Pages

Friday, 28 May 2010

UMTS/HSPA State Transition Problems to be solved with LTE

The way UMTS/HSPA is designed is that the Mobile (UE) is always in IDLE state. If there is some data that needs to be transferred then the UE moves to CELL_DCH. If the amount of data is very less then the UE could move to CELL_FACH state. The UE can also move to CELL_PCH and URA PCH if required but may not necessarily do so if the operator has not configured those states.

The problem in UMTS/HSPA is that these state transitions take quite some time (in mobile terms) and can slow down the browsing experience. Martin has blogged about the state transition problems because of the keep alive messages used by the Apps. These small data transfers dont let the UE go in the IDLE state. If they do then whole raft of signalling has to occur again for the UE to go to CELL_FACH or CELL_DCH. In another post Martin also pointed out the sluggishness caused by the UE in CELL_FACH state.


Mike Thelander of the Signals Research Group presented similar story in the recently concluded LTE World Summit. It can be seen from the figure above that moving from IDLE to CELL_DCH is 1-3secs whereas FACH to DCH is 500ms.

In case if some Apps are running in the background, they can be using these keep alive messages or background messages which may be very useful on the PC but for the Mobiles, these could cause unnecessary state transitions which means lots of signalling overhead.

The Apps creators have realised this problem and are working with the Phone manufacturers to optimise their messaging. For example in case of some Apps on mobiles the keep alive message has been changed from 20 seconds to 5 mins.

3GPP also realised this problem quite a while back and for this reason in Release-7 two new features were added in HSPA+. One was Continuous Packet Connectivity (CPC) and the other was Enhanced CELL_FACH. In Release-8 for HSPA+, these features were added in UL direction as well. The sole aim of these features were to reduce the time it would take to transit to CELL_DCH. Since CPC increases the cell capacity as well, more users can now be put in CELL_FACH instead of being sent to IDLE.

An interesting thing in case of LTE is that the RRC states have been simplified to just two states as shown here. The states are IDLE and CONNECTED. The intention for LTE is that all the users can be left in the CONNECTED state and so unnecessary signalling and time spent on transitioning can be reduced.

The preliminary results from the trials (as can also be seen from here) that were discussed in the LTE World Summit clearly show that LTE leads to a capacity increase by 4 times (in the same BW) and also allow very low latency. I am sure that enough tests with real life applications like Skype, Fring and Yahoo IM have not been done but I am hopeful of the positive outcome.

No comments:

Post a Comment