Showing posts with label SSAC. Show all posts
Showing posts with label SSAC. Show all posts

Wednesday, May 15, 2013

Access Class Barring in LTE using System Information Block Type 2


As per 3GPP TS 22.011 (Service accessibility):

All UEs are members of one out of ten randomly allocated mobile populations, defined as Access Classes (AC) 0 to 9. The population number is stored in the SIM/USIM. In addition, UEs may be members of one or more out of 5 special categories (Access Classes 11 to 15), also held in the SIM/USIM. These are allocated to specific high priority users as follows. (The enumeration is not meant as a priority sequence):
Class 15 - PLMN Staff;
 -"-  14 - Emergency Services;
 -"-  13 - Public Utilities (e.g. water/gas suppliers);
 -"-  12 - Security Services;
 -"-  11 - For PLMN Use.

Now, in case of an overload situation like emergency or congestion, the network may want to reduce the access overload in the cell. To reduce the access from the UE, the network modifies the SIB2 (SystemInformationBlockType2) that contains access barring related parameters as shown below:




For regular users with AC 0 – 9, their access is controlled by ac-BarringFactor and ac-BarringTime. The UE generates a random number
– “Rand” generated by the UE has to pass the “persistent” test in order for the UE to access. By setting ac-BarringFactor to a lower value, the access from regular user is restricted (UE must generate a “rand” that is lower than the threshold in order to access) while priority users with AC 11 – 15 can access without any restriction

For users initiating emergency calls (AC 10) their access is controlled by ac-BarringForEmergency – boolean value: barring or not

For UEs with AC 11- 15, their access is controlled by ac-BarringForSpecialAC - boolean value: barring or not.


The network (E-UTRAN) shall be able to support access control based on the type of access attempt (i.e. mobile originating data or mobile originating signalling), in which indications to the UEs are broadcasted to guide the behaviour of UE. E-UTRAN shall be able to form combinations of access control based on the type of access attempt e.g. mobile originating and mobile terminating, mobile originating, or location registration.  The ‘mean duration of access control’ and the barring rate are broadcasted for each type of access attempt (i.e. mobile originating data or mobile originating signalling).

Another type of Access Control is the Service Specific Access Control (SSAC) that we have seen here before. SSAC is used to apply independent access control for telephony services (MMTEL) for mobile originating session requests from idle-mode.

Access control for CSFB provides a mechanism to prohibit UEs to access E-UTRAN to perform CSFB. It minimizes service availability degradation (i.e. radio resource shortage, congestion of fallback network) caused by mass simultaneous mobile originating requests for CSFB and increases the availability of the E-UTRAN resources for UEs accessing other services.  When an operator determines that it is appropriate to apply access control for CSFB, the network may broadcast necessary information to provide access control for CSFB for each class to UEs in a specific area. The network shall be able to separately apply access control for CSFB, SSAC and enhanced Access control on E-UTRAN.

Finally, we have the Extended Access Barring (EAB) that I have already described here before.

Wednesday, May 27, 2009

Service Specific Access Control (SSAC) in 3GPP Release 9


In an emergency situation, like Earthquake or Tsunami, degradation of quality of service may be experienced. Degradation in service availability and performance can be accepted in such situations, but mechanisms are desirable to minimize such degradation and maximize the efficiency of the remaining resources.

When Domain Specific Access Control (DSAC) mechanism was introduced for UMTS, the original motivation was to enable PS service continuation during congestion in CS Nodes in the case of major disaster like an Earthquake or a Tsunami.

In fact, the use case of DSAC in real UMTS deployment situation has been to apply access control separately on different types of services, such as voice and other packet-switched services.

For example, people’s psychological behaviour is to make a voice call in emergency situations and it is not likely to change. Hence, a mechanism will be needed to separately restrict voice calls and other services.

As EPS is a PS-Domain only system, DSAC access control does not apply.

The SSAC Technical Report (see Reference) identifies specific features useful when the network is subjected to decreased capacity and functionality. Considering the characteristics of voice and non-voice calls in EPS, requirements of the SSAC could be to restrict the voice calls and non-voice calls separately.

For a normal paid service there are QoS requirements. The provider can choose to shut down the service if the requirements cannot be met. In an emergency situation the most important thing is to keep communication channels uninterrupted, therefore the provider should preferably allow for a best effort (degradation of) service in preference to shutting the service down. During an emergency situation there should be a possibility for the service provider also to grant services, give extended credit to subscribers with accounts running empty. Under some circumstances (e.g. the terrorist attack in London on the 7 of July in 2005), overload access control may be invoked giving access only to authorities or a predefined set of users. It is up to national authorities to define and implement such schemes.

Reference: 3GPP TR 22.986 - Study on Service Specific Access Control