CW (Cambridge Wireless) held a couple of very interesting events from 2 very popular groups.
The first one was on "5G wide area coverage: macro cells – the why and the how". This event looked at the design and optimisation of the macro cell layer and its role within future heterogeneous networks. You can access the presentations for limited time on CW website here.
The second one was on "Commercialising millimetre-wave technology". The event reviewed the commercial opportunities at millimetre-wave frequencies, what bands are available and what licensing is needed. You can access the presentations on CW website for limited time here.
The 10th Annual HITB Security Conference took place from the 6th till the 10th of May 2019 in The Netherlands. The theme for the conference this year is 'The Hacks of Future Past'. One of the presentations was on the topic 'VoLTE Phreaking' by Ralph Moonen, Technical Director at Secura.
The talk covered variety of topics:
A little history of telephony hacking (in NL/EU)
The landscape now
Intercepting communications in 2019
Vulnerabilities discovered: some new, some old
An app to monitor traffic on a phone
The talk provides details on how VoLTE can potentially be hacked. In a lot of instances it is some or the other misconfigurations that makes VoLTE less secure. One of the slides that caught my attention was the differences in VoLTE signaling from different operators (probably due to different vendors) as shown above.
Anyway, I am not going into more details here. The presentation is available here.
I wrote this blog post '2G / 3G Switch Off: A Tale of Two Worlds' back in Oct 2017. Since then I have continued to see the same trend in 2G/3G shutdown announcements. Based on that post and also taking the GSMA Mobile Economy Report into account, we have created a short tutorial on 2G/3G switch off and how the trends are affected by the launch of KaiOS based Smart Feature phones. Presentation and video embedded below. Would love to hear your thoughts.
Last month I posted about the slides and videos from 6G Wireless Summit. Some of the videos were added later on. The presentation by Dr. Qi Bi, President of China Telecom Technology Innovation Center and the CTO of China Telecom Research Institute, was not shared but the video of the talk is available and it is quite insightful.
Of the many gems from the talk, I wanted to highlight couple of things. One was the ARPU, that Dr. Bi pointed out has remained the same, regardless of the technology. The other being 5G performance targets, some can be achieved, some are achievable at a price and some are just not achievable. This should be taken into account while designing 6G.
I recently did another 5G training for CW (Cambridge Wireless) & UK5G. One of the sections in that was about Use Cases. A very common questions that people ask is what can 5G do that 4G can't. The answer frankly is sometimes not very straightforward.
While you can get a very high speed and very reasonable latency 4G system, it's not necessarily a commonplace. Similarly 5G is a bit over-hyped. There is a lot of potential in the technology but the theory may not translate into practice. Take for example millimeter wave. There is a large amount of bandwidth that can be available to each operator in this spectrum. The laws of physics however restrict how far mmWave can travel and also the fact that mmWave does not penetrate through glass, walls, etc. Does that mean that an indoor 5G system would be required to complement an outdoor one? Would Wi-Fi be able to complement cellular in-building? There are many unanswered questions at the moment.
There is also the debate around 5G icon displayed on your smartphones. When you see 5G, would it really be 5G or just re-branded 4G? Light Reading has explained this issue nicely here.
So while there are many potential applications & use cases that will benefit from 5G in the long run, the answers are not that easily available today. Anyhow, the collection of videos and slides embedded below will provide you with an insight on how different vendors and operators are looking at potentially using 5G.
3GPP TS 22.261, Service requirements for the 5G system; Stage 1 gives a definition of non-public network which is simply defined as 'a network that is intended for non-public use'. Section 6.25 provides more info
Non-public networks are intended for the sole use of a private entity such as an enterprise, and may be deployed in a variety of configurations, utilising both virtual and physical elements. Specifically, they may be deployed as completely standalone networks, they may be hosted by a PLMN, or they may be offered as a slice of a PLMN. In any of these deployment options, it is expected that unauthorised UEs, those that are not associated with the enterprise, will not attempt to access the non-public network, which could result in resources being used to reject that UE and thereby not be available for the UEs of the enterprise. It is also expected that UEs of the enterprise will not attempt to access a network they are not authorised to access. For example, some enterprise UEs may be restricted to only access the non-public network of the enterprise, even if PLMN coverage is available in the same geographic area. Other enterprise UEs may be able to access both a non-public network and a PLMN where specifically allowed.
The requirements section is interesting too:
The 5G system shall support non-public networks.
The 5G system shall support non-public networks that provide coverage within a specific geographic area.
The 5G system shall support both physical and virtual non-public networks.
The 5G system shall support standalone operation of a non-public network, i.e. a non-public network may be able to operate without dependency on a PLMN.
Subject to an agreement between the operators and service providers, operator policies and the regional or national regulatory requirements, the 5G system shall support for non-public network subscribers:
access to subscribed PLMN services via the non-public network;
seamless service continuity for subscribed PLMN services between a non-public network and a PLMN;
access to selected non-public network services via a PLMN;
seamless service continuity for non-public network services between a non-public network and a PLMN.
A non-public network subscriber to access a PLMN service shall have a service subscription using 3GPP identifiers and credentials provided or accepted by a PLMN.
The 5G system shall support a mechanism for a UE to identify and select a non-public network.
NOTE:Different network selection mechanisms may be used for physical vs virtual non-public networks.
The 5G system shall support identifiers for a large number of non-public networks to minimize collision likelihood between assigned identifiers.
The 5G system shall support a mechanism to prevent a UE with a subscription to a non-public network from automatically selecting and attaching to a PLMN or non-public network it is not authorised to select.
The 5G system shall support a mechanism to prevent a UE with a subscription to a PLMN from automatically selecting and attaching to a non-public network it is not authorised to select.
The 5G system shall support a change of host of a non-public network from one PLMN to another PLMN without changing the network selection information stored in the UEs of the non-public network.
I think it's like M2M (Machine-to-Machine) that is used commonly by the industry but the term used in 3GPP standards are MTC (Machine Type Communications)
5G ACIA (5G Alliance for Connected Industries and Automation), a Working Party of ZVEI (German Electrical and Electronic Manufacturers’ Association) published a White Paper on '5G Non-Public Networks for Industrial Scenarios'.
This paper describes four industrial (IIoT) deployment scenarios for 3GPP-defined 5G non-public networks. The paper also considers key aspects, in particular service attributes that can help to highlight the differences between these scenarios. In contrast to a network that offers mobile network services to the general public, a 5G non-public network (NPN, also sometimes called a private network) provides 5G network services to a clearly defined user organisation or group of organisations.
Dean Bubley, Outspoken Telecoms & Mobile Industry Analyst, Consultant & Chair/Speaker on Networks, Wireless, Internet, AI & Futurism (as stated in his LinkedIn profile), recently did a webinar on Edge computing for Apis Training. The video recording is available online and embedded below.
Couple of things worth highlighting (but do listen to the webinar, it's got lots of interesting stuff) is as shown in the picture above and below. One of the benefits of Edge is Low latency. If that is the driver then you need to know where your Edge should be because latency will be affected based on the location. Another important point worth remembering is how many Edge-compute facilities can you afford. Latency & the number of facilities are linked to each other so worth thinking about in the beginning as it may not be straightforward to change later.