telecom (LGT) quietly revealed their intention to migrate to LTE for 4G service in South Korea. LG-Nortel and Samsung will provide the multi-mode base stations which are part of the company's green network upgrade. SKT and KTF (now part of KT), the other two mobile operators in the country, have already announced their LTE migration path for 4G previously. Unlike SKT and KTF who will migrate from HSPA to LTE, LGT will go from EV-DO to LTE, similar to the case of Verizon Wireless.

It was probably a matter of time for LGT to announce the LTE migration plan since it was only running EV-DO network, and this officially puts LGT on the LTE camp. Now, my speculation is that other major EV-DO operators (noticeably, Sprint) who haven't announced such plans will follow the same path down the road since WiMAX does not seem to be a viable migration path for the FDD part of the network.

Wednesday 9 September 2009

HSPA+ is everywhere...



EMobile Ltd. , Japan's smallest mobile operator, has deployed HSPA+, also known as HSPA Evolved, in the country's major cities, including Tokyo, Osaka, Yokohama, and Nagoya.

This deployment is based on equipment from Ericsson AB, which supplied the core network and core systems integration services as well as the majority of the radio access network. It builds out the geographical coverage for HSPA+ that EMobile has already established using Huawei Technologies Co. Ltd. equipment in a number of Japan's other cities, including Hokkaido, Sendai, Niigata, Hiroshima, Fukuoka, and Nagasaki.

Japan is a market with a reputation for being first with new technology, but HSPA+ has been passed over, most notably by market leader NTT DoCoMo Inc., which has focused on moving to Long-Term Evolution (LTE) as fast as possible.

The No. 2 player, KDDI Corp. , is similarly pushing toward LTE, although from a CDMA base that takes HSPA out of the equation, while Softbank Mobile Corp. is known to have run HSPA+ lab trials and has also said it will move to LTE when it gets the necessary spectrum.

EMobile is by far the smallest of Japan's operators, with just 1.67 million subscribers at the end of the second quarter, compared to DoCoMo's 54.86 million, KDDI's 31 million, and Softbank's 20.96 million customers, according to Wireless Intelligence .

You can check out the HSPA+ features in Rel-7 and Rel-8 here.

Zapp, mobile operator of Romania, has launched the first stage of its HSPA+, the upgraded mobile broadband service in the capital city of Bucharest. With this service, the subscribers can enjoy peak download speeds of 21.6Mbps, while upload speeds will increase by up to 15 times, from 384Kbps to 5.8Mbps. According to a report, Zapp contracted Chinese firm ZTE to deploy the network, which will run parallel to the cellco’s second phase 3G rollout, expanding its UMTS services to 63 cities nationwide.


O2 Germany is currently running a friendly user test in Munich where O2 Germany's technology partner is Huawei. Beside being O2's network partner for the overall HSPA-network upgrade, Huawei is also O2 Germany's major vendor for UMTS sticks and therefore O2 Germany is using Huawei equipment for the HSPA+ test as well. The used Huawei E182E stick is a slide-out USB stick, supporting quadband GSM/GPRS/EDGE as well as quadband UMTS/HSDPA up to 21.6 Mbps and HSUPA up to 5.76 Mbps. Furthermore the stick is MIMO ready.

Spanish mobile network operator Vodafone Spain has announced it will begin deploying HSPA+ technology across its network in the autumn of 2009. The cellco says the upgrade will allow its infrastructure to achieve theoretical download speeds of up to 21.6Mbps, while uplink speeds would increase to up to 5.7Mbps. Initially Vodafone expects to launch the increased speeds in seven unnamed ‘major’ cities, with further expansion to follow. In addition, Francisco Roman, president and CEO of Vodafone Spain, has announced that the operator plans to further extend its provision of ADSL services across the country, although it has not given any specifics for areas it plans to extend its reach to.

