Showing posts with label Network Architecture. Show all posts
Showing posts with label Network Architecture. Show all posts

Thursday 7 November 2019

Introduction to 5G ATSSS - Access Traffic Steering, Switching and Splitting


Last month we made a short tutorial on 5G and Fixed-Mobile Convergence (FMC). One of the features covered in that was ATSSS. It deserved a bit more detail so we made a short tutorial on this feature.

Access Traffic Steering, Switching and Splitting or ATSSS for short is being standardized as part of 3GPP Rel-16 and allows traffic steering across multiple accesses at a finer granularities than a PDU session.  It is an optional feature both on the UE and the 5GC network. ATSSS introduces the notion of Multi Access PDU session, a PDU session for which the data traffic can be served over one or more concurrent accesses (3GPP access, trusted non-3GPP access and untrusted non-3GPP access). The simplest way to visualize it is as shown below:


The presentation and video is embedded below:







Related Posts:

Tuesday 22 October 2019

From traditional RAN to Open RAN - O-RAN: Goals and Challenges


My Open RAN tutorial has recently gained popularity with recent announcements from Altiostar, Mavenir, Parallel Wireless, Telefonica and Vodafone. With TIP Summit in few weeks time, I am hoping for a lot more curious people to discover that blog post and video.

Olivier Simon, Director, Radio Innovation, Orange spoke about "O-RAN: Goals and Challenges" at Open Networking Summit Europe 2019. In his presentation, he explained how O-RAN will trigger more intelligence and openness in the RAN domain. He talked about which use cases will require this new architecture and why O-RAN is coming at the right time. Major architectural change are necessary in the next years in order to improve E2E latency and benefit from the flexibility of virtualized network functions. O-RAN will provide the right framework in order to perform this transformation in an open manner and keeping at the same time economies of scale thanks to a global adoption.


The presentation also touches on O-RAN Software Community. The O-RAN Alliance recently partnered with the Linux Foundation to establish the O-RAN-Software Community (O-RAN-SC), to provide that open source software application layer to the RAN. O-RAN-SC will foster development of an open source infrastructure platform for running 5G RAN solutions.

The key aspects of ORAN-SC are:
  • New Open Community focused on RAN Software in collaboration with O-RAN Alliance
  • Set up for collaboration across OPNFV, ONAP, Akraino and other Open Source projects

Here is the video of the conference embedded below:



Related Posts:

Tuesday 24 September 2019

When does your 5G NSA Device Show 5G Icon?


After I wrote about the 5G Icon Display back in February, I received lots of other useful and related materials, mostly from 3GPP standards delegates. Based on this updated information, I created a presentation and video called 'The 5G Icon Story'. Only recently did I realize that I didn't add it to the blog. So here it is.

And for people who are impatient and directly want to jump to the main point, it's UpperLayerIndication in SIB 2 as can be seen above.

The slides and video is embedded below.





Related Posts:



Sunday 15 September 2019

Thursday 12 September 2019

How the Addition of 5G Radio Resources Increases the Complexity of LTE Signaling Procedures


While everybody is excited about the growing number of 5G deployments and speed test results it is easy to forget that a highly reliable LTE core and radio access network is the prerequisite for 5G non-standalone (NSA) data transmission.

Indeed, the 5G radio resources are just added to the ongoing LTE connection to provide higher bandwidth that enables in turn higher throughput. In other words: the current 5G deployments are designed for and limited to the needs of enhanced Mobile Broadband (eMBB) traffic.

To boost the user experience a 4G and a 5G base station cooperate and bundle there joint resources in one radio connection. The whole scenario is known as E-UTRA-NR Dual Connectivity (EN-DC) and as a matter of fact this dual connectivity increases the complexity of the RAN signaling tremendously.

The figure below shows the two base stations involved in the radio connection. On the left side is the Master eNodeB (MeNB) that controls the entire signaling connection. On the right side sits the en-gNB, also called Secondary gNodeB (SgNB). The inconsistency of acronyms originates from 3GPP specs. 3GPP 37.340 "E-UTRA and NR Multi-connectivity" can be seen as an umbrella document that originally coined "MeNB" and "SgNB". However, when standarizing more details these acronyms have been replaced with Master Node (MN) and Secondary Node (SN) and the latter is named "en-gNB" when used in EN-DC scenarios. (Sure this spec has a lot more terms to offer an is a must-read for every acroynm enthusiast.)

