Pages

Friday, 26 August 2011

Two interesting NGMN papers on Backhaul

There are some interesting blog posts on Broadband Traffic Managemenet on Backhaul. Here are few excerpts:

Traditional network management practice says that network element usage level should not exceed 70% of its capacity. If it does - it is time to do something - buy more or manage it better. So, according to a recent Credit Suisse report - it is time to do something for wireless networks, globally. For North America, where current utilization at peak time reaches 80% it is even urgent.

Phil Goldstein (pictured) reports to FierceWireless that - "Wireless networks in the United States are operating at 80 percent of total capacity, the highest of any region in the world, according to a report prepared by investment bank Credit Suisse. The firm argued that wireless carriers likely will need to increase their spending on infrastructure to meet users' growing demands for mobile data .. globally, average peak network utilization rates are at 65 percent, and that peak network utilization levels will reach 70 percent within the next year. .. 23 percent of base stations globally have capacity constraints, or utilization rates of more than 80 to 85 percent in busy hours, up from 20 percent last year .. In the United States, the percentage of base stations with capacity constraints is 38 percent, up from 26 percent in 2010"

And

The Yankee Group provides the following forecast for mobile backhaul:
Average macrocell backhaul requirements were 10 Mbps in 2008 (seven T1s, five E1s). In less than three years, they have more than tripled to 35 Mbps in 2011, and by 2015, Yankee Group predicts they will demand 100 Mbps.
There were 2.4 million macro cell site backhaul connections worldwide in 2010, growing to 3.3 million by [2015?]
Yankee's new research conclude:

"The market for wholesale backhaul services in North America will grow from $2.45 billion in 2010 to $3.9 billion in 2015, with the majority of this growth coming from Ethernet backhaul. Successful backhaul service providers will be those that can demonstrate price/performance and reliability, have software tools in place and can meet the specific needs of the mobile market.

And recently:

A Dell'Oro Group report forecasts that "Mobile Backhaul market revenues are expected to approach $9B by 2015. This updated report tracks two key market segments: Transport, which includes microwave and optical equipment, and Routers and Switches, which includes cell site devices, carrier Ethernet switches, and service provider edge routers .. routers and switches expected to constitute 30% of mobile backhaul market "

Shin Umeda, Vice President of Routers research at Dell’Oro Group said: “Our research has found that operators around the world are concerned with the rate of mobile traffic growth and are transitioning to Internet Protocol (IP) technologies to build a more efficient and scalable backhaul network. Our latest report forecasts the demand for IP-based routers and switches will continue to grow through 2015, almost doubling the market size of the Router and Switches segment in the five-year forecast period”

I have some basic posts on why Backhaul is important, here and here.

NGMN has timely released couple of whitepapers on the Backhaul.

The first one, 'Guidelines for LTE Backhaul Traffic Estimation' document describes how a model is developed to predict traffic levels in transport networks used to backhaul LTE eNodeBs. Backhaul traffic is made up of a number of different components of which user plane data is the largest, comprising around 80-90% of overall traffic, slightly less when IPsec encryption is added. These results reveal that the cell throughput characteristics for data carrying networks are quite different to those of voice carrying networks.

The purpose of second one, 'NGMN Whitepaper LTE Backhauling Deployment Scenarios' is to support operators in their migration from current architectures to new, packet-based backhaul networks. With the introduction of LTE operators need to look at how the backhauling network, the network domain that connects evolved NodeBs (eNBs) to MME and S/P-GW, is capable of adapting to the new requirements, namely the adoption of a packet infrastructure, without disrupting the existing services. This paper introduces some reference architectures, moving from a pure layer 2 topology to a full layer 3 one, discussing some elements to be considered in the design process of a network.

They are both long but interesting read if you like to learn more about Backhaul and the best way in future proofing the network deployments.

1 comment:

  1. Nice article. Thanks for posting. I found the “Guidelines for LTE Backhaul Traffic Estimation” especially interesting as it explains the backhaul estimation method for LTE networks. It’s true that in mature networks real data is used for backhaul traffic measurements. However, for new networks such measurements aren’t available, let alone any data for new technology networks. In this case it’s good to accept some model for capacity calculations and this document provides a reasonable method for backhaul estimation. Another example where this document comes in handy is at the stage of preliminary capacity calculations. Usually, before any network is rolled out, a marketing team of a mobile operator asks a technical teal to make some preliminary calculations in order to assess the following investments in the network deployment. At this stage not many technicians have profound knowledge about the new technology, not to mention any practical experience. This document provides some useful knowledge about LTE traffic backhaul for technicians to consider. Very nice document.
    I also have a question. The Yankee Group says that the average macrocell backhaul is 35 Mbps in 2011. Does this figure refer to the USA or the globe? It would be nice to see some geographical distribution of backhaul capacity on country level, of course if such data exists.

    ReplyDelete