­Swiss network operator, Swisscom says that it is deploying a HSPA+ (HSPA Evolution) upgrade, with the first areas completed in time for the ITU Telecom World 2009 in Geneva. The upgrade will offer a peak rate data transfer rate of 28.8 Mbps - although the more realistic average is no higher than 8Mbps. The network has launched a HSPA 14.4Mbps service at the beginning of this year.

Chunghwa Telecom, the Taiwanese mobile operator has reportedly selected Nokia Siemens Networks (NSN) to upgrade its wireless infrastructure with HSPA+ technology. The operator intends to launch its HSPA+ and 3G services by 2010, boosting mobile broadband download speeds to up to 21Mbps. Initially, devices able to utilise the HSPA+ service will include data network cards, USB dongles and wireless modules before it is extended to cover smartphones, netbooks and notebooks.

ZTE Corp has completed the interoperability test (IOT) of its 3GPP R7-based HSPA+ MIMO (multiple-input multiple-output) solution, conducted in conjunction with mainstream terminal chip platform manufacturers, in July 2009.

The MIMO solution, realized with its SDR-based next-generation base station, has reached a theoretical speed limit of 28.8Mbps in both cable connection and wireless environment tests. The trials included data download services for UDP (User Datagram Protocol) and FTP (File Transfer Protocol), as well as various IOT item tests.

All the test results indicated stable and fast data download performance. The successful IOT testing confirms that ZTE's MIMO solution is now ready for large-scale commercial deployment worldwide.

Sunday 16 August 2009

DoCoMo and Verizon on track for LTE

Verizon Wireless said Friday afternoon that it has completed "successful data calls" at its Long Term Evolution (LTE) test sites in Boston and Seattle.

The data transfers were made over the 700 MHz LTE networks in Verizon's first two major city test sites. Boston and Seattle are expected to be the first two cities that will go live commercially with the pre-4G technology early in 2010. Those cities each now have 10 LTE 4G cell sites up and running on the 700 MHz spectrum.

Verizon isn't yet talking about the data connection speeds. "Everything is as the team expected... But because this is a very controlled environment we don't want to put a number out on the market yet," says company spokesman, Jeff Nelson.

This has pretty much been Verizon's stance throughout -- it doesn't want to talk about test numbers that might not have much relevance on the real networks. Tests have shown connections at anything between 50 Mbit/s to 8 Mbit/s.


NTT DoCoMo has been under intense competitive pressure in recent quarters, as the Japanese market saturates and new players enter the game. Its quarterly results showed a 15.1% decline in net profit to ¥147.4bn ($1.56bn), on revenue down 7.3% to ¥1,085 trillion ($11.46bn), even as rival Softbank enjoyed a 41.4% increase in profits on a slight revenue increase.

The main problem for DoCoMo was lower voice revenue amid increased competition and low cost tariffs - from KDDI and Softbank and also new entrant eMobile, which focuses on flat rate data services. The cellcos are engaged in a price war, which has forced all of them, especially Softbank, to launch cost cutting programs.

DoCoMo reiterated plans to launch LTE services next year, though it is pushing the deadline as far as possible - to December 2010 - determined not to have to rely on pre-standard equipment as it did for 3G with its FOMA platform. Its first roll-out will be targeted at PC cards, said CEO Ryuji Yamada, and will be extended to dual-mode 3G/LTE handsets in 2011. By 2014 it plans to provide LTE service to 50% of the population from around 20,000 base stations at a cost of between ¥300bn and ¥400bn ($3.2bn to $4.2bn).

The Japanese service will initially be aimed at PC users, with DoCoMo offering card-type terminals for laptops, said Ryuji Yamada, president and CEO of NTT DoCoMo at a Tokyo news conference. It will be expanded to include handset terminals from 2011, he said. Those terminals will be dual-mode devices that use LTE networks where available and fall back to 3G networks to provide nationwide coverage.

By 2014 the carrier plans to provide LTE service to 50 percent of Japan from around 20,000 base stations.

DoCoMo plans to invest between ¥300 billion and ¥400 billion (US$3.2 billion to $4.2 billion) during the first five years of the roll-out, said Yamada.