However, these naming conventions defined in 3GPP 37.340 have not made it into the protocol specs, especially not into 3GPP 36.423 "X2 Application Part" that names its message set for enabling EN-DC consequently "SgNB ...." - as also shown in the figure.

By the way the SgNB should also not be imagined as a single network element. On the 5G side often a virtual RAN architecture is already deployed. In such a VRAN a gNB central unit (CU) controls several gNB distributed units (DUs) and multiple remote radio heads (RRHs) including the 5G antennas can be connected to each DU.



5G Radio Resource Addition in EN-DC Mode

Before 5G radio resources can be added to the connection a LTE RRC connection and at least a default bearer for the user plane including its GTP/IP-Tunnel between S-GW and eNB must have been successfully established.

The trigger for adding 5G resources to this call is mostly an inter-RAT measurement event B1 (not shown in the figure). However, also blind addition of a 5G cells have been observed in some cases where the 5G cell coverage is expected to overlap exactly the footprint of the LTE master cell. 

All in all, there can be a 1:1 mappig between 4G and 5G cells when antennas are mounted very close to each other and pointing into the same direction. However, it is also possible that several 5G small cells (especially when using FR2 frequency bands) are deployed to cover the footprint of a 4G macro cell. 

The end-to-end signaling that adds 5G resources to the connection starts with the X2AP SgNB Addition Request message (1). It contains information about the active E-RABs of the connection, UE NR capabilities and often the singal strenght of the 5G cell as measured before is included as well. The message triggers allocation of 5G radio resources in the SgNB.

Similar to a X2 handover procedure the X2AP SgNB Addition Request Acknowledge message (2) is used to transport a NR RRC CG-Config message (3) back to the MeNB where it is "translated" into NR RRC Connection Reconfiguration and NR RRC Radio Bearer Config messages that are sent to the UE enclosed in a LTE RRC Connection Reconfiguration message. In these messages beside the Cell Group ID the 5G PCI and the absolute SSB frequency (a synonym for NR ARFCN) are found. Both, 5G PCI and SSB frequency in combination represent the identity of a 5G cell "visible" for the UE on the physical 5G radio interface. 

To keep the figure more simple I have spared the "translation" process in MeNB and show instead as next step the combined LTE/NR RRC Connection Reconfiguration Complete (4) that is send by the UE back to the MeNB to confim activation of the 5G radio link. 

After this the UE and the SgNB are ready to the 5G resources for radio transmission. However, one important component is still missing: a new GTP/IP-Tunnel for transporting the payload from the core network's serving gateway (S-GW) to the SgNB. 

The gNB downlink transport layer address (gNB DL TLA) and its appropriate GTP Tunnel Endpoint Identifier (TEID) have been already to the MeNB in step (2). Indeed, there are some more TLAs and TEIDs found in this X2AP message, especially for data forwarding across the X2 user plane interface (not shown in figure).

The MeNB forwards the gNB DL TLA/TEID to the MME (6) where it is forwarded to the S-GW using GTP-C signaling in case the two core network elements are connected over S11 reference point. The uplink TLA/TEID on the S-GW side remain the same as assigned before during establishement of the E-RAB (not shown in figure). So the new tunnel is now ready to be used (7) and transmission of payload packet starts immediately. 

In step (8) the MME confirms the successful tunnel establishment to the MeNB.

To total duration of the entire procedure from step (1) to (8) sums up to slightly more than 100 ms under lab conditions and typically around 300 ms in the live network. 

This delay does not have a direct impact on user plane latency in the initial 5G setup phase. However, the subscriber experience might be different when it comes to inter-MeNB handover, because there is no direct handover between 5G neighbor cells. 

Changing the MeNB due to subscriber mobility means: release all 5G resources on the source (M)eNB side, perform intra-LTE handover to the target (M)eNB and add new 5G resources after handover is successfully completed. 

Monday 5 August 2019

An Introduction to Non-Terrestrial Networks (NTN)


I made a short introductory tutorial explaining what is meant by Non-Terrestrial Networks. There is is lot of work on this that is planned for Release-17. Slides and video below.






