Thursday, September 18, 2008

Consensus on LTE Femtocell Layer as starting point

Many people in our industry are now of the opinion that the best way forward with LTE is to roll them out as Femtocells and then when more and more people start using them, then start deploying LTE Microcells/Macrocells.


There is this news in Gigaom:


Will personal cell towers replace the giant monstrosities currently sitting on rooftops and beside highways? Manish Singh, a VP with Continuous Computing, says that may be the case with the 4G buildout. He spoke with me about the company’s new line of software and hardware for carriers deploying LTE networks, noting that those in North America and Europe are asking whether they should deploy citywide — or one consumer at a time, using femtocells.

He said two things are driving this, one being the huge capital expenditure associated with building out a wireless network and the second being the length of time it has taken for widespread use of the 3G data networks. Verizon started deploying its EVDO networks in 2003, but only in the last few months — thanks to better pricing and the iPhone — has 3G data been used by many customers. When it comes to 4G provided by LTE, a controlled femtocell deployment ensures that customers could get LTE speeds of up to 150 Mbps (in theory) while at home or in coffee shops and use the existing 3G network while out and about.

The femtocell strategy will be used in another 4G rollout — this time for WiMAX — as part of the Clearwire joint venture involving Clearwire, Sprint, Google and several cable companies.


And there was this other news in Electronics Weekly by CTO of PicoChip:


Approximately 60% of mobile usage already takes place indoors, yet providing in-building coverage is a technical problem at the gigahertz frequencies used for Wimax and LTE. This is only set to get worse as the mobile continues to replace the home phone. Research indicates that, as “all you can eat” data packages become commonplace, this number is likely to reach 75% by 2011.

As transmission frequency increases, in-building penetration degrades. The additional attenuation reduces throughput for those users indoors, but there is another effect too: if the traditional macrocell allocates more power to reach the indoor user, this increases the interference for other users. Such realities inevitably have a quantifiable, negative impact on cell capacity, making it impossible to deliver 10 times the performance of 3G that is a fundamental requirement of the 4G vision.

Furthermore, the large cell approach is fundamentally less able to provide the benefits for which LTE was intended. As Cooper’s Law identifies, the best way to increase traffic density is via smaller cell sizes. A macrocell gets hit twice in this respect – it has poorer total throughput due to RF conditions and it has to spread that throughput over a much wider area.

Most operators considering the roll-out of LTE already have widespread HSPA networks. If terminal devices are going to be multimode (LTE and HSPA and GSM, for example), there is little point in deploying LTE everywhere and ensuring ubiquitous coverage, since the user experience may be no better than that provided by HSPA (or could be worse). The capital expenditure of a small cell approach need not be prohibitive. Indeed, substantial savings will be available on the back of the technological innovations that are driving down the bill of materials costs for residential femtocells.

A small cell approach also has cost implications for operating expenditure. These networks need to incorporate self-optimising technology to eliminate manual configuration during deployment and throughout the life of the equipment. These self-optimising networks (SONs) will, for instance, dynamically optimise radio network performance in use and provide intelligent backhaul capabilities. Operators are already recognising these requirements and mandating the provision of SONs; the emerging residential femtocell in WCDMA is proving this capability now.

This network architecture change will produce corresponding changes throughout the infrastructure value chain. The network equipment industry will move towards a consumer market approach – in a manner similar to the use of “commercial off-the-shelf” (COTS) technologies in the military equipment market, infrastructure manufacturers can borrow from femtocell innovations to benefit from consumer electronics economics. This will place an onus on IC suppliers to offer unprecedented levels of systems-level expertise and support.


The traditional macrocell approach will flounder at the next stage of network evolution: they are too expensive a solution and do not deliver the required results.


