Thursday 15 April 2010

Femtocell Technology Map from Ubiquisys

Came across this very interesting Femtocell map from Ubiquisys.

The corresponding press release, titled "Ubiquisys Unveils Femto-Engine: the Complete Software Femtocell for Mobile Operators, Alongside an "Engine-Ready" Hardware Programme for OEMs" is available here.

Ubiquisys is also celebrating its sub $100 Femtocell. Press release here.

Wednesday 14 April 2010

Pomegranate concept mobile: With video projector, live voice translator, harmonica, coffee maker, shaving razor, etc

The Pomegranate NS08 is a concept (fictional - though some people refer to it as a hoax) phone that promised amazing stuff until you dig deep and realise that its just an idea to market Communication Nova Scotia's Come to Life program. Check out the Youtube clip for the complete advertisement:


The following is from Wikipedia:

The Pomegranate phone is the latest campaign from Communications Nova Scotia's Come to Life initiative, the place-branding program of the Government of Nova Scotia. Communications Nova Scotia has been criticized by some for spending $300,000 on the ad campaign, though the website received more than 1,100,000 visits from 201 countries/territories since its launch on September 30, 2008, and they are considering it to be very successful.

Tuesday 13 April 2010

HSPA finds success with Mobile Broadband Growth


Another GSA report titled "Mobile Broadband Growth - Reports from HSPA Operators Worldwide". As the name suggests, this contains report from different operators on their Mobile Broadband revenues growth.

Some interesting bits from the report:
  • According to a report from AdMob, smartphonedata traffic grew 193% year-over-year in the month of February 2010. Smartphonesaccounted for 48% of its traffic in February 2010, up from 35% the year before. AdMobattributed this primarily to iPhoneand Android traffic.
  • Deutsche Telekom CEO RenĂ© Obermann is expected to double revenues by 2015 with €10 billion coming from mobile data traffic. Obermann said it would double the number of 3G smartphonesin the network to around 8 million by the end of 2010
  • A recent report by In-Stat, stated that mobile broadband is now the second-largest access technology behind DSL, making up 18% subscribers
  • Telia Sonera reported that the strong demand for mobile devices, including mobile broadband and Apple iPhone™, continued. Mobile data traffic in Nordic and Baltic operations increased close to 200% while the number of mobile broadband subscriptions rose by more than 60% during 2009.
  • AT&T reported that Text messaging grew 50% YoY and picture messaging grew 130%
  • According to IDC's Worldwide Quarterly Mobile Phone Tracker, vendors shipped a total of 54.5 million units Q4 09, up 39.0% from Q4 08. Vendors shipped a total of 174.2m units in 2009, up 15.1% from the 151.4m units in 2008. Converged mobile devices accounted for 15.4% of all mobile phones shipped in 2009, up slightly from 12.7% in 2008
  • The number of people subscribing to broadband internet services in Australia grew rapidly with wireless broadband and 3G mobile services continuing strong growth in 2009, according to a new report by ACMA (Australian Communications and Media Authority). 3G now accounts for more than 50% of all mobile subscriptions, an annual increase of 44%. Internet subscriptions reached 8.4 million in June 2009, compared to 7.2 million in June 2008. Broadband subscriptions increased from 5.66 million to 6.72 million in the same period, with wireless subscribers gaining 162% to 2.1 million
  • Vodafone's Data traffic has risen 300% in the past two years. Data now represents 11% of all European service revenues. Smartphones represent 20% of handsets sales. Around 40% of the company's European 3G/HSPA networks now support 7.2 Mbps. In the coming 6 months, Vodafone plans to upgrade 20-25,000 sites across Europe to HSPA+
  • UK consultancy firm, Coda Research Consultancy, has predicted that mobile data consumption in the US is set to reach 327,000 terabytes a month by 2015, indicating a 40-fold rise in mobile data consumption over 5 years
  • Mobile data traffic from PC modems and routers is forecast to increase 4-fold between 2010 and 2014, according to a report by ABI Research. 2,000 petabytes of data will be sent and received in 2010, a figure that will rise to about 8,000 petabytesin 2014
  • Semiannual US wireless industry survey was released at CTIA in March 2010 revealing that wireless service revenues totaled $77 billion for the last half of the year. The real growth is coming from wireless data services -mobile Web, text messages, and other non-voice services. In the latter half of last year, revenue for wireless data service totaled > $22 billion, nearly a third of overall wireless services revenue and up 26% YoY. Steve Largent, President and CEO of CTIA, said in a statement. "Mobile broadband will increasingly play a vital role in people’s lives."
  • A new study by Juniper Research has forecast that more than 1 in 10 mobile subs will either have a ticket delivered to their mobile phone or buy a ticket with their phone by 2014, representing a five-fold growth over the next five years.
  • Strategy Analytics recently forecast that the number of active mobile broadband subscriptions worldwide is expected to rise to around 1.3 billion by 2014
  • ABI Research announced that shipments of mobile broadband-enabled consumer products, which includes e-book readers, mobile digital cameras, camcorders, personal media players, personal navigation devices and mobile gaming devices will increase 55-fold between 2008 and 2014 with total shipments reaching 58 million units per year in 2014

