Monday 18 October 2010

TETRA Evolution

Couple of Interesting presentation on TETRA Evolution.





Friday 15 October 2010

Network Improvements for Machine Type Communications (NIMTC)

I have blogged about M2M before here.

The Release 10 work item Network Improvements for Machine Type Communications – Stage 1 for NIMTC specified a number of requirements to make the network more suitable for machine type communications. Additional aspects need to be studied before proceeding with their potential inclusion in the normative work.

In the course of the Release 10 work item, it was decided to leave out MTC Device to MTC Device communications from Release 10. This because it was felt it was not possible to do it justice within the Release 10 time frame. Nevertheless, MTC Device to MTC Device communications are expected to become of major importance, especially with consumer devices communicating directly to each other. Therefore, this work item aims to study the network improvements requirements of MTC Device to MTC Device scenarios. A particular aspect of MTC Device to MTC Device scenarios is the identification and functionality needed to set up a connection towards a MTC Device. The IMS domain may provide a solution for this required functionality. In this case the impacts and requirements of MTC on IMS needs to be studied.

Additionally MTC Devices often act as a gateway for a capillary network of other MTC Devices or non-3GPP devices. These gateway MTC Devices may have specific requirements on the mobile network, which have not yet been taken into account in the Release 10 NIMTC work item. Study is needed to determine to what extent improvements are needed and can be specified by 3GPP for MTC Devices that act as a gateway for 'capillary networks' of other devices. Also alignment with what is specified by ETSI TC M2M on this aspect is needed.

Further optimisations may be possible for (groups of) MTC Devices that are co-located. An example of this could be a car with a number of different MTC Devices that always move along together. Optimisations for these kind of scenarios have been suggested, but have not yet been taken into account in the Release 10 NIMTC. Study is needed to determine to what extent network improvements can be specified for co-located MTC Devices.

Because of the different characteristics of Machine-Type Communications, the optimal network for MTC may not be the same as the optimal network for human to human communications. Optimisations of network selections and steering of roaming may be needed. Study is needed to determine to what extent improvements are needed on network selection and steering of roaming for MTC.

Many MTC applications use some kind of location tracking. E.g. the existing LCS framework could be used to provide location information for these kinds of MTC applications. Study is needed to determine to what extent improvements are needed for MTC location tracking.

MTC brings a new concept of a MTC User and MTC Server. So far little attention has been given to service requirements on the communication between the network and the MTC User/MTC Server. Also alignment with what is specified by ETSI TC M2M on that aspect is needed. Study is needed on what kind of service requirements are needed and can be specified by 3GPP.

The Objective of Study on enhancements for Machine-Type Communications item is to study additional requirements, use cases and functionality beyond that specified by the Release 10 NIMTC work item on the following aspects:

network improvements for MTC Device to MTC Device communications via one or more PLMNs. Note: direct-mode communication between devices is out of scope.
possible improvements for MTC Devices that act as a gateway for 'capillary networks' of other devices. Note: capillary networks themselves are out of scope of 3GPP.
network improvements for groups of MTC Devices that are co-located with other MTC Devices
improvements on network selection mechanisms and steering of roaming for MTC devices
possible enhancements to IMS to support MTC
possible improvements for location tracking of MTC Devices
service requirements on communications between PLMN and the MTC User/MTC Server (e.g. how the MTC User can set event to be monitored with MTC Monitoring);
possible service requirements to optimize MTC Devices
possible New MTC Features to further improve the network for MTC

The results of the study will be recorded in a Technical Report. Work ongoing in external standard organization shall be considered (e.g. ETSI M2M, CCSA TC 10).

The European Telecommunications Standards Institute (ETSI) now has a Technical Committee exclusively focused on M2M; the Chinese Communications Standards Association (CCSA) is currently exploring the definition of M2M standards for China and the Geneva-headquartered International Telecommunications Union (ITU) is working on “mobile wireless access systems providing telecommunications for a large number of ubiquitous sensors and/or actuators scattered over wide areas in the land mobile service,” which are at the center of the M2M ecosystem.

Closer to us, the US Telecommunications Industry Association (TIA) has also launched a new engineering committee centered on Smart Device Communications (TIA TR-50). Incidentally, at Global Standards Collaboration 15 (GSC-15), which will be held on August 30- September 2, 2010 in Beijing and hosted by CCSA, the world’s leading telecommunications and radio standards organizations will meet to promote innovation and collaboration on a broad spectrum of standards topics among which M2M has been identified as a “High Interest Subject.”

Related subject on 3GPP here.

M2M workshop is happening in ETSI next week. More details here.

Definitions:

MTC Device: A MTC Device is a UE equipped for Machine Type Communication, which communicates through a PLMN with MTC Server(s) and/or other MTC Device(s).

Local-Access Device: A Local-Access Device is a device in MTC Capillary Network, which has no 3GPP mobile communication capability.

MTC Capillary Network: An MTC Capillary Network is a network of devices that provides local connectivity between devices within its coverage and MTC Gateway Device.

MTC Gateway Device: An MTC Gateway Device is an MTC device equipped for Machine Type Communication, which acts as a gateway for a group of co-located MTC Devices or to connect MTC Devices and/or Local-Access Devices in an MTC Capillary Network to communicate through a PLMN with MTC Server(s), and/or other MTC Device(s).

Further Interesting Reading:



Monday 11 October 2010

LTE Video Tutorials on 3g4g

I have added some Video Tutorials on the 3G4G website here. Please scroll to the Video Tutorials section at the bottom of the page.

Alternatively check out Free 2G, 3G, 4G & 5G Training Videos here.

Friday 8 October 2010

Ultrawideband (UWB) based In-building Location Systems

Continuing on yesterdays theme of Location determination. I have heard in couple of presentations that in future based on multiple RF radios that we will carry, we could be uniquely identified on the planet even though there may not be a single device identifying us uniquely.

A similar project as above but for computers is the Panopticlick project which can be found here.


Thursday 7 October 2010

Locating Wireless Devices Where GPS May Not Be Available

Some of you may have read my earlier posts on stealing spectrum via Femtocells and using Femtocells abroad illegally. This presentation tries to answer one such problem on how do you find the location where GPS cannot be used. This could also be used in case of Cognitive Radios. See my old blog entry here.

Wednesday 6 October 2010

Recap of LTE E-UTRAN and Air Interface Protocols



You can also check out the IEEE Comsoc Video tutorial "LTE Radio Access – Physical Layer", delivered by none other than Stefan Parkvall of Ericsson. The tutorial is available at: http://host.comsoc.org/freetutorial/anritsu3/anritsu3.html

Tuesday 5 October 2010

3GPP Green activities / Energy Saving initiatives


3GPP has been working on Energy saving initiatives for Release-10 and Release-11. Here is a very quick summary of some of these items.

Telecommunication management; Study on Energy Savings Management (ESM)

Most mobile network operators aim at reducing their greenhouse emissions, by several means such as limiting their networks' energy consumption.

In new generation Radio Access Networks such as LTE, Energy Savings Management function takes place especially when mobile network operators want e.g. to reduce Tx power, switch off/on cell, etc. based on measurements made in the network having shown that there is no need to maintain active the full set of NE capabilities.

By initiating this Work Item about Energy Savings Management, 3GPP hopes to contribute to the protection of our environment and the environment of future generations.

The objective of this technical work is to study automated energy savings management features. Usage of existing IRPs is expected as much as possible, e.g. Configuration Management IRP, etc. However, this technical work may identify the need for defining a new IRP.

The following operations may be considered in this study item (but not necessarily limited to):
• Retrieval of energy consumption measurements
• Retrieval of traffic load measurements
• Adjust Network Resources capabilities


OAM aspects of Energy Saving in Radio Networks

There are strong requirements from operators on the management and monitoring of energy saving functions and the evaluation of its impact on the network and service quality. Therefore an efficient and standardized Management of Energy Saving functionality is needed. Coordination with other functionalities like load balancing and optimization functions is also required.

The objectives of this work item are:
• Define Energy Savings Management OAM requirements and solutions for the following use cases,
• eNodeB Overlaid
• Carrier restricted
• Capacity Limited Network
• Define OAM requirements and solutions for coordination of ESM with other functions like
• Self-Optimization
• Self Healing
• Traditional configuration management
• Fault Management
• Select existing measurements which can be used for assessing the impact and effect of Energy Saving actions corresponding to above Energy Saving use cases.
• Define new measurements which are required for assessing the impact and effect of Energy Saving actions, including measurements of the energy consumption corresponding to above Energy Saving use cases.


Study on impacts on UE-Core Network signalling from Energy Saving

Energy Saving (ES) mechanisms are becoming an integral part of radio networks, and consequently, of mobile networks. Strong requirements from operators (for reasons of cost and environmental image) and indirectly from authorities (for the sake of meeting overall international and national targets) have been formulated. With the expected masses of mobile network radio equipment as commodities, in the form of Home NB/eNBs, this aspect becomes even more crucial.

It is necessary to ensure that ES does not lead to service degradation or inefficiencies in the network. In particular:
• the activation status of radio stations (on/off) introduces a new scale of dynamicity for the UE and network;
• mass effects in signalling potentially endanger the network stability and need to be handled properly.

It is unclear whether and how currently defined procedures are able to cope with, and eventually can be optimized for, ES conditions; thus a systematic study is needed.

The study aims, within the defined CT1 work areas, at:
• analysing UE idle mode procedures and UE-Core Network signalling resulting from frequent switch on/off of radio equipment in all 3GPP accesses, including home cell deployment and I-WLAN;
• performing a corresponding analysis for connected mode UEs;
• analysing similar impacts from activation status of non-3GPP access networks;
• documenting limitations, weaknesses and inefficiencies in these procedures, with emphasis on mass effects in the UE-Core Network signalling;
• studying potential optimizations and enhancements to these procedures;

The study shall also evaluate and give recommendations on potential enhancements to 3GPP specifications (whether and where they are seen necessary).