Related Posts:

Thursday 7 March 2019

Updated 5G Terminology Presentation (Feb 2019)


I made this video before MWC with the intention to educate the attendees about the various architecture options and 5G terminologies being discussed. As always, happy to get feedback on what can be done better. Slides followed by video below.







Complete list of our training resources are available on 3G4G page here.

Tuesday 12 February 2019

Prof. Andy Sutton: 5G Radio Access Network Architecture Evolution - Jan 2019


Prof. Andy Sutton delivered his annual IET talk last month which was held the 6th Annual 5G conference. You can watch the videos for that event here (not all have been uploaded at the time of writing this post). His talks have always been very popular on this blog with the last year talk being 2nd most popular while the one in 2017 was the most popular one. Thanks also to IET for hosting this annual event and IET Tv for making this videos available for free.

The slides and video is embedded below but for new starters, before jumping to this, you may want to check out about 5G Network Architecture options in our tutorial here.




As always, this is full of useful information with insight into how BT/EE is thinking about deploying 5G in UK.

Related Posts:

Thursday 3 January 2019

Nice short articles on 5G in 25th Anniversary Special NTT Docomo Technical Journal

5G has dominated the 3G4G blog for last few years. Top 10 posts for 2018 featured 6 posts on 5G while top 10 posts for 2017 featured 7. In makes sense to start 2019 posting with a 5G post.

A special 25th Anniversary edition of NTT Docomo Technical Journal features some nice short articles on 5G covering RAN, Core, Devices & Use cases. Here is some more details for anyone interested.

Radio Access Network in 5G Era introduces NTT Docomo's view of world regarding 5G, scenarios for the deployment of 5G and also prospects for further development of 5G in the future. The article looks at the main features in 5G RAN that will enable eMBB (Massive MIMO), URLLC (short TTI) and mMTC (eDRX).

Interested readers should also check out:

Core network for Social Infrastructure in 5G Era describes the principal 5G technologies required in the core network to realise new services and applications that will work through collaboration between various industries and businesses. It also introduces initiatives for more advanced operations, required for efficient operation of this increasingly complex network.

This article also goes in detail of the Services Based Architecture (SBA). In case you were wondering what UL CL and SSC above stands for; UpLink CLassifiers (UL CL) is a technology that identifies packets sent by a terminal to a specific IP address and routes them differently (Local Breakout) as can be seen above. It is generally to be used to connect to a MEC server. Session and Service Continuity (SSC) is used to decide if the IP address would be retained when the UE moves to a new area from the old one.

Interested readers should also check out:
Evolution of devices for the 5G Era discusses prospects for the high-speed, high-capacity, low-latency, and many-terminal connectivity features introduced with 5G, as well as advances in the network expected in the future, technologies that will be required for various types of terminal devices and the services, and a vision for devices in 2020 and thereafter.

According to the article, the medium term strategy of R&D division of NTT Docomo has three main themes: 5G, AI and Devices. In simple terms, devices will collect a lot of data which will become big data, 5G will be used to transport this data and the AI will process all the collected Big Data.

NTT Docomo has also redefined the devices as connecting through various technologies including cellular, Wi-Fi, Bluetooth & Fixed communications.

Interested readers should also check out:

The final article on 5G, Views of the Future Pioneered by 5G: A World Converging the Strengths of Partners looks at field trials, partnerships, etc. In fact here the embedded video playlist below shows some of these use cases described in the article



In addition there are other articles too, but in this post I have focused on 5G only.

The 25th Anniversary Special Edition of NTT Docomo Technical Journal is available here.

Friday 19 October 2018

5G Network Architecture Options (Updated)


ICYMI, we created an updated video on 5G Network Architecture options. The videos and slides are embedded below.



This updated presentation/video looks at 5G Network Architecture options that have been proposed by 3GPP for deployment of 5G. It covers the Standalone (SA) and Non-Standalone (NSA) architecture. In the NSA architecture, EN-DC (E-UTRA-NR Dual Connectivity), NGEN-DC (NG-RAN E-UTRA-NR Dual Connectivity) and NE-DC (NR-E-UTRA Dual Connectivity) has been looked at. Finally, migration strategies proposed by vendors and operators (MNOs / SPs) have been discussed.


Nokia has also released a whitepaper on this topic that I only became aware of after my slides / video were done. More details in the tweet below.