Last month in a blog, I mentioned that the Femtocell issue is becoming urgent because of the Release 8 freeze date in December. Othmar Kyas from Textronix argues the same thing in a different way in Total Telecom:

Currently, 3G femto access points, which are the WLAN-like devices residing at customer premises, are connected to so-called femto gateways via the customers' private DSL links using largely proprietary protocols to provide femto-specific functionalities such as plug and play, self-organising features, guest user management, roaming or charging. The femto gateway, which can connect to thousands of femto access points, translates the femto communication links to the "Iu" interface, which is the standard connection between a 3G core and a 3G access network.

In order to resolve resulting compatibility and interworking issues, 3GPP, the standardisation body behind the GSM family of technologies, has nominated this issue as a study item in the upcoming version of its standard, 3GPP Release 8.

Release 8 is also the first version of the 3GPP standard that contains the long awaited fourth-generation (4G) GSM variant LTE (Long-Term Evolution). Femto aspects in this study cover both 3G (UMTS) and 4G (LTE) infrastructures. 3GPP Release 8 describes the femto architecture in an official standard document for the first time. It introduces the concept of home base stations for 3G and 4G using the nomenclature Home Node B (HNB) and Home eNodeB (HeNB). Additionally, it defines a new interface capable of directly connecting home base stations to 3G and 4G core networks, the 'IuH' interface.

According to the 3GPP specification, all home base stations in the future will have to provide the following functionality:

• HNB and HeNB deployed as small UTRA and EUTRAN cells, respectively, in domestic, small office and similar environments.

• The HNB and HeNB interconnects with the 3G core and Evolved Packet Core, respectively, over a fixed broadband access network (e.g. DSL, cable, etc.).

• Support for full mobility into and out of a HeNB coverage including service continuity where applicable.

• Operators and owners of HeNB and HNB will be able to control access to the resources provided.

The full specification for HNBs, HeNBs and IuH will become available with Release 9 of the 3GPP standard, which probably will not publish before the beginning of 2010. (Release 8 is scheduled to freeze in December 2008 and to publish in early 2009).

The second challenge that needs to be overcome before the 'femto dream' can materialise is the cost of the femto hardware. To be successful in the competitive consumer market, femto access points probably need to sell below US$200. Current chip-set prices for 3G femto base stations still range significantly above $100, indicating that there is still substantial work needed in terms of manufacturing cost reduction.

Will the lack of standardisation or the hardware cost hinder the success of femto? Have equipment manufacturers and operators learned the expensive 3G-lesson? Will the femto equipment be as plug-and-play and as interoperable as claimed? Will the performance live up to the high customer expectations?

Finally, there will need to be attractive tariffs or flat-rate payment plan offers from operators to kick start a 3G business that reaches far beyond early adopters and business users but actually grabs a mass market.

Kick-starting the LTE technology as Femtocells may have its own advantage and will help iron out the initial problems which are bound to cause hiccups otherwise. Yesterday I mentioned that LTE may be far away but it can be rolled out earlier if this approach is taken. As it was mentioned earlier, 60% of the people access data from their homes, LTE based Femtocells may be what may turn this figure into 90%+. What is needed now would be some killer applications ;)

Wednesday, September 17, 2008

LTE still far far away

FierceWireless has a relaistic analysis of LTE on their website:

The adoption of 4G wireless and Long Term Evolution (LTE) network technology is a long way off and will probably not be adopted on a large scale by network operators until around 2015, according to the host and panel participants at Andrew Seybold's Wireless University, a co-located conference held in conjunction with the CTIA Wireless IT & Entertainment conference in San Francisco.

If LTE technology does come online, Seybold said, it will be at hotspots where there is an incredibly high demand for data, pointing out repeatedly that for carriers voice services still pay the bills and data does not.

Though LTE may provide 30 percent to 40 percent greater network efficiency in a 10 MHz spectrum over HSPA and EV-DO technology, Lawrence questioned whether or not that was sufficiently efficient to justify a multi-billion dollar investment in an entirely new network when 3G technology is just hitting its stride.

Even though this article does not paint a very rosy picture, I think its prediction is more on the conservative side. In earlier posts there is a mention of 32 million users by 2013 and even nationwide (USA) rollout by 2014, but they are not far off from this analysis. Considering that there are already over 3 Billion users expected to become 4 Billion by 2012, 32 million is not a very big number. There could be even more than that even in the hotspots.