Study on Solutions for Energy Saving within UTRA Node B

Due to the need to reduce energy consumption within operators’ networks, and considering the large amount of UMTS network equipment deployed in the field around the world, the standardisation of methods to save energy in UMTS Node Bs is seen as an important area of study for 3GPP.There has not been a large amount of focus on energy-saving in UMTS networks so far in 3GPP, although some solutions have been agreed in Release 9. Therefore it is proposed to start an initial study phase to identify solutions and perform any initial evaluation, such that a subset of these proposals can be used as the basis for further investigation of their feasibility.

The objective is to do an initial study to identify potential solutions to enable energy saving within UMTS Node-Bs, and do light initial evaluation of the proposed solutions, with the aim that a subset of them can be taken forward for further investigation as part of a more focused study in 3GPP.

The solutions identified in this study item should consider the following aspects:
• Impacts on the time for legacy and new UEs to gain access to service from the Node B
• Impacts on legacy and new terminals (e.g. power consumption, mobility)

Some initial indication of these aspects in relation to the proposed solutions should be provided.


Study on Network Energy Saving for E-UTRAN

The power efficiency in the infrastructure and terminal should be an essential part of the cost-related requirements in LTE-A. There is a strong need to investigate possible network energy saving mechanisms to reduce CO2 emission and OPEX of operators.

Although some solutions have been proposed and part of them have been agreed in Release-9, there has not been a large amount of attention on energy saving for E-UTRAN so far. Many potential solutions are not fully shown and discussed yet. Therefore, it is proposed to start an initial study phase to identify solutions, evaluate their gains and impacts on specifications.

The following use cases will be considered in this study item:
• Intra-eNB energy saving
• Inter-eNB energy saving
• Inter-RAT energy saving

Intra-eNB energy saving, in EUTRAN network, a single cell can operate in energy saving mode when the resource utilization is sufficiently low. In this case, the reduction of energy consumption will be mainly based on traffic monitoring with regard to QoS and coverage assurance.

A lot of work on Inter-eNB energy saving has already been done for both LTE and UTRA in Rel-9. This Study Item will investigate additional aspects (if any) on top of what was already agreed for R9.

Inter-RAT energy saving, in this use case, legacy networks, i.e. GERAN and UTRAN, provide radio coverage together with E-UTRAN. For example E-UTRAN Cell A is totally covered by UTRAN Cell B. Cell B is deployed to provide basic coverage of the voice or medium/low-speed data services in the area, while Cell A enhances the capability of the area to support high-speed data services. Then the energy saving procedure can be enabled based on the interaction of E-UTRAN and UTRAN system.

The objective of this study item is to identify potential solutions for energy saving in E-UTRAN and perform initial evaluation of the proposed solutions, so that a subset of them can be used as the basis for further investigation and standardization.

Energy saving solutions identified in this study item should be justified by valid scenario(s), and based on cell/network load situation. Impacts on legacy and new terminals when introducing an energy saving solution should be carefully considered. The scope of the study item shall be as follows:
• User accessibility should be guaranteed when a cell transfers to energy saving mode
• Backward compatibility shall be ensured and the ability to provide energy saving for Rel-10 network deployment that serves a number of legacy UEs should be considered
• Solutions shall not impact the Uu physical layer
• The solutions should not impact negatively the UE power consumption

RAN2 will focus on the Intra-eNB energy saving, while RAN3 will work on Inter-RAT energy saving and potential additional Inter-eNB energy saving technology.


Study on Solutions for GSM/EDGE BTS Energy Saving

There has not been a large amount of focus on energy-saving in GSM/EDGE networks so far in 3GPP, although some solutions have been agreed in previous Releases, notably MCBTS. Therefore it is proposed to start an initial study phase to identify solutions and perform any initial evaluation, such that a subset of these proposals can be used as the basis for further investigation of their feasibility.

The objective is to study potential solutions to enable energy saving within the BTS (including MCBTS and MSR), and evaluate each proposed solutions in detail. These potential solutions shall focus on the following specific aspects
• Reduction of Power on the BCCH carrier (potentially enabling dynamic adjustment of BCCH power)
• Reduction of power on DL common control channels
• Reduction of power on DL channels in dedicated mode, DTM and packet transfer mode
• Deactivation of cells (e.g. Cell Power Down and Cell DTX like concepts as discussed in RAN)
• Deactivation of other RATs in areas with multi-RAT deployments, for example, where the mobile station could assist the network to suspend/minimise specific in-use RATs at specific times of day
• And any other radio interface impacted power reduction solutions.

The solutions identified in this study item shall also consider the following aspects:
• Impacts on the time for legacy and new mobile stations to gain access to service from the BTS
• Impacts on legacy and new mobile stations to keep the ongoing service (without increasing drop rate)
• Impacts on legacy and new mobile stations implementation and power consumption, e.g. due to reduction in DL power, cell (re-)selection performance, handover performance, etc.
• Impacts on UL/DL coverage balance, especially to CS voice

Solutions shall be considered for both BTS energy saving non-supporting and supporting mobile stations (i.e. solutions that are non-backwards compatible towards legacy mobile stations shall be out of the scope of this study).