NTT DoCoMo was the first carrier in the world to launch a commercial 3G wireless service based on WCDMA but based on its LTE roll-out it will likely be beaten this time around by carriers in other countries.

Verizon Wireless has said it plans to launch a 60Mbps trial LTE service in two U.S. cities in late 2009, to be followed by a commercial service in 2010. European carriers are also getting behind the technology with several tests under way or planned on the continent. TeliaSonera has said it will build a commercial LTE network in Stockholm, Sweden, and in Oslo, Norway.

Tuesday 21 July 2009

LTE Subscribers forecast and market movements



A report last year mentioned that the number of LTE subscribers by 2013 will be 85 million but a new report from research firm Forward Concepts, which looks at trends including 3G evolution and handset shipment growth, claims that the number of LTE users will be 56 million by 2013.

According to the report, HSPA+ will begin to displace W-CDMA and HSDPA technologies, and the first LTE devices to hit the market in 2010 will be data cards and dongles.

The Forward Concepts study also takes a look at some other trends in the industry. The firm predicts that global handset shipments will be down this year, and forecasts a 4.4 percent contraction. The report predicts a resurgence in unit shipments in 2010, however, and calls for a 12.8 percent growth in shipments. The one bright spot for 2009 is smartphones: Forward Concepts predicts a 25 percent jump in smartphone sales.

LCD display technology also will come under pressure from other technologies, including OLED, ePaper, Qualcomm's Mirasol and Liquavista, according to the report. The market for these "post-LCD" displays will grow to over $3 billion in 2013, the report said.

On the operator front, NTT DoCoMo is sticking to its plan to be a first stage deployer, with first roll-out in 2010, while work has begun on outdoor testing of the TD-LTE technology that all three Chinese carriers will use.

DoCoMo chief Ryuji Yamada told the London Financial Times that the cellco has not gone cool on its 2010 timescale. The firm needs to enable new services to respond to UQ's aggressive launch of mobile broadband offerings based on WiMAX, and to stay ahead of established rivals KDDI and Softbank, and the disruptive and data-driven newcomer eMobile. Yamada said DoCoMo wants to be "in the leading group in this technology", and that he sees a move to LTE as a way to be fully compatible with global standards, which will improve device economics. In 3G, DoCoMo moved so early that it deployed a pre-standard implementation of W-CDMA, FOMA. This is now used by 91% of its base, with over 50m subscribers after almost eight years in commercial service, but it has two downsides that will drive DoCoMo to LTE early - over-dependence on Japanese handset makers, with the high costs of slightly off-standard devices; and networks that are older than those of newer cellcos and in areas are becoming obsolete.

The Chinese operators have similar dilemmas, especially China Mobile, which is stuck with an off-standard 3G technology, TD-SCDMA, and wants to move quickly to a platform that brings global economies of scale and allows it to be more cutting edge in services. While it may have virtually no opportunity to get ROI on its 3G spend, it aims also to be in the first group of LTE deployers, though it will be using the TDD strain of the standard.

Earlier this year, it took over the trial sites in Spain that had previously been used by Vodafone and Verizon Wireless for FDD-LTE, and is now reported to be moving this initial test program to China and towards more real world outdoor trials. Sources say these outdoor tests could also involve other Chinese operators, and will involve six vendors working in the Beijing area. Surprisingly, if the insiders are right, these vendors do not include Motorola, which has been the main supplier in the Spanish project, and claims it has a major headstart in TD-LTE because of its extensive experience with TDD mobile broadband, using WiMAX. But the new Chinese tests involve four homegrown vendors (Huawei, ZTE, Datang and Potevio, the latter a Nokia venture) plus Ericsson and Nokia Siemens. The inclusion of more CDMA-oriented suppliers, notably Motorola and Alcatel-Lucent, is likely to follow when CDMA carrier China Telecom starts its own TD-LTE tests.

The testing process determined by the TD-LTE Working Group has three stages - indoor, outdoor and large-scale outdoor testing, the last of these involving two or three major cities with at least 100 base stations each. The local vendors have already been working on indoor testing in China since the start of the year.