The main thing that needs to happen now is for some operator to take the 'giant leap' of moving to LTE once its available. NttDoCoMo would definitely do that but is there anyone else willing to do the same?

Tuesday, September 16, 2008

Mobile Data 2008: $200 Billion and rising

Revenues from mobile data services are set to exceed US$200 billion this year for the first time, according to data sourced from Informa Telecoms & Media. Total mobile data revenues were approximately US$157 billion in 2007.


Research from the first quarter of 2008 reveals that mobile data service revenues exceeded US$49 billion, accounting for a 42.7% y-o-y increase. This figure means that mobile operators now generate approximately one fifth of their revenue from data services; this is significant given that a general slowdown in voice revenues is forcing the pace around the importance of data services for mobile operators.

Informa Telecoms & Media estimates that non-SMS data contributed US$17.48 billion of revenue in Q108, accounting for 35.6% of total data revenues.

The Asia Pacific region comprises 40% of the world's data revenues (over US$20 billion in Q108), representing an above average y-o-y growth rate of 48%. The biggest regional riser, however, is the Middle East, which despite contributing just 2% of the world's data revenues in the first quarter of 2008, has seen a 91.7% y-o-y increase in this figure to US$927 million. Aiding this acceleration is the 321% y-o-y rise in the number of HSPA subscribers in the region, which reached 2.9 million by the end of March 2008.

As per the above analysis, SMS still accounts for around 64% of the data revenues, not very different from the blog I posted last year.

Sunday, September 14, 2008

Longer battery life for Notebooks

In the past decade the no of users switching notebooks has dramatically increased. Not only are the business personal, normal users accessing computer at home now preferring notebooks. The reason is quire simple as notebook/laptop provides mobility within the premises especially with wireless technology is now getting better.

The only limitation with the notebooks is its battery life. After using laptop for a while we do have to plug it back into the mains to charge it. Industry fully recognizes this limitation and hence the battle to create the notebook with the longer battery life is stepping up as every day passes by.

Dell recently announced new Latitude E6400 notebook with up to 19 hours of battery life. I am sure though the increase in battery life comes at the expense of extra weight. This increase in the battery life is due to the introduction of a new technology called a “slice,” which uses lithium-ion prismatic cell technology to extend the battery but it also added nearly 2 pounds of weight to the notebook.

On Sept. 8, HP announced that the company’s engineers had pushed the limits of battery life to the 24-hour mark with the EliteBook 6930p. So Hewlett-Packard has unveiled its own contender in response to Dell's announcement, where a new set of features for its HP EliteBook 6930p will push the battery life up to 24 hours. With a monster 12-cell lithium ion battery pack, HP claims that its new EliteBook 6930p is able to achieve 24 hours of runtime. As I mentioned above, off course this adds an additional 1.8 pounds to the laptop, which weighs 4.7 pounds with a "standard" lithium ion battery. However, the version of the notebook with 24 hours of battery life will not be available until October.

These developments from the likes of HP and Dell are definitely encouraged by the Intel’s new hardware which makes it possible to achieve higher goals. That is why it doesn’t surprise me that the HP announcement coincided with the release of new solid-state SATA (Serial ATA) drives from Intel, which are some of the key components to the notebook’s long battery life.

Since SSDs (solid state drives) use NAND flash memory and have no moving parts, these components reduce the laptops' overall power consumption.

As I mentioned above, the current business climate requires increased mobility and larger battery life for the notebooks. PC vendors such as Dell and HP are trying to target a new class of notebooks to enterprise road warriors who want to push the limits of mobility and who travel on airplanes for a good portion of the day or make several stops with customers across the span of several days. While 24- and 19-hour-battery life thresholds might seem a bit excessive, these claims by HP and Dell help showcase the ability of these vendors to push current battery technology to its limits. Notebook companies like HP and Dell also allowing users to download specific BIOS and driver updates that allow them to manipulate the power-saving features further.

It must be noted that since everyone is used to stretching the limits of battery performance, the actual "standard" usage life remains to be seen. Still, it is undeniable that as sales of laptops continue to dominate in the area of personal computing, it is inevitable that manufacturers reach out to globetrotting enterprise road warriors seeking to push the edge of mobility.

LTE on Youtube

I was amazed today while browsing for information as to how much marketing stuff on LTE has been added to YouTube. Nortel seems to be using YouTube actively to market its LTE products. Then there are loads of other people including Motorola and Freescale.

Here is an LTE Drive Demo from Nortel:




Another one titled, "LTE-Enabled Consumer Device" from freescale:

Saturday, September 13, 2008

Next Generation All-IP Telecom Networks: Quality of Service Challenges and Is...

There is an Interesting tutorial on Next generation All IP Networks from Google on Youtube. Unfortunately they have not allowed sharing of that but you can see that on youtube:

http://www.youtube.com/watch?v=FC4E946i6aE

Friday, September 12, 2008

eHRPD: Stopgap between EV-DO and LTE

Interesting article from TMCnet.

As LTE is picking up steam, more and more operators opting for this technology. It is but natural that some CDMA2000 operators would like to joing the camp as well. Since there is no clear evolution path available from CDMA2000 to LTE, a soft option is required so that there is no immediate need to change the complete infrastructure and in case of any problems suffer.

The transition for CDMA operators from High Rate Packet Data (HRPD) to LTE will be over a period of several years, as is the case still with the transition from 1xRTT to HRPD. As a result, mobile operators must look for a migration path that will enhance their existing HRPD networks, while addressing LTE deployment requirements and will not require a ‘forklift’ upgrade.

The choice of migration path depends on many factors including radio access strategy, network resource strategy, services enabled, timing and cost. A key goal of LTE is to enhance service provisioning while simplifying interworking with non-3GPP mobile networks. This is essential for CDMA operators that have chosen to migrate to LTE.

Evolved HRPD is a method that allows the mobile operator to upgrade their existing HRPD packet core network using elements of the SAE/EPC architecture. Additionally, eHRPD is a more evolutionary path to LTE while also allowing for seamless service mobility — including seamless hand-offs — between the eHRPD and LTE networks.


One of the main advantages of eHRPD is the ability to provide seamless service mobility between HRPD and LTE access networks with a single mobility management protocol. Moreover, with eHRPD, the operator can leverage the benefit of optimized handover – no dropped sessions and reduced handover latency — between LTE and eHRPD. The benefit of seamless and optimized mobility for data is highly dependant on the mobile operator business model for adding new services. As new applications emerge, the requirement for seamless service mobility becomes greater. Since SAE is an all-IP network infrastructure, the network will quickly move to mobile VoIP for voice. Moreover, with the introduction of eHRPD, the operator can leverage the benefit of optimized intra eHRPD handover when the user crosses the HSGW boundaries. This capability does not exist in current HRPD systems.

You can read the complete article here.

Wednesday, September 10, 2008

Japan to trial its own 4G Technology

While we were focussing on the battle between LTE and WiMAX having already forgotten about UMB, Japan has been working on its Next G of PHS called the XGP.


The news came to light in ITU Telecom Asia, which concluded recently.


PHS was popular in Japan earlier on because it was very cheap and easy to deploy in the old days when other technologies were expensive. The main drawback it has is that it is not easy to perform handovers so the calls may drop while in the subway.

PHS operator WillCom has won, one of the spectrum block in 2.5GHz band and is going to start trials next April in Tokyo, Nagoya and Osaka and offer 20Mbps of symmetrical data speeds using a 10MHz spectrum block. A full commercial service is scheduled for August 2009.
The service will be known as WILLCOM CORE (Communication Of Revolution and Evolution)
The technology behind is based on the PHS architecture of numerous microcells offering limited coverage, but will incorporate a new air radio interface based on OFDMA/TDMA/TDD methodologies. Kyocera and UTStarcom will manufacture the radio access equipment for XGP while NEC Infrontia and NetIndex are developing the data card modules for the service. Canada’s Wavesat and Israel’s Altair is supplying the baseband chips for XGP. Like LTE and WiMAX, XGP will support viable spectrum blocks.

