Showing posts with label LiFi. Show all posts
Showing posts with label LiFi. Show all posts

Wednesday, September 5, 2018

LiFi can be a valuable tool for densification

LiFi has been popping up in the news recently. I blogged about it (as LED-Fi) 10 years back. While the concept has remained the same, many of the limitations associated with the technology has been overcome. One of the companies driving LiFi is Scottish startup called pureLiFi.


I heard Professor Harald Haas at IEEE Glasgow Summit speak about how many of the limitations of LiFi have been overcome in the last few years (see videos below). This is a welcome news as there is a tremendous amount of Visible Light Spectrum that is available for exploitation.


While many discussions on LiFi revolve round its use as access technology, I think the real potential lies in its use as backhaul for densification.

For 5G, when we are looking at small cells, every few hundred meters, probably on streetlights and lamp posts, there is a requirement for alternative backhaul to fiber. Its difficult to run fiber to each and every lamp post. Traditionally, this was solved by microwave solutions but another option available in 5G is Integrated Access and Backhauling (IAB) or Self-backhauling.


A better alternative could be to use LiFi for this backhauling between lamp posts or streetlights. This can help avoid complications with IAB when multiple nodes are close by and also any complications with the technology until it matures. This approach is of course being trialed but as the picture above shows, rural backhaul is just one option.
LiFi is being studied as part of IEEE 802.11bb group as well as its potential is being considered for 5G.

Here is a vieo playlist explaining LiFi technology in detail.




Further reading:

Friday, August 5, 2011

TED talk: Wireless data from every light bulb

What if every light bulb in the world could also transmit data? At TEDGlobal, Harald Haas demonstrates, for the first time, a device that could do exactly that. By flickering the light from a single LED, a change too quick for the human eye to detect, he can transmit far more data than a cellular tower -- and do it in a way that's more efficient, secure and widespread.


See also :



Thursday, October 16, 2008

LED-Fi: Replacement for WiFi Hotspots

Before we start, I have to confess that I made up LED-Fi. I was thinking more of LiFi but there is already a LiFi technology from Panasonic (not al all related ti this one though).
According to a post in cellular news, Lightbulbs Could Replace Wi-Fi Hotpsots in future:

­Boston University's College of Engineering is launching a program, under a National Science Foundation grant, to develop the next generation of wireless communications technology based on visible light instead of radio waves. Researchers expect to piggyback data communications capabilities on low-power light emitting diodes, or LEDs, to create "Smart Lighting" that would be faster and more secure than current network technology.
This initiative aims to develop an optical communication technology that would make an LED light the equivalent of a Wi-Fi access point.

"Imagine if your computer, iPhone, TV, radio and thermostat could all communicate with you when you walked in a room just by flipping the wall light switch and without the usual cluster of wires," said BU Engineering Professor Thomas Little. "This could be done with an LED-based communications network that also provides light - all over existing power lines with low power consumption, high reliability and no electromagnetic interference. Ultimately, the system is expected to be applicable from existing illumination devices, like swapping light bulbs for LEDs."

Little envisions indoor optical wireless communications systems that use white LED lighting within a room - akin to the television remote control device - to provide Internet connections to computers, personal digital assistants, television and radio reception, telephone connections and thermostat temperature control.

With widespread LED lighting, a vast network of light-based communication is possible, Little noted. A wireless device within sight of an enabled LED could send and receive data though the air - initially at speeds in the 1 to 10 megabit per second range - with each LED serving as an access point to the network. Such a network would have the potential to offer users greater bandwidth than current RF technology.

Moreover, since this white light does not penetrate opaque surfaces such as walls, there is a higher level of security, as eavesdropping is not possible. LED lights also consume far less energy than RF technology, offering the opportunity to build a communication network without added energy costs and reducing carbon emissions over the long term.

The ability to rapidly turn LED lights on and off - so fast the change is imperceptible to the human eye - is key to the technology. Flickering light in patterns enables data transmission without any noticeable change in room lighting. And the technology is not limited to indoor lights; its first real test may very well come outdoors, in the automotive industry.

I can understand how the downlink would work but not sure how uplink data transfer would work.

Similar technology using Light Bulbs has been available for some time. See this and this.