Related Links:

Friday 14 September 2018

End-to-end Network Slicing in 5G

I recently realised that I have never written a post just on Network slicing. So here is one on the topic. So the first question asked is, why do we even need Network Slicing? Alan Carlton from Interdigital wrote a good article on this topic. Below is what I think is interesting:

Network slicing is a specific form of virtualization that allows multiple logical networks to run on top of a shared physical network infrastructure. The key benefit of the network slicing concept is that it provides an end-to-end virtual network encompassing not just networking but compute and storage functions too. The objective is to allow a physical mobile network operator to partition its network resources to allow for very different users, so-called tenants, to multiplex over a single physical infrastructure. The most commonly cited example in 5G discussions is sharing of a given physical network to simultaneously run Internet of Things (IoT), Mobile Broadband (MBB), and very low-latency (e.g. vehicular communications) applications. These applications obviously have very different transmission characteristics. For example, IoT will typically have a very large number of devices, but each device may have very low throughput. MBB has nearly the opposite properties since it will have a much smaller number of devices, but each one will be transmitting or receiving very high bandwidth content. The intent of network slicing is to be able to partition the physical network at an end-to-end level to allow optimum grouping of traffic, isolation from other tenants, and configuring of resources at a macro level.

Source: ITU presentation, see below

The key differentiator of the network slicing approach is that it provides a holistic end-to-end virtual network for a given tenant. No existing QoS-based solution can offer anything like this. For example, DiffServ, which is the most widely deployed QoS solution, can discriminate VoIP traffic from other types of traffic such as HD video and web browsing. However, DiffServ cannot discriminate and differentially treat the same type of traffic (e.g. VoIP traffic) coming from different tenants.

Also, DiffServ does not have the ability to perform traffic isolation at all. For example, IoT traffic from a health monitoring network (e.g. connecting hospitals and outpatients) typically have strict privacy and security requirements including where the data can be stored and who can access it. This cannot be accomplished by DiffServ as it does not have any features dealing with the compute and storage aspects of the network. All these identified shortfalls of DiffServ will be handled by the features being developed for network slicing.

I came across this presentation by Peter Ashwood-Smith from Huawei Technologies who presented '5G End to-end network slicing Demo' at ITU-T Focus Group IMT-2020 Workshop and Demo Day on 7 December 2016. Its a great presentation, I wish a video of this was available as well. Anyway, the presentation is embedded below and the PPT can be downloaded from here.



The European Telecommunications Standards Institute (ETSI) has established a new Industry Specification Group (ISG) on Zero touch network and Service Management (ZSM) that is working to produce a set of technical specifications on fully automated network and service management with, ideally, zero human intervention. ZSM is targeted for 5G, particularly in network slice deployment. NTT Technical review article on this is available here.

Finally, here is a presentation by Sridhar Bhaskaran of Cellular Insights blog on this topic. Unfortunately, not available for download.


Related Posts:

Sunday 29 July 2018

Automating the 5G Core using Machine Learning and Data Analytics

One of the new entities introduced by 3GPP in the 5G Core SBA (see tutorial here) is Network Data Analytics Function, NWDAF.
3GPP TR 23.791: Study of Enablers for Network Automation for 5G (Release 16) describes the following 5G Network Architecture Assumptions:

1 The NWDAF (Network Data Analytics Function) as defined in TS 23.503 is used for data collection and data analytics in centralized manner. An NWDAF may be used for analytics for one or more Network Slice.
2 For instances where certain analytics can be performed by a 5GS NF independently, a NWDAF instance specific to that analytic maybe collocated with the 5GS NF. The data utilized by the 5GS NF as input to analytics in this case should also be made available to allow for the centralized NWDAF deployment option.
3 5GS Network Functions and OAM decide how to use the data analytics provided by NWDAF to improve the network performance.
4 NWDAF utilizes the existing service based interfaces to communicate with other 5GC Network Functions and OAM.
5 A 5GC NF may expose the result of the data analytics to any consumer NF utilizing a service based interface.
6 The interactions between NF(s) and the NWDAF take place in the local PLMN (the reporting NF and the NWDAF belong to the same PLMN).
7 Solutions shall neither assume NWDAF knowledge about NF application logic. The NWDAF may use subscription data but only for statistical purpose.