Monday 12 April 2010

GSA report on Evolution to LTE


Global mobile Suppliers Association (GSA) published a report on "Evolution to LTE" which is available on their website here to download.

The report starts with the need for LTE and emphasises its importance with regards to the Mobile Broadband take off. It goes on to encourage the operators to embrace LTE and lists the operators that have committed to LTE roll out.

As of April 2010:
  • 64 networks in 31 countries have committed to LTE network rollout.
  • Upto 22 LTE networks would be in service end of 2010
  • 39 or more LTE networks will be in service end of 2012
Spectrum is another area of focus of this report. Along with 2.6GHz, 700MHz will probably be used in Americas, New Zealand and India. 800 MHz and 900 MHz will probably be available and used in Europe.

Finally with LTE being rolled out, it would be easy to upgrade to LTE-Advanced when the standards are finalised in Release-10.

For people interested in this report and topics, the following related presentations are available from GSA:

Wednesday 31 March 2010

Renewed focus on TD-LTE

Last year I blogged about the 3G Americas report on TD-LTE and Motorola's gamble on TD-LTE.





The following is from daily wireless blog:

Industry momentum behind Time Division LTE continues to grow with news that a number of major operators and vendors are working with the 3GPP to allow the standard to be deployed in the USA, using the 2.6GHz spectrum band. Clearwire and its partners own the majority of that spectrum. Most of Clear’s 2.6 GHz spectrum goes unused.

Light Reading Mobile notes that China Mobile, Clearwire, Sprint Nextel, Motorola, Huawei, Nokia Siemens Networks, Alcatel-Lucent and Cisco Systems are asking for the 2.6GHz spectrum (2496MHz to 2690MHz) to be defined as a TDD band for LTE.

Outside the United States, part of the band (2570MHz to 2620MHz) is already specified for TDD. The new work will extend this compliance. The report adds that specifications for the US 2.6GHz band for TD-LTE is scheduled to be completed by March 2011.

LTE pioneers TeliaSonera, NTT DoCoMo and Verizon Wireless, will all use different frequency bands for their respective LTE networks, explains TechWorld. So for roaming in the U.S, Japan and Europe to work, modems will have to support 700MHz, 2100MHz and 2600MHz, with more bands to be used in the future. That will be a challenge for roaming, says Light Reading.


The following is from fierce broadband wireless:

The appeal of TD-LTE has widened well beyond China. The recent announcement of Qualcomm to bid for TDD spectrum in India to support a TD-LTE deployment confirms--although it was not required to validate--the emergence of TD-LTE as global technology, likely to command a substantial market share.


Why the sudden interest in TD-LTE?

There are four main factors driving a growth in support for TD-LTE:

  • The FDD LTE and TD-LTE versions of the 3GPP standard are very similar. As a result, devices can support both the FDD and TDD interfaces through a single chipset--i.e., without any additional cost. This is a hugely important new development: TD-LTE will benefit from the wide availability of FDD LTE devices that will be able to support TD-LTE as well. Unlike WiMAX, TD-LTE does not need to prove to have a substantial market share to convince vendors to develop devices. Vendors do not need to develop new devices, they simply need to add TD-LTE support to the existing ones.
  • There is a lot of TDD spectrum available, and in most cases it is cheaper and under-utilized. 3G licenses frequently have TDD allocations and upcoming 2.5 GHz auction in most cases contemplate TDD bands.
  • The increasing availability of base stations that can be cost-effectively upgraded will make it possible and relatively inexpensive for WiMAX operators to transition to TD‑LTE using the same spectrum allocation. The transition will still require substantial efforts and be justified only in some cases, but it will make it easier for WiMAX operators to have roaming deals and to have access to the same devices that LTE operators have.
  • Industry commitment to WiMAX 16m, the ITU-Advanced version of WiMAX and successor to the current WiMAX 16e, is still limited.


What's next?

In the near term very little will change. TD-LTE is still being developed and it will take time before it gets deployed beyond core markets like China and possibly a few others like China. In Europe, for instance, mobile operators will deploy LTE in the FDD spectrum and only when they will need additional capacity they are likely to move to TDD. Unlike FDD LTE, TD-LTE will move from initial deployments in developing countries, with a later introduction as a mature technology in developed countries--a quite interesting trend reversal.


WiMAX operators will also be barely affected by TD-LTE in the short term. WiMAX is years ahead in terms of technological maturity, devices and ecosystem. This gives them a strong advantage in comparison to TD-LTE operators: They know the technology already, they have a network, and they have customers. They also have the choice whether to switch to TD-LTE or not--and, more importantly, they have no pressure to do so before TD-LTE has reached the maturity they feel comfortable with or until the WiMAX 16m prospects become clearer.



Monday 29 March 2010

Huawei's "Two Cloud" solution for Mobile Broadband


In case you are a regular and noticed my recycled image for this post then let me tell you that the post is about recycled ideas ;)

It is a well known fact that I have mentioned at various places in the blog as well that the higher the frequencies, the smaller the cell radius. Since we know that the common deployment frequencies for LTE would be around 2.6GHz then the signal penetration through walls may not be great.

As a result we will be forced to use Hierarchical cells that would allow load balancing and also higher speeds as the smaller cell sizes translate to fewer users and interference.

The following is from Huawei's website:

Based on our roadmap of early success in mobile and fixed broadband network construction, Huawei now responds to the mobile broadband dilemma facing global operators with the unique "Two Clouds" solution.

Employing optimal topologies for access networks providing DSL-level bandwidth for users across the board, the two clouds work together to deliver the most cost-effective means of enhancing user experiences.

  • A high speed cloud, consisting of Pico and AP BTSs, is typically deployed in densely-populated urban areas to deliver an average bandwidth of 2 Mb/s.
  • A continuous cloud of macro BTSs is applied for wide coverage delivering a bandwidth of 256 to 512 kb/s.

Huawei's "Two Clouds" model allows operators to profitably deploy mobile broadband networks while utilizing an intelligent site management framework to automatically adjust bandwidth and reducing construction, operation, and maintenance costs.

Incorporating this framework, flexible network mapping permits manageable, controllable mobile broadband networks, ensuring continuous network coverage in various scenarios, and provides users with inexpensive, quality broadband services. Very convincingly, Huawei's "Two Clouds" concept can reduce the cost per bit by as much as 70%.


One can guess that Self Organizing Networks would play important part in realising this in practice.

Story Source: Think Femtocell

Friday 26 March 2010

E-UTRAN Mobility Drivers and Limitations

Many years back, when things used to be simple, I wrote a tutorial about Handovers in UMTS. It would be very difficult to write a similarly simple tutorial for LTE. Things are a bit complicated because there are many different conditions in which handovers can take place.

It was also easier to visualise the Intra-frequency and Inter-frequency handovers in UMTS and you can probably do the same to some extent in LTE but with things getting more complicated and carrier aggregation, classifying handovers in these categories may be difficult.

3GPP TS 36.300 has an informative Annex E which details the scenarios in which handovers and cell change can/will take place.

It is best to go and see Annex E in detail. Here is a bit of summary from there:

Intra-frequency mobility: intra-frequency mobility is the most fundamental, indispensable, and frequent scenario. With the frequency reuse being one in E-UTRAN, applying any driver other than the “best radio condition” to intra-frequency mobility control incur increased interference and hence degraded performance.

Inter-frequency mobility: as in UTRAN, an operator may have multiple carriers/bands for E-UTRAN working in parallel. The use of these frequency layers may be diverse. For example, some of these frequency layers may utilise the same eNB sites and antenna locations (i.e., co-located configuration), whereas some may be used to form a hierarchical cell structure (HCS), or even be used for private networks. Some frequency layers may provide MBMS services, while some may not. Moreover, E-UTRAN carriers/bands may be extended in the future to increase capacity.

Inter-RAT mobility: the aspects that need to be considered for inter-RAT are similar to those for inter-frequency. For mobility solutions to be complete with the inter-RAT drivers, relevant updates would be necessary on the legacy (UTRAN/GERAN) specifications. This will add to the limitations, which are evidently more effective in inter-RAT.


The drivers for mobility control are:

Best radio condition: The primary purpose of cell reselection, regardless of intra-frequency, inter-frequency, or inter-RAT, is to ensure that the UE camps on/connects to the best cell in terms of radio condition, e.g., path loss, received reference symbol power, or received reference symbol Es/I0. The UE should support measurements to suffice this aspect.