Monday 6 July 2009

LTE activity gathering pace


Wireless internet access is going to be a better, richer experience than fixed link access Professor Michael Walker, group R&D director at Vodafone told Wireless 2.0 conference in Bristol, organised by Silicon South-West.

“People think wireless can’t compete with fixed link, but it can”, said Walker, pointing out that the 100Mbit/s of FTTH is the same as the theoretical maximum throughput of LTE.

“LTE capacity on 20MHz is an order of magnitude higher than HSPA,” said Walker. He said that, “in the first real field trials,” average downlink speeds of 15Mbit/s, with 4.5 spectral efficiency, were achieved. “Wimax takes three times more spectrum”, he said.

“We decided with LTE that we would make sure the technology works before we buy spectrum,” said Walker.

To that end, Vodafone has been working with China Mobile and Verizon to make sure LTE has compatible standards.

Walker regards talk of a killer app as silly for LTE as it was for 3G. “LTE is just about access,” he said.

He predicted the gradual relative demise of the person-to-person phone calls, referencing data that showed 11 times more wireless traffic is being generated by community chatting than by person-to-person calls.

Ericsson, one of the world’s leading suppliers of mobile phones and related network solutions, has warned that it could be 2012 before the first true next generation Mobile Broadband networks gain a good foothold in the UK. The deployment of Long Term Evolution (LTE) technology (aka - 4G), which could deliver download speeds of 150 to 1000Mbps, is being hampered by problems with releasing the needed 900Mhz spectrum.

Presently both O2 and Vodafone own some of the older 2G (900MHz) spectrum, which Ofcom is seeking to have redistributed to rival operators ( Orange , T-Mobile and Three (3) ). This could then be converted for use by 3G/4G voice and Mobile Broadband technologies, such as HSPA and LTE .
Nokia Siemens Networks (NSN), although providing WiMAX solutions for Taiwan operators, plans to launch commercialized LTE (Long Term Evolution) solutions in 2010, Mike Wang, NSN's general manager for Taiwan, Hong Kong and Macau.

NSN has already received LTE solution orders from Japan-based NTT DoCoMo, which is expected to start offering LTE-based services in 2010, Wang stated.

In addition, NSN has also landed orders for the installment of LTE trial networks for T-Mobile and Singapore-based service provider Mobile One, he added.

LTE-enabled chipsets are expected to hit the market starting in the second half of 2009, followed by LTE USB modems and network cards in 2010 and other LTE CPE such as handsets, PDAs, tablet PCs in 2012, Wang predicted.

Japan's DoCoMo is reported to be planning an investment of ¥ 343 billion (US$3.4 billion) for the investment, while KDDI and Softbank Mobile have budgeted ¥ 515 billion and ¥207.3 billion, respectively. According to the Nikkei newspaper, among the four, LTE services are forecast to attract around 36 million subscribers, with DoCoMo projecting 17.74 million LTE customers.
The total investment will top ¥1 trillion (US$10 billion)

DoCoMo, KDDI and Softbank Mobile expect roughly 30% of their existing customers to switch to 3.9G services. DoCoMo is also reported to be expecting to upgrade or deploy some 20,000 LTE enabled base stations by 2014. The network should cover 50% of the population and commercial services will start in 2010.

LTE provides downlink peak rates of at least 100Mbit/s, 50 Mbit/s in the uplink and RAN round-trip times of less than 10ms. Fujitsu recently announced that, in collaboration with NTT DoCoMo, they had successfully completed field testing for LTE, using 4x4 MIMO technology, which resulted in data transmission speeds in the range of 120 Mbps (using 10 MHz bandwidth) in Sapporo's urban environment.

NTT DOCOMO has selected Alcatel-Lucent' Ethernet transmission solution to provide the backhaul network of its Long Term Evolution (LTE) service. Financial terms were not disclosed.