But while LTE and WiMAX are based on increments of 1.6MHz for its carrier size, XGP has aligned itself with CDMA and supports increments of 1.25MHz carriers.

With a basic 10MHz carrier system, XGP will offer data speeds of 20Mbps, but future systems incorporating MIMO and SDMA (space division multiple access) will be capable of supporting maximum symmetrical data speeds of 100Mbps. At the same time, the technical description for XGP will support handoffs between base stations for users travelling at up to 300 km/h.

A good presentation from Willcom on XGP is available here.

PHS = Personal Handyphone System

Tuesday, September 9, 2008

Which is the year of Femtocell: 2009, 2010 or 2011?

In the beginning of the year, I listed the technologies that would be successful in 2008. According to that 2008 was setting the stage for Femtocells and 2009 will be the year when it would be rolled out mass market. According to this report from Heavy Reading (via Unstrung), this is not going to happen.

Most operators do not plan to roll out commercial femtocell services until late 2009 and 2010

The "Femtocell Deployment and Market Perception Study" reveals that early 2010 will be the critical period for commercial trials of the tiny home base stations as operators prepare for full launches later that year or in 2011. This does not necessarily mean that mass market deployments will start in 2010, but rather early commercial activity will ramp up at this time.

Among the 111 responses from the 79 operators surveyed, 54 percent said that they planned to launch services between the second half of 2009 and the end of 2010, and 33 percent said their commercial femtocell launches were scheduled for 2011 or later.

This may dismay quite a few people in the Femtocell market as they have been expecting things to happen sooner rather than later. Lack of standards and interference have been cited as the main reason for delay but I think that both these issues are not critical for delaying the deployment. One of the other less well known reasons is the doubt of it succeeding and lack of demonstrable Femtozone applications that may be used to bill Femtocell as a must have gadget.

According to the same report: the operators surveyed also ranked their perceptions of femtocell equipment suppliers. Alcatel-Lucent got top marks among the large vendors, while ip.access Ltd. was the highest ranked among the smaller femto vendors.

I have seen and used atleast one of the Femtocell and what an amazing thing it is!

I am also in process of studying the areas where Femtocells are going to face practical problems when they are rolled out. Any input on this is welcome.

Monday, September 8, 2008

India to finally unrestrict VoIP

Even though India supplies the world with software and IT engineers, till now it was not possible for people living there to fully use VoIP facility. It was illegal to call any phone using the computer. This is about to change at the Telecom Regulatory Authority of India (TRAI) has proposed that people be allowed to make calls using internet to fixed lines. What does it mean for the people? Well, the price of domestic long distance calls is supposed to halve to less than a penny (just over a cent) and international calls are supposed to get cheaper by 20%. It would also become cheaper for people to call India from abroad. Already in UK, Vodafone is allowing people to call India from a Pay as you talk phone for just 5 p per min. This may also help the Indian call centres as right now, the onshore companies have to pay termination charges when the calls get routed to India. This would mean that Indian call centres may become cheaper and more competetive.

Now for the small print; only the ISP's will be permitted to compete with the telephone companies using this VoIP. The fixed line and the mobile operators are up in arms about this because the ISPs are going to get free money whereas the mobile operators had to pay license fees for entry into the market.

This may not be a big problem for the time being as at the moment India only has around 5 million broadband subscribers whereas there are 287 million mobile subscribers and around 40 million fixed line subscribers. Also, the call rates are so cheap that additional investment in a PC and broadband connection (which is comparatively expensive) may not be lucrative.

If the recommendations by TRAI are accepted, there will surely be a VoIP revolution in India. The existing fixed line and mobile operators will have to come up with some challenging billing models to survive in future.