Picture SourceApplication of Data Mining in the 5G Network Architecture by Alexandros Kaloxylos

Continuing from 3GPP TR 23.791:

The NWDAF may serve use cases belonging to one or several domains, e.g. QoS, traffic steering, dimensioning, security.
The input data of the NWDAF may come from multiple sources, and the resulting actions undertaken by the consuming NF or AF may concern several domains (e.g. Mobility management, Session Management, QoS management, Application layer, Security management, NF life cycle management).
Use case descriptions should include the following aspects:
1. General characteristics (domain: performance, QoS, resilience, security; time scale).
2. Nature of input data (e.g. logs, KPI, events).
3. Types of NF consuming the NWDAF output data, how data is conveyed and nature of consumed analytics.
4. Output data.
5. Possible examples of actions undertaken by the consuming NF or AF, resulting from these analytics.
6. Benefits, e.g. revenue, resource saving, QoE, service assurance, reputation.

Picture SourceApplication of Data Mining in the 5G Network Architecture by Alexandros Kaloxylos

3GPP TS 23.501 V15.2.0 (2018-06) Section 6.2.18 says:

NWDAF represents operator managed network analytics logical function. NWDAF provides slice specific network data analytics to a NF. NWDAF provides network analytics information (i.e., load level information) to a NF on a network slice instance level and the NWDAF is not required to be aware of the current subscribers using the slice. NWDAF notifies slice specific network status analytic information to the NFs that are subscribed to it. NF may collect directly slice specific network status analytic information from NWDAF. This information is not subscriber specific.

In this Release of the specification, both PCF and NSSF are consumers of network analytics. The PCF may use that data in its policy decisions. NSSF may use the load level information provided by NWDAF for slice selection.

NOTE 1: NWDAF functionality beyond its support for Nnwdaf is out of scope of 3GPP.
NOTE 2: NWDAF functionality for non-slice-specific analytics information is not supported in this Release of the specification.

3GPP Release-16 is focusing on 5G Expansion and 5G Efficiency, SON and Big Data are part of 5G Efficiency.
Light Reading Artificial Intelligence and Machine Learning section has a news item on this topic from Layer123's Zero Touch & Carrier Automation Congress:

The 3GPP standards group is developing a machine learning function that could allow 5G operators to monitor the status of a network slice or third-party application performance.

The network data analytics function (NWDAF) forms a part of the 3GPP's 5G standardization efforts and could become a central point for analytics in the 5G core network, said Serge Manning, a senior technology strategist at Sprint Corp.

Speaking here in Madrid, Manning said the NWDAF was still in the "early stages" of standardization but could become "an interesting place for innovation."

The 3rd Generation Partnership Project (3GPP) froze the specifications for a 5G new radio standard at the end of 2017 and is due to freeze another set of 5G specifications, covering some of the core network and non-radio features, in June this year as part of its "Release 15" update.

Manning says that Release 15 considers the network slice selection function (NSSF) and the policy control function (PCF) as potential "consumers" of the NWDAF. "Anything else is open to being a consumer," he says. "We have things like monitoring the status of the load of a network slice, or looking at the behavior of mobile devices if you wanted to make adjustments. You could also look at application performance."

In principle, the NWDAF would be able to make use of any data in the core network. The 3GPP does not plan on standardizing the algorithms that will be used but rather the types of raw information the NWDAF will examine. The format of the analytics information that it produces might also be standardized, says Manning.

Such technical developments might help operators to provide network slices more dynamically on their future 5G networks.

Generally seen as one of the most game-changing aspects of 5G, the technique of network slicing would essentially allow an operator to provide a number of virtual network services over the same physical infrastructure.

For example, an operator could provide very high-speed connectivity for mobile gaming over one slice and a low-latency service for factory automation on another -- both reliant on the same underlying hardware.

However, there is concern that without greater automation operators will have less freedom to innovate through network slicing. "If operators don't automate they will be providing capacity-based slices that are relatively large and static and undifferentiated and certainly not on a per-customer basis," says Caroline Chappell, an analyst with Analysys Mason .

In a Madrid presentation, Chappell said that more granular slicing would require "highly agile end-to-end automation" that takes advantage of progress on software-defined networking and network functions virtualization.

"Slices could be very dynamic and perhaps last for only five minutes," she says. "In the very long term, applications could create their own slices."

Despite the talk of standardization, and signs of good progress within the 3GPP, concern emerged this week in Madrid that standards bodies are not moving quickly enough to address operators' needs.