Alcatel-Lucent said its packet optical gear will provide NTT DOCOMO with cost-effective and flexible Ethernet-based aggregation and transport from the base stations to the core network. Specifically, the Alcatel-Lucent solution, based on the 1850 Transport Service Switch (TSS) and its universal switching technology, will provide multipoint Ethernet connections between cell sites supported by strong operations, administration and maintenance capabilities, as well as carrier-class protection and network management.

China Mobile Ltd., recognizing that future growth of its 3G services is not yet certain, is looking to secure its future with a nearly parallel development of Long Term Evolution (LTE) capabilities, according to its annual report filed with the Securities and Exchange Commission (SEC) recently.

High on the list of limitations TD-SCDMA imposes are the availability, functionality, and price of terminals, and the support for international roaming. The latter particularly impacts China Mobile's high-end and business customers.

China Mobile remains committed to TD-SCDMA, but at the same time it's going all out to develop converged time division duplex (TDD) and frequency division duplex (FDD) products for LTE, the proto-4G wireless technology set to be deployed by mobile operators worldwide.
Developing a simultaneous LTE strategy will enable China Mobile to limit the time it is dependent on TD-SCDMA, and also help it counter the constraints it's currently experiencing as a result of the TD-SCDMA sector's limited ecosystem.

The Chinese vendors have labored too long under the market perception that they deliver low cost equipment, but can't do cutting edge. To fight this image and enhance their position among tier one carriers, Huawei and ZTE are throwing everything - including their huge credit lines for vendor financing - at gaining early LTE trials, which puts them in the spotlight even if commercial roll-outs are often two years or more away. The latest points go to ZTE, which has won field trial contracts with Telefónica in Spain and CSL in Hong Kong.

This comes shortly after Huawei highlighted its LTE deal with Netcom of Norway, and the Chinese duo are, early market estimates indicate, coming close to Ericsson in terms of their penetration of stage one LTE trials - and ahead of Alcatel-Lucent and Nokia Siemens.

Telefónica confirmed reports by Light Reading that ZTE's trial will take place in the third quarter. While success at the Spanish firm may not translate into meaningful revenue any time soon (and Ericsson has already conducted LTE trials with Telefónica too), it will still be a major boost for the vendor. It has not been as successful in getting tier one western carrier deals as its compatriot - although its overall wireless equipment market share grew at a similar rate to that of Huawei in the past 12 months, its base is far more concentrated on the lower margin developing markets.

By contrast with Telefónica, CSL is already a major customer for ZTE and one of the first commercial users of its software defined base station platform, which it is currently rolling out in an IP-based HSPA+ network across Hong Kong. In a recent interview with Telecoms.com, Tarek Robbiati, CEO of the Telstra subsidiary, said: "Further consolidation will come in the next three to five years. In the end there will be only three [infrastructure vendors] left, and two of them will be Chinese. The European vendors are just too slow."

With LTE firmly at the top of the hype curve in 2009, WiMAX is somewhat overshadowed in the headlines, but did make a strong impression at last week's CommunicAsia show in Singapore, highlighting how the technology has gained a higher profile in Asia than in Europe - because of the importance of the Taiwanese ODMs and vendors like Samsung, as well as a large number of deployments in countries like Japan, Vietnam, Korea and Taiwan.

Wednesday 13 May 2009

Surround Sound transmission technology from NTT DoCoMo


NTT DOCOMO, INC. announced that it has developed a highly efficient mobile spatial audio transmission technology that enables a mobile phone user to assign a spatial position to each sound source when listening to multiple sound sources, such as during a game or a conference call.

The technology enables a user listening with headphones to, for example, hear each speaker's voice as if it were coming from a unique direction, creating a virtual face-to-face communication environment.

DOCOMO, which is continuing to research and develop the technology for eventual commercialization, foresees applications including mobile conference calls, tele-education and online games.

While existing spatial audio transmission technologies independently process audio encoding/decoding and spatial audio synthesis, the new technology offers a more efficient method by integrating the two processes, thereby minimizing bitrate (or bandwidth) and computation loads suitable for mobile phones and other resource-limited devices.

The processes are collaboratively performed on both the server and client sides. The server identifies the important sound components of each speaker's voice, compresses them efficiently into a single stream and transmits it to the mobile phones. Each phone then decodes the received stream and simultaneously synthesizes spatial audio images

DOCOMO is demonstrating its new spatial audio transmission technology using docomo PRO series™ HT-01A handsets during Wireless Technology Park 2009 at Pacifico Yokohama on May 12 and 13.

Saturday 11 April 2009

Future Phones will be able to understand your thoughts

Honda is working on a technology for Robots in Japan where they can understand the owners thoughts. Right now only four commands can be understood but the success rate is 90%. If this technology becomes successful it can probably be applied to phones as well.

I remember reading (cant find link, sorry) that NTT DoCoMo has already developed a prototype of phone in which you can speak without any sound and the person at the other end wont even notice. He will hear normal voice.

NTT DoCoMo launched Motion sensing phones couple of years back and the main idea was that the user can control things by motion of their hands. I havent dug into details but I can visualise myself in future working on my laptop and just by waving my hand ask my mobile to start composing a text message. I would be able to dictate the message and just with another wave of my hand, the message will be sent.

Japan has always been the leader of these kinds of technologies and companies out there are working hard innovating new technology. NTT DoCoMo (again) showed off last year a technology where the volume can be controlled just by rolling the eyes. At the moment all these things involve some kind of human attachment which makes them impractical for the time being. In future hopefully there will be better alternatives and more reliable technologies like these.

Anyway, we wont see any of the above technologies anytime soon. There is a funny video on Youtube that you will like about these future technologies that is available below:

Friday 14 December 2007

NTT DoCoMo's F801i Kids Phone

TOKYO, JAPAN, December 10, 2007 --- NTT DoCoMo, Inc. and its eight regional subsidiaries announced today that the FOMA™ F801i, a new child-friendly 3G mobile phone loaded with special features for the safety and convenience of children, will go on sale December 20.

Building on the popular FOMA SA800i model that DoCoMo released in March 2006, the F801i offers many new or improved child-friendly features for security, theft/loss prevention, ease of use and more.

In an emergency, the child can quickly switch on the phone's 100-decibel alarm, which produces two types of noise alternately. When the alarm is activated, the phone also emits a bright light (high-intensity LED) that is easily visible to people in the surrounding area.

The phone can be set to automatically notify loved ones when the alarm is activated, and provide the handset's current location as well. Computer-generated phone calls can be placed to up to three registered numbers and messages can be sent to registered individuals who subscribe to the i-mode™ location service called imadoco search™.
In addition, the child can discreetly message their location to a registered imadoco search user by simply pushing a button on the side of the phone.

If the phone's power is switched off, a presetting can enable the handset to automatically turn back on (in as little as five minutes) and message the incident and the phone's location to a registered DoCoMo phone.

An amulet-style remote controller worn by the child can be used to make a misplaced phone beep if within a range of about 10 meters (may vary with usage environment). If the user moves even farther from the handset, the phone can automatically lock (requires presetting). If the handset remains out of the amulet's range for more than five minutes, a message can be sent automatically to a registered DoCoMo phone.

The F801i is ergonomically designed for easy use by small hands, and its waterproof body can withstand accidental immersion (up to 30 minutes at one-meter depth) or concentrated water sprays.

The phone's soft-rectangle shape and round speaker grille enclosed by a ring-shape LED were conceived by renowned designer Kashiwa Sato to symbolize safety, peace of mind, creativity and the future.

DoCoMo, as part of its corporate social responsibility program, provides education on the proper use of mobile phones by children. The Mobile Phone Safety Program involves workshops for students from elementary through high school, as well as for parents. DoCoMo has conducted more than 3,600 workshops for some 540,000 people throughout Japan since 2004. This program, along with services for site-access restriction, location information, etc., form a broad framework within which DoCoMo works to provide parents and their children with a safe and secure environment for using mobile phones.
More Photos of the phone can be found at Akhiabara News website.