Showing posts with label White Papers and Reports. Show all posts
Showing posts with label White Papers and Reports. Show all posts

Wednesday, January 4, 2023

How Many People are Still Unconnected in 2023 and Why?

I hear in many presentations that half the world is still unconnected so we need a solution XYZ. In this post I will explore how many people are really unconnected and why.

GSMA produces an annual report called "The State of Mobile Internet Connectivity Report". The latest issue from Nov 2022 explains the number of people that are still unconnected because of coverage gap or the usage gap. Quoting from the report:

(click to expand the image)

By the end of 2021, 4.3 billion people were using mobile internet, representing 55% of the world’s population, up from 31% in 2014 (see Figure 1). This translates into almost 300 million people coming online in the past year. Most of the people who started using mobile internet in 2021 came from LMICs (low and middle-income countries), where 94% of the unconnected population live.

By the end of 2021, the share of the world’s population living in areas without mobile broadband coverage stood at 5%, meaning that 400 million people are still not covered by a mobile broadband network. Since 2018, this coverage gap has reduced by only 1 pp a year (see Figure 1), highlighting how the remaining uncovered communities – which are predominantly rural, poor and sparsely populated – are the most challenging to reach in a financially sustainable manner. For example, in least developed countries (LDCs) almost 30% of people living in rural areas are still not covered by a mobile broadband network.

A much larger proportion of the unconnected live in areas already covered by mobile broadband networks. By the end of 2021, 40% of the world’s population (3.2 billion people) were living within the footprint of a mobile broadband network but not using mobile internet. While this usage gap remained relatively unchanged between 2014 and 2019, it declined by 300 million people (or 5 pp) over the past two years. However, the usage gap remains substantial and is now almost eight times the size of the coverage gap. It is worth noting that these numbers are for the total population, some of whom would never be expected to use the internet (e.g. young infants). Indeed, taking adults (18 years old and above) only, the usage gap stands at 25%, a much smaller though still significant gap.

The report further expands the reasons for usage gap as shown below:

(click to enlarge)

As can be seen, the reasons have been grouped in 5 major categories as follows:

  • Literacy and digital skills
    • I do not know how to access the internet on a mobile phone
    • I have difficulties with reading and writing
    • I find it difficult to use a mobile in general (calling, texting or mobile internet)
    • I do not have time to learn how to use the internet on a mobile phone
    • There is nobody to teach or help me to use mobile internet
  • Relevance
    • There is not enough in my own language on the internet
    • I do not find the internet relevant enough for me (not useful or not interesting)
  • Affordability
    • The cost of buying a mobile phone that can access the internet is too high for me
    • The cost of buying data to use the internet on my mobile is too high for me
  • Safety and security
    • I am concerned that I would receive unwanted contact from people online (e.g. scam emails or unwanted messages)
    • I am concerned that it might expose myself or my family to harmful content
    • I am concerned that my identity or other private information will be stolen or misused
  • Access
    • There is limited or no coverage to access the internet in my area
    • Using the internet on my mobile phone is too slow (e.g. connection speeds)
    • My family does not approve of me using the internet on a mobile phone
    • It is hard to find a mobile phone agent or representative to buy mobile internet data from
    • Using the internet on my mobile phone uses too much battery
    • I cannot borrow or pay to use internet on another person’s phone
    • It is hard to find somewhere to buy a mobile phone which is able to connect to the internet

There are many reports of blackmail and extortion cases in India that are linked to mobile phones and internet. You can read about them here and here. These also discourage a lot of people to embrace smartphones, especially women.  

Although women account for close to half the world's population, according to a UN report on gender digital divide, 259 million fewer women have access to the Internet than men in 2022. 

I hope that the next time presenters are talking about the number of unconnected people, they put things in context and mention the connectivity and the usage gap. 

Finally, here is a webinar recording from M4D discussing the latest trends in global connectivity from The State of Mobile Internet Connectivity Report 2022:

Related Posts

Saturday, September 10, 2022

CUPS for Flexible U-Plane Processing Based on Traffic Characteristics

I looked at Control and User Plane Separation (CUPS) in a tutorial, nearly five years back here. Since then most focus has been on 5G, not just on my blogs but also from the industry. 

Earlier this year, NTT Docomo's Technical Journal looked at CUPS for Flexible U-Plane Processing Based on Traffic Characteristics. The following is an extract from the article:

At the initial deployment phase of 5th Generation mobile communication systems (5G), the 5G Non-Stand-Alone (NSA) architecture was widely adopted to realize 5G services by connecting 5G base stations to the existing Evolved Packet Core (EPC). As applications based on 5G become more widespread, the need for EPC to achieve higher speed and capacity communications, lower latency communications and simultaneous connection of many terminals than ever has become urgent. Specifically, it is necessary to increase the number of high-capacity gateway devices capable of processing hundreds of Gbps to several Tbps to achieve high-speed, high-capacity communications, to distribute gateway devices near base station facilities to achieve even