Showing posts with label LIPA. Show all posts
Showing posts with label LIPA. Show all posts

Monday, March 26, 2012

3GPP LTE Evolved Packet System & Application to Femtos

A video of the actual presentation is embedded below. Its quite long (94 minutes)



The presentation is available to download in PDF format from here.

Friday, December 16, 2011

Release 12 study item on Continuity of Data Sessions to Local Networks (CSN)

LIPA was defined as part of Release-10 that I have already blogged about. Imagine the situation where a user started accessing local network while camped on the Home eNode B (aka Femtocell) but then moved to the macro network but still wants to continue using the local network. Release 12 defines this feature and is called Continuity of Data Sessions to Local Networks (CSN). This study item was originally part of Release 11 but has now been moved to Rel-12.



From SP-100885:


Justification
Basic functionality for Local IP Access (LIPA) has been specified in Rel-10.
LIPA signifies the capability of a UE to obtain access to a local residential/enterprise IP network (subsequently called a local network) that is connected to one or more H(e)NBs.
The current study item investigates extending LIPA functionality to allow access to the local network when a UE is under coverage of the macro network and provide related mobility support.

LIPA allows a UE to work with devices in the local network – e.g. printers, video cameras, or a local web-server. If the local network offers services that enable exchange of digital content (e.g. UPnP) LIPA allows the UE to discover supporting devices and to be discovered.
Examples for services that become available by LIPA are:
·         The pictures stored in a UE’s digital camera may be uploaded to a local networked storage device or printed out at a local printer.
·         A portable audio player in the UE may fetch new content from a media centre available on the local network.
·         A UE may receive video streams from local surveillance cameras in the home.
·         A local web-server in a company’s intranet may be accessed by the UE.
·         Support of VPN.
LIPA does not require the local network to be connected to the Internet but achieves IP connectivity with the UE through one or more H(e)NBs of the mobile operator.
In Release 10  3GPP has only specified the support of LIPA when the UE accesses the local network via H(e)NB.
On the other hand an operator may, e.g. as a chargeable user service, wish to provide access to the local network also to a UE that is under coverage of the macro network. Access to the local network when a UE is under coverage of the macro network should be enabled in Rel-11.

In Rel-10 it had been required for a UE to be able to maintain IP connectivity to the local network when moving between H(e)NBs within the same local network.
However, access to the local network may be lost as a UE moves out of H(e)NB coverage into the macro network, even if other services (e.g. telephony, data services, SIPTO) survive a handover to the macro network and are continued. This may result in an unsatisfactory user experience.
The current study item will allow continuation of data sessions to the local network when the UE moves between H(e)NB and the macro network.

Therefore, in Rel-11, the 3GPP system requires additional functionality to allow
·         A UE to access the local network from the macro network
·         A UE to maintain continuity of data sessions to the local network when moving between a H(e)NB and the macro network

Objective:              to propose requirements and study feasibility for the following scenarios:
Provide a capability to the mobile operator to allow or restrict
­        Access to an enterprise/residential IP network when a UE is under coverage of the macro network, assuming that the IP address of the local IP network (e.g. residential/enterprise gateway) is available to the UE.
­        Continuity of data session(s) to an enterprise/residential IP network when a UE moves between a H(e)NB in an enterprise/residential environment and the macro network.
The support of Continuity of Data Sessions to Local Networks should be an operator option that may or may not be provided by individual PLMNs.

Service Aspects
The user should be able to decline access to the local network from the macro network. The user should also be able to decline continuity of data sessions to local networks when moving between H(e)NB and the macro network (e.g. in the case when data sessions to local networks is charged differently if accessed from macro coverage or via the H(e)NB).
A difference in QoS may be noticeable by the user when the local network is accessed from the macro network or via the H(e)NB.

Thursday, November 25, 2010

LIPA, SIPTO and IFOM Comparison

Enhancing macro radio access network capacity by offloading mobile video traffic will be essential for mobile communications industry to reduce its units costs to match its customer expectations. Two primary paths to achieve this are the use of femtocells and WiFi offloading. Deployment of large scale femtocells for coverage enhancement has been a limited success so far. Using them for capacity enhancements is a new proposition for mobile operators. They need to assess the necessity of using them as well as decide how to deploy them selectively for their heavy users.

Three alternative architectures that are being standardized by 3GPP have various advantages and shortcomings. They are quite distinct in terms of their dependencies and feasibility. Following table is a summary of comparison among these three approaches for traffic offloading.


Looking at the relative strengths of the existing traffic offload proposals, it is difficult to pick an outright winner. SIPTO macro-network option is the most straight-forward and most likely to be implemented rather quickly. However, it doesn't solve the fundamental capacity crunch in the radio access network. Therefore its value is limited to being an optimization of the packet core/transport network. Some other tangible benefits would be reduction in latency to increase effective throughput for customers as well as easier capacity planning since transport facilities don't need to be dimensioned for large number of radio access network elements anymore.

LIPA provides a limited benefit of allowing access to local premises networks without having to traverse through the mobile operator core. Considering it is dependent on the implementation of femtocell, this benefit looks rather small and has no impact on the macro radio network capacity. If LIPA is extended to access to Internet and Intranet, then the additional offload benefit would be on the mobile operator core network similar to the SIPTO macro-network proposal. Femtocell solves the macro radio network capacity crunch. However, the pace of femtocell deployments so far doesn't show a significant momentum. LIPA's market success will be limited until cost of femtocell ownership issues are resolved and mobile operators decide why (coverage or capacity) to deploy femtocells.

IFOM is based upon a newer generation of Mobile IP that has been around as a mobile VPN technology for more than 10 years. Unfortunately success record of mobile IP so far has been limited to enterprise applications. It hasn't become a true consumer-grade technology. Introduction of LTE may change this since many operators spearheading LTE deployments are planning to use IPv6 in handsets and adopt a dual-stack approach of having both IPv4 and IPv6 capability. Since many WiFi access networks will stay as IPv4, DSMIPv6 will be the best tunneling mechanism to hide IPv6 from the access network. Having dual-stack capability will allow native access to both legacy IPv4 content and native IPv6 content from major companies such as Google, Facebook, Yahoo, etc. without the hindrance of Network Address Translation (NAT). Considering the popularity of smartphones such as iPhone, Blackberry and various Android phones, they will be the proving ground for the feasibility of DSMIPv6.

Source of the above content: Whitepaper - Analysis of Traffic Offload : WiFi to Rescue


Thursday, September 9, 2010

Local IP Access (LIPA) for Femtocells

I blogged about data offload earlier, for Femtocells. This traffic offload can be done via a feature called Local IP Access (LIPA). If you have LIPA support in your Home NodeB (HNB) or Home eNodeB (HeNB) then once you have camped on your Femtocell then you can access your local network as well as the network's IP network.

This would mean that you can directly print from your mobile to the local printer or access other PC's on your LAN. Note that I am also referring to access via Dongle as Mobile access though in practice I dont see much point of people just using dongles when they are in their Home Zone. Every laptop/notebook/netbook is now Wifi enabled so this situation doesnt benefit much for the dongle access.

I am sure there are quite a few unresolved issues with regards to the Security of the data, the IP address allocation, QoS, etc.

Continuous computing have a white paper on LIPA available that can be obtained by registering here. Anyway, enough information is available even without getting the PDF.

There is also a small presentation here that gives a bit of idea on LIPA.
As usual any comments, insights and references welcome.