Camp load balancing: This is to distribute idle state UEs among the available bands/carriers/RATs, such that upon activation, the traffic loading of the bands/carriers/RATs would be balanced. At least the path loss difference between different bands should be compensated to avoid UEs concentrating to a certain frequency layer.

Traffic load balancing: This is to balance the loading of active state UEs, using redirection for example. In E-UTRAN, traffic load balancing is essential because of the shared channel nature. That is, the user throughput decreases as the number of active UEs in the cell increases, and the loading directly impacts on the user perception.

UE capability: As E-UTRAN bands/carriers may be extended in the future, UEs having different band capabilities may coexist within a network. It is also likely that roaming UEs have different band capabilities. Overlaying different RATs adds to this variety.

Hierarchical cell structures: As in UTRAN, hierarchical cell structures (HCS) may be utilised in E-UTRAN to cover for example, indoors and hot spots efficiently. It is possible that E-UTRAN is initially deployed only at hot spots, in which case this driver becomes essential for inter-RAT, not just for inter-frequency. Another use case would be to deploy a large umbrella cell to cover a vast area without having to deploy a number of regular cells, while providing capacity by the regular cells on another frequency.

Network sharing: At the edge of a shared portion of a network, it will be necessary to direct UEs belonging to different PLMNs to different target cells.

Private networks/home cells: Cells that are part of a sub-network should prioritise the camping on that sub-network. UEs that do not belong to private sub-networks should not attempt to camp or access them.

Subscription based mobility control: This mobility driver aims to limit the inter-RAT mobility for certain UEs, e.g., based on subscription or other operator policies.

Service based mobility control: An operator may have different policies in allocating frequencies to certain services. For example, the operator may concentrate VoIP UEs to a certain frequency layer or RAT (e.g., UTRAN or GERAN), if evaluations prove this effective. UEs requiring higher data rates may better be served on a frequency layer or RAT (e.g., E-UTRAN) having a larger bandwidth. The operator may also want to accommodate premium services on a certain frequency layer or RAT, that has better coverage or larger bandwidth.

MBMS: For Release-9, no new mobility procedures compared to Release-8 are included specifically for MBMS. In future releases the following should be considered. As MBMS services may be provided only in certain frequency layers, it may be beneficial/necessary to control inter-frequency/RAT mobility depending on whether the UE receives a particular MBMS service or not. For MBMS scenarios only, UE based service dependent cell reselection might be considered acceptable. This aspect also depends on the UE capability for simultaneous reception of MBMS and unicast.


While the issues mentioned above drive E-UTRAN towards “aggressive” mobility control, the limiting factors also have to be considered:

UE battery saving: The mobility solution should not consume excessive UE battery, e.g., due to measurements, measurement reporting, broadcast signalling reception, or TA update signalling.
Network signalling/processing load: The mobility solution should not cause excessive network signalling/processing load. This includes over-the-air signalling, S1/X2 signalling, and processing load at network nodes. Unnecessary handovers and cell reselections should be avoided, and PCH and broadcast signalling, as well as dedicated signallings, should be limited.

U-plane interruption and data loss: U-plane interruption and data loss caused by the mobility solution should be limited.

OAM complexity: The mobility solution should not demand excessive efforts in operating/maintaining a network. For example, when a new eNB is added or an existing eNB fails, the mobility solution should not incur excessive efforts to set up or modify the parameters.

More details available in Annex E of 3GPP TS 36.300

Thursday 25 March 2010

Home Relays for LTE-Advanced

If you look at the Home eNodeB (Femtocell) architecture, the HeNB is connected to its gateway which in turn is connected to MME/S-GW. There is a considerable amount of technology investment in this approach. The HeNB consists of complete protocol stack, the HeNB-GW is an expensive piece of equipment and there is lots of other things including the management software, etc.
Now in LTE-A, there is a concept of Relays which we have talked about. The Relays do not contain the complete stack (generally just L1 and L2). If capacity is not an issue but coverage, then we may be able to use Home Relays.

The backhaul for Femtocell is Internet whereas for Relay its generally the same Radio resources within the cell. I guess the main thing for Relay is the requirement of reasonably good channel (Line of sight maybe). Home Relays can use the Internet connection but rather than connection terminating in some kind of gateway, it can terminate at the actual eNB.

There are already many advanced antenna techniques that can handle the transmission and reception without much interference and maybe the SON algorithms may need some additional improvements.
The main thing is that if this technology becomes reality then it may cost less than $50 per Home relay and would become really a commonplace.