Pages

Sunday, 22 January 2017

Augmented / Virtual Reality Requirements for 5G


Ever wondered whether 5G would be good enough for Augmented and Virtual Reality or will we need to wait for 6G? Some researchers are trying to identify the AR / VR requirements, challenges from a mobile network point of view and possible options to solve these challenges. They have recently published a research paper on this topic.

Here is a summary of some of the interesting things I found in this paper:

  • Humans process nearly 5.2 gigabits per second of sound and light.
  • Without moving the head, our eyes can mechanically shift across a field of view of at least 150 degrees horizontally (i.e., 30:000 pixels) and 120 degrees vertically (i.e., 24:000 pixels).
  • The human eye can perceive much faster motion (150 frames per second). For sports, games, science and other high-speed immersive experiences, video rates of 60 or even 120 frames per second are needed to avoid motion blur and disorientation.
  • 5.2 gigabits per second of network throughput (if not more) is needed.
  • At today’s 4K resolution, 30 frames per second and 24 bits per pixel, and using a 300 : 1 compression ratio, yields 300 megabits per second of imagery. That is more than 10x the typical requirement for a high-quality 4K movie experience.
  • 5G network architectures are being designed to move the post-processing at the network edge so that processors at the edge and the client display devices (VR goggles, smart TVs, tablets and phones) carry out advanced image processing to stitch camera feeds into dramatic effects.
  • In order to tackle these grand challenges, the 5G network architecture (radio access network (RAN), Edge and Core) will need to be much smarter than ever before by adaptively and dynamically making use of concepts such as software defined networking (SDN), network function virtualization (NFV) and network slicing, to mention a few facilitating a more flexible allocating resources (resource blocks (RBs), access point, storage, memory, computing, etc.) to meet these demands.
  • Immersive technology will require massive improvements in terms of bandwidth, latency and reliablility. Current remotereality prototype requires 100-to-200Mbps for a one-way immersive experience. While MirrorSys uses a single 8K, estimates about photo-realistic VR will require two 16K x 16K screens (one to each eye).
  • Latency is the other big issue in addition to reliability. With an augmented reality headset, for example, real-life visual and auditory information has to be taken in through the camera and sent to the fog/cloud for processing, with digital information sent back to be precisely overlaid onto the real-world environment, and all this has to happen in less time than it takes for humans to start noticing lag (no more than 13ms). Factoring in the much needed high reliability criteria on top of these bandwidth and delay requirements clearly indicates the need for interactions between several research disciplines.


These key research directions and scientific challenges are summarized in Fig. 3 (above), and discussed in the paper. I advice you to read it here.

Related posts:

1 comment:

  1. Really hope the 5G will come sooner than expected. However, 4G is quite and fast at certain place and spot only. At the moment of smartphone technology, i think 4G is great enough but not widely coverage. So, if 5G is introduced, it will push the 4G technology across the nation just like the 3G situation. Now everywhere got the 3G connection (at least), but before the 3G connection is everywhere, the 4G connection being introduced slowly. So the 5G need to come to market first.

    ReplyDelete