Pages

Tuesday, 9 February 2010

Coordinated Multi-Point (CoMP) transmission and reception

The industry’s first live field tests of Coordinated Multipoint Transmission (CoMP), a new technology based on network MIMO, were conducted in Berlin in October 2009. CoMP will increase data transmission rates and help ensure consistent service quality and throughput on LTE wireless broadband networks as well as on 3G networks. By coordinating and combining signals from multiple antennas, CoMP, will make it possible for mobile users to enjoy consistent performance and quality when they access and share videos, photos and other high-bandwidth services whether they are close to the center of an LTE cell or at its outer edges.

The following is from the 3G Americas report on CoMP:

Coordinated Multi-Point transmission/reception (CoMP) is considered by 3GPP as a tool to improve coverage, cell-edge throughput, and/or system efficiency.

The main idea of CoMP is as follows: when a UE is in the cell-edge region, it may be able to receive signals from multiple cell sites and the UE’s transmission may be received at multiple cell sites regardless of the system load. Given that, if the signaling transmitted from the multiple cell sites is coordinated, the DL performance can be increased significantly. This coordination can be simple as in the techniques that focus on interference avoidance or more complex as in the case where the same data is transmitted from multiple cell sites. For the UL, since the signal can be received by multiple cell sites, if the scheduling is coordinated from the different cell sites, the system can take advantage of this multiple reception to significantly improve the link performance. In the following sections, the CoMP architecture and the different CoMP schemes will be discussed.

CoMP communications can occur with intra-site or inter-site CoMP as shown in Figure 7.7.


With intra-site CoMP, the coordination is within a cell site. The characteristics of each type of CoMP architecture are summarized in Table 7.1.



An advantage of intra-site CoMP is that significant amount of exchange of information is possible since this communication is within a site and does not involve the backhaul (connection between base stations). Inter-site CoMP involves the coordination of multiple sites for CoMP transmission. Consequently, the exchange of information will involve backhaul transport. This type of CoMP may put additional burden and requirement upon the backhaul design.



An interesting CoMP architecture is the one associated with a distributed eNB depicted in Figure 7.8. In this particular illustration, the Radio Remote Units (RRU) of an eNB are located at different locations in space. With this architecture, although the CoMP coordination is within a single eNB, the CoMP transmission can behave like inter-site CoMP instead.

DL COMP

In terms of downlink CoMP, two different approaches are under consideration: Coordinated scheduling, or Coordinated Beamforming (CBF), and Joint Processing/Joint Transmission (JP/JT). In the first category, the transmission to a single UE is transmitted from the serving cell, exactly as in the case of non-CoMP transmission. However, the scheduling, including any Beamforming functionality, is dynamically coordinated between the cells in order to control and/or reduce the interference between different transmissions. In principle, the best serving set of users will be selected so that the transmitter beams are constructed to reduce the interference to other neighboring users, while increasing the served user’s signal strength.

For JP/JT, the transmission to a single UE is simultaneously transmitted from multiple transmission points, across cell sites. The multi-point transmissions will be coordinated as a single transmitter with antennas that are geographically separated. This scheme has the potential for higher performance, compared to coordination only in the scheduling, but comes at the expense of more stringent requirement on backhaul communication.

Depending on the geographical separation of the antennas, the coordinated multi-point processing method (e.g. coherent or non-coherent), and the coordinated zone definition (e.g. cell-centric or user-centric), network MIMO and collaborative MIMO have been proposed for the evolution of LTE. Depending on whether the same data to a UE is shared at different cell sites, collaborative MIMO includes single-cell antenna processing with multi-cell coordination, or multi-cell antenna processing. The first technique can be implemented via precoding with interference nulling by exploiting the additional degrees of spatial freedom at a cell site. The latter technique includes collaborative precoding and CL macro diversity. In collaborative precoding, each cell site performs multi-user precoding towards multiple UEs, and each UE receives multiple streams from multiple cell sites. In CL macro diversity, each cell site performs precoding independently and multiple cell sites jointly serve the same UE.

UL COMP

Uplink coordinated multi-point reception implies reception of the transmitted signal at multiple geographically separated points. Scheduling decisions can be coordinated among cells to control interference. It is important to understand that in different instances, the cooperating units can be separate eNBs’ remote radio units, relays, etc. Moreover, since UL CoMP mainly impacts the scheduler and receiver, it is mainly an implementation issues. The evolution of LTE, consequently, will likely just define the signaling needed to facilitate multi-point reception.

INTER-CELL INTERFERENCE COORDINATION

Another simple CoMP transmission scheme which relies on resource management cooperation among eNBs for controlling inter-cell interference is an efficient way to improve the cell edge spectral efficiency. The Inter-Cell Interference Coordination (ICIC) enhancement currently being studied for LTE-Advanced can be classified into dynamic Interference Coordination (D-ICIC) and Static Interference Coordination (S-ICIC). In D-ICIC, the utilization of frequency resource, spatial resource (beam pattern) or power resource is exchanged dynamically among eNBs. This scheme is flexible and adaptive to implement the resource balancing in unequal load situations. For S-ICIC, both static and semi-static spatial resource coordination among eNBs are being considered.

More information coule be found in:

5 comments:

  1. Dear Zahid,
    Thank you very much for CoMP posting. This is going to be my interest for higher study. Your blog is very helpful. Please keep on posing in this topic.
    Thanks a lot again!

    Regards,
    Shyam Babu Mahato
    University of Bedfordshire, Luton

    ReplyDelete
  2. The hyperlink "Berlin in October 2009" is incorrect !
    Refer: http://www.easy-c.de/index31_en.html
    It was already conducted in July 2009 ! Just that the news was reported in October 2009 !

    Nonetheless, good info for newbies.

    ReplyDelete
  3. Hello Zahid,

    It is very helpful! Thank you a lot. I would like to hear more about the network layout impact of CoMP implementation.

    Cheers!

    ReplyDelete
  4. thanks a lot.... gives a concise and simple overview.....

    ReplyDelete
  5. Can I get the code for CBF and JT in downlink transmission

    ReplyDelete