Caroline Chappell's talk is available here whereas Serge Manning's talk is embedded below:



I am helping CW organise the annual CW TEC conference on the topic The inevitable automation of Next Generation Networks
Communications networks are perhaps the most complex machines on the planet. They use vast amounts of hardware, rely on complex software, and are physically distributed over land, underwater, and in orbit. They increasingly provide essential services that underpin almost every aspect of life. Managing networks and optimising their performance is a vast challenge, and will become many times harder with the advent of 5G. The 4th Annual CW Technology Conference will explore this challenge and how Machine Learning and AI may be applied to build more reliable, secure and better performing networks.

Is the AI community aware of the challenges facing network providers? Are the network operators and providers aware of how the very latest developments in AI may provide solutions? The conference will aim to bridge the gap between AI/ML and communications network communities, making each more aware of the nature and scale of the problems and the potential solutions.

I am hoping to see some of this blog readers at the conference. Looking forward to learning more on this topic amongst others for network automation.

Related Post:

Thursday 12 July 2018

Minimum Bandwidth Requirement for 5G Non-Standalone (NSA) Deployment

I was attending the IEEE 5G World Forum live-stream, courtesy of IEEE Tv and happen to hear Egil Gronstad, Senior Director of Technology Development and Strategy at T-Mobile USA. He said that they will be building a nationwide 5G network that will initially be based on 600 MHz band.


During the Q&A, Egil mentioned that because of the way the USA has different markets, on average they have 31 MHz of 600 MHz (Band 71). The minimum is 20 MHz and the maximum is 50 MHz.

So I started wondering how would they launch 4G & 5G in the same band for nationwide coverage? They have a good video on their 5G vision but that is of course probably going to come few years down the line.

In simple terms, they will first deploy what is known as Option 3 or EN-DC. If you want a quick refresher on different options, you may want to jump to my tutorial on this topic at 3G4G here.

The Master Node (recall dual connectivity for LTE, Release-12. See here) is an eNodeB. As with any LTE node, it can take bandwidths from 1.4 MHz to 20 MHz. So the minimum bandwidth for LTE node is 1.4 MHz.

The Secondary Node is a gNodeB. Looking at 3GPP TS 38.101-1, Table 5.3.5-1 Channel bandwidths for each NR band, I can see that for band 71


NR band / SCS / UE Channel bandwidth
NR Band
SCS
kHz
5 MHz
101,2 MHz
152 MHz
202 MHz
252 MHz
30 MHz
40 MHz
50 MHz
60 MHz
80 MHz
90 MHz
100 MHz
n71
15
Yes
Yes
Yes
Yes








30

Yes
Yes
Yes








60













The minimum bandwidth is 5MHz. Of course this is paired spectrum for FDD band but the point I am making here is that you need just 6.4 MHz minimum to be able to support the Non-Standalone 5G option.

I am sure you can guess that the speeds will not really be 5G speeds with this amount of bandwidth but I am looking forward to all these kind of complaints in the initial phase of 5G network rollout.

I dont know what bandwidths T-Mobile will be using but we will see at least 10MHz of NR in case where the total spectrum is 20 MHz and 20 MHz of NR where the total spectrum is 50 MHz.

If you look at the earlier requirements list, the number being thrown about for bandwidth was 100 MHz for below 6 GHz and up to 1 GHz bandwidth for spectrum above 6 GHz. Don't think there was a hard and fast requirement though.

Happy to hear your thoughts.

Monday 11 June 2018

An Introduction to ONF and CORD (Central Office Re-architected as a Datacenter)


Continuing on the theme of Open Source from last week's post from Telefonica, lets look at the CORD by ONF.

The CORD (Central Office Re-architected as a Datacenter) platform leverages SDN, NFV and Cloud technologies to build agile datacenters for the network edge. Integrating multiple open source projects, CORD delivers a cloud-native, open, programmable, agile platform for network operators to create innovative services.

CORD provides a complete integrated platform, integrating everything needed to create a complete operational edge datacenter with built-in service capabilities, all built on commodity hardware using the latest in cloud-native design principles.



The video above from MWC 2018 is a very short summary of what ONF and CORD is. The video below from OCP Telecom Workshop at the Big Communications Event (BCE) on May 14th, 2018 in Austin, Texas looks at CORD in detail.



Related Post: