Showing posts with label WiTricity. Show all posts
Showing posts with label WiTricity. Show all posts

Friday, September 3, 2010

Wireless Power Consortium (WPC) launches Qi



The WPC has chosen the Qi logo as the international symbol of wireless charging compatibility. Qi—pronounced “chee”, meaning “vital energy” in Asian philosophy—represents an intangible flow of power. Qi is the sign of interoperability between power transmitters and power receivers. All Qi receivers will work with any Qi transmitter. Every electronic device bearing the Qi symbol can be charged on any charging pad or surface marked with the same Qi logo.


In a post last year I mentioned about the wireless chargers. There were few that were released but they are expensive and not sure about the reliability.

The following is from eWeek:

The Wireless Power Consortium (WPC) has launched version 1.0 of its specification for charging handsets and other devices wirelessly, to be marketed under the name “Qi”, and has certified initial products for Blackberry and iPhone devices.

The product announcements come a year after the consortium announced version .95 of the spec. The products, including chargers for iPhone and BlackBerry devices, are to be demonstrated at a WPC meeting later this month.

Qi is based on inductive power transmission, already used in products such as the Touchstone charging dock used by the Palm Pre and the charging station for the Wii gaming console remote control. Such chargers allow a device to charge when placed on a flat surface or in a sleeve or dock. They eliminate the need for the connection of a metal contact connection, such as is found in standard cordless phone chargers.

The consortium, which includes Samsung, Sanyo, Olympus, Philips and Texas Instruments, aims to standardise inductive power charging technology so that chargers can be used with any device bearing the Qi logo. The specification is suitable for devices using up to 5 Watts of power, which the WPC said should cover “the majority of handheld mobile devices”.

“Qi can now be integrated into products. All ingredients for growing the market are now on the table,” said WPC chair Menno Treffers, in a statement.

Initial Qi-certified products are to include a charging sleeve for the iPhone 3GS and 3G and a charger for the Blackberry Curve 8900, both to be launched by Energizer this autumn. Sanyo, ST-Ericsson, National Semiconductor and others said they are working on Qi products.

Prototypes are to be demonstrated at a WPC meeting in Eindhoven, Belgium, from 15 to 16 September. The WPC said it has now begun work on a wireless charging specification for devices requiring more power, including netbooks, laptops, tablet computers and power tools.

The consortium said it chose the brand Qi (pronounced “chee”) to refer to the concept of energy flow in traditional Chinese medicine, not the cult quiz show QI (for “quite interesting”) hosted by Stephen Fry on British TV.

The technology is less ambitious than the system demonstrated this summer by Witricity, which operates at a distance of a few metres, using resonance, which the company claims has green benefits through replacing disposable batteries


From ZDNet:

"It took us only 18 months to develop the Qi standard, and less than one month to see the first products certified. Qi is now the industry's choice for wireless power," said Menno Treffers, chairman of the WPC, in a statement.

Three sets of specifications — for interface definition, performance requirements and test procedure — were handed over to consortium members in July. The only standard released publicly as Qi 1.0 is the interface definition, with the others being restricted to consortium members. The WPC has grown from 27 members in July to over 55 members, including Nokia, LG, Research In Motion, Duracell, Energiser and Texas Instruments.

Wireless charging has great potential to make charging easier for consumers", said Petri Vuori, Nokia's director of mobile solutions research, in the WPC announcement statement. "For full user benefit, a standard ensuring cross-compatibility between different manufacturers' products is required. Qi low-power standard specification release 1.0 is a significant milestone into this direction."

The Qi standard uses inductive charging to transfer up to 5W of power between devices and chargers. There are already products on the market that support inductive charging, but these are tied to particular products, rather than being universal.

The WPC said that it now plans to begin work on a wireless power standard for medium power devices such as netbooks, laptops, tablet computers and power tools.

The group expects the technology to boost the market for wireless battery charging from 100,000 units to 100,000,000 units annually. "Qi can now be integrated into products. All ingredients for growing the market are now on the table." said Treffers.


You may also be interested in the video below:

Tuesday, November 24, 2009

Wireless Phone chargers coming in time for Christmas


We have talked about WiTricity and Nokia's self-recharging phones but they seem to be a bit far away.


PowerPad, made by the British gadget firm, Gear4, goes on sale next month and is among a new wave of devices sweeping us towards this unplugged utopia. A protective sleeve slips over an iPhone, slotting into its connecter socket. When the encased phone is placed on a mains-connected pad on, say, a desk or bedside table, electricity makes the jump. American outfits PowerMat and WildCharge make similar devices. Meanwhile, the Palm Pre smartphone has its own "Touchstone" charger and Dell's Latitude Z is the first wireless laptop.

"Wireless electricity is something we used to talk about years ago almost as a bit of a joke when we made predictions about the future," says Michael Brook, editor of the gadget magazine, T3. "To a lot of people it sounds insane that you could even do it – like some kind of witchcraft – but we're seeing a lot of interest in the first wireless chargers. It's going to take off in a big way." If not witchcraft, how does it work? Here's the science: Current from the mains is wired into a transmitter coil in the charging mat. This generates an electromagnetic field. A receiver coil in the phone's case takes the power from the magnetic field and converts it back into electricity that charges the device. By separating those coils, induction charging takes the 150-year-old principle used in the transformers found in most electric devices and splits it in half. No more tripping over laptop leads and their power bricks or diving under your desk to plug in your charger – just put your gadget on the mat and induction takes care of the rest.

But wireless induction, which, in a less-sophisticated form has charged electric toothbrush chargers and some medical implants for years, isn't perfect. Advances mean it's now viable for more demanding devices, but in the case of the PowerPad, it requires a case that adds bulk to what is already a hefty handset. Another drawback is the lack of compatibility – a phone with a PowerPad case will not charge on a PowerMat.

A growing group of electronics firms want to sdeal with the problem. The Wireless Power Consortium (WPC) includes Gear4 and the mobile phone giants, Nokia, Samsung and RIM, makers of the Blackberry. "These companies think there won't be a mass market for wireless charging unless there is a standard," says Menno Treffers, chairman of the consortium's steering group and a director at Philips.

Learning their lesson from the hopeless incompatibility of wired chargers, supporters of WPC's Qi ("chi") standard will put universal coils in devices that will work without cumbersome cases. They'll also be compatible with any charging mat, whether it's on your desk or recessed in a table at Starbucks. Treffers expects the first Qi-compatible devices to hit shelves next year.

But there remains a major flaw in charging mats – their need for proximity. Separation of even a millimetre renders most mats useless. Take your laptop to your bedroom to watch a DVD and you'll need a second mat or a cable. For a truly wireless scenario, electricity must make a giant leap.

Marin Soljacic is a Croatia-born physics professor at Massachusetts Institute of Technology (MIT). In 2002, he got annoyed when his wife's mobile phone woke him up with beeping when its battery ran low. "Not only did I have to wake up to plug it in but had to find the charger in the dark," he says. "I thought, power is everywhere – sockets all over the house – yet it isn't close enough." Soljacic was sure there must be a way to bridge the gap. He wanted his wife's phone to charge while it was still in her handbag. Two years ago, after months of equation crunching and computer modelling, Soljacic literally had a light bulb moment when he flicked the switch of a 60-watt lamp. No big deal except that the electricity powering the light was travelling two metres through thin air.

Soljacic and his team at MIT have since formed a company called WiTricity. Last July, its chief executive, Eric Giler, came to Oxford to demonstrate a wireless television. In front of an amazed audience at a technology conference, he powered up a giant plasma screen TV that had no cables. Electricity sprung from a sleek unit on the floor to a receiver mounted on the back of the screen. Last month, Giler travelled to Japan to show off a wirelessly-charged electric car. "Every time I show people they're blown away," Giler says. "When you see it up close it does appear almost magical."

Soljacic's magic takes the split-transformer model that powers charging mats and adds a key ingredient to make electricity fly. It's called resonance, the phenomenon that means a singer who matches the acoustic frequency of a wine glass can shatter it. Soljacic knew that two resonant objects of the same resonant frequency tend to exchange energy efficiently – imagine a tuning fork causing a nearby fork with the same frequency to chime sympathetically. His breakthrough was to work out a way to use resonance in magnetic form to transfer not sound but electricity. He explains: "By coupling the magnetic field that surrounds a resonant coil to another coil resonating at the same frequency, we can make the electricity hop from one to the other."

WiTricity's strongly coupled magnetic resonance means cars, TVs, free-standing lamps, and computers – anything that requires electricity – can be powered or charged from a central source in the ceiling or under the floor. And it's all totally safe. "The fields that we are generating in are about the same as the earth's magnetic field," Giler says. "We live in a magnetic field."

Giler and his team are in talks with big-name electronics manufacturers, including many of those who are putting their names to the Qi standard for charging mats. Giler says proximity charging is "first-generation stuff; by the end of next year you'll start seeing devices with WiTricity components built in". If he is right, homes and offices could soon be fully wireless. "It's a fundamental breakthrough in science and a game changer for the industry," he says. "Cut the cords and the world's going to change."

Interesting Video:




Sunday, January 4, 2009

WiTricity on display at CES 2009

No more batteries, no more chargers and no more wire spaghetti. This is the future promised by "wireless power", a means of broadcasting electricity through the air to laptops, iPods and other gadgets without the need for cables and sockets.

Untethered lighting, audio speakers and digital picture frames are expected to be among the first commercial products demonstrated in Las Vegas this week at the International Consumer Electronics Show, the world's biggest gadgets tradeshow.

Experts believe this is just the beginning and that eventually wireless electricity - dubbed "WiTricity" by some - could do for battery life what WiFi did for the internet. In a world without wires, laptop users in cafes and airport terminals would be inside an "electricity hotspot" and no longer have to delve past legs, bags and furniture in search of an awkwardly located socket.

Among the companies showcasing the ambitious technology at CES is
PowerBeam. Its system turns electricity into an invisible laser, then literally beams it, as heat, across the room to a solar cell that converts it back into electricity.

David Graham, the co-founder of PowerBeam, told the Observer: "We're going to delete the word 'recharge' from the English dictionary. If your cellphone is recharging on your desk all day, you won't be thinking about it."

The Silicon Valley company can currently use a laser to generate about 1.5 watts of power to a solar cell 10 metres away. This would be enough to power an electronic speaker or small LED (light-emitting diode) lights, but not enough to operate a laptop, which requires an estimated 30 to 50 watts. However, Graham said that the technology could comfortably be scaled up.

PowerBeam insists its laser does not pose a risk to users' health because it is simply moving heat from one place to another. Graham said that, if someone walked through the beam, it would shut down within a thousandth of a second, then restart once the path was clear.

This is a powerbeam demo on Youtube: