Showing posts with label Quintel. Show all posts
Showing posts with label Quintel. Show all posts

Friday, September 21, 2018

Base Station Antenna Considerations for 5G

I first mentioned Quintel in this blog three years back for their innovations in 4T8R/8T8R antennas. Since then they have been going strength to strength.


I heard David Barker, CTO of Quintel at Cambridge Wireless event titled "Radio technology for 5G – making it work" talking about the antennas consideration for 5G. There are quite a few important areas in this presentation for consideration. The presentation is embedded below:



Related Posts:

Sunday, June 14, 2015

Using 8T8R Antennas for TD-LTE


People often ask at various conferences if TD-LTE is a fad or is it something that will continue to exist along with the FDD networks. TDD networks were a bit tricky to implement in the past due to the necessity for the whole network to be time synchronised to make sure there is no interference. Also, if there was another TDD network in an adjacent band, it would have to be time synchronised with the first network too. In the areas bordering another country where they might have had their own TDD network in this band, it would have to be time synchronised too. This complexity meant that most networks were happy to live with FDD networks.

In 5G networks, at higher frequencies it would also make much more sense to use TDD to estimate the channel accurately. This is because the same channel would be used in downlink and uplink so the downlink channel can be estimated accurately based on the uplink channel condition. Due to small transmit time intervals (TTI's), these channel condition estimation would be quite good. Another advantage of this is that the beam could be formed and directed exactly at the user and it would appear as a null to other users.

This is where 8T8R or 8 Transmit and 8 Receive antennas in the base station can help. The more the antennas, the better and narrower the beam they can create. This can help send more energy to users at the cell edge and hence provide better and more reliable coverage there.  

SONWav Operator Solution

How do these antennas look like? 8T8R needs 8x Antennas at the Base Station Cell, and this is typically delivered using four X-Polar columns about half wavelength apart. I found the above picture on antenna specialist Quintel's page here, where the four column example is shown right. At spectrum bands such as 2.3GHz, 2.6GHz and 3.5GHz where TD-LTE networks are currently deployed, the antenna width is still practical. Quintel’s webpage also indicates how their technology allows 8T8R to be effectively emulated using only two X-Polar columns thus promising Slimline antenna solutions at lower frequency bands. China Mobile and Huawei have claimed to be the first ones to deploy these four X-Pol column 8T8R antennas. Sprint, USA is another network that has been actively deploying these 8T8R antennas.

There are couple of interesting tweets that show their kit below:

In fact Sprint has very ambitious plans. The following is from a report in Fierce Wireless:

Sprint's deployment of 8T8R (eight-branch transmit and eight-branch receive) radios in its 2.5 GHz TDD LTE spectrum is resulting in increased data throughput as well as coverage according to a new report from Signals Research. "Thanks to TM8 [transmission mode 8] and 8T8R, we observed meaningful increases in coverage and spectral efficiency, not to mention overall device throughput," Signals said in its executive summary of the report.

The firm said it extensively tested Sprint's network in the Chicago market using Band 41 (2.5 GHz) and Band 25 (1.9 GHz) in April using Accuver's drive test tools and two Galaxy Note Edge smartphones. Signals tested TM8 vs. non-TM8 performance, Band 41 and Band 25 coverage and performance as well as 8T8R receive vs. 2T2R coverage/performance and stand-alone carrier aggregation.

Sprint has been deploying 8T8R radios in its 2.5 GHz footprint, which the company has said will allow its cell sites to send multiple data streams, achieve better signal strength and increase data throughput and coverage without requiring more bandwidth.

The company also has said it will use carrier aggregation technology to combine TD-LTE and FDD-LTE transmission across all of its spectrum bands. In its fourth quarter 2014 earnings call with investors in February, Sprint CEO Marcelo Claure said implementing carrier aggregation across all Sprint spectrum bands means Sprint eventually will be able to deploy 1900 MHz FDD-LTE for uplink and 2.5 GHz TD-LTE for downlink, and ultimately improve the coverage of 2.5 GHz LTE to levels that its 1900 MHz spectrum currently achieves. Carrier aggregation, which is the most well-known and widely used technique of the LTE Advanced standard, bonds together disparate bands of spectrum to create wider channels and produce more capacity and faster speeds.

Alcatel-Lucent has a good article in their TECHzine, an extract from that below:

Field tests on base stations equipped with beamforming and 8T8R technologies confirm the sustainability of the solution. Operators can make the most of transmission (Tx) and receiving (Rx) diversity by adding in Tx and Rx paths at the eNodeB level, and beamforming delivers a direct impact on uplink and downlink performance at the cell edge.

By using 8 receiver paths instead of 2, cell range is increased by a factor of 1.5 – and this difference is emphasized by the fact that the number of sites needed is reduced by nearly 50 per cent. Furthermore, using the beamforming approach in transmission mode generates a specific beam per user which improves the quality of the signal received by the end-user’s device, or user equipment (UE). In fact, steering the radiated energy in a specific direction can reduce interference and improves the radio link, helping enable a better throughput. The orientation of the beam is decided by shifting the phases of the Tx paths based on signal feedback from the UE. This approach can deliver double the cell edge downlink throughput and can increase global average throughput by 65 per cent.

These types of deployments are made possible by using innovative radio heads and antenna solutions.  In traditional deployments, it would require the installation of multiple remote radio heads (RRH) and multiple antennas at the site to reach the same level of performance. The use of an 8T8R RRH and a smart antenna array, comprising 4 cross-polar antennas in a radome, means an 8T8R sector deployment can be done within the same footprint as traditional systems.



Anyone interested in seeing pictures of different 8T8R antennas like the one above, see here. While this page shows Samsung's antennas, you can navigate to equipment from other vendors.

Finally, if you can provide any additional info or feel there is something incorrect, please feel free to let me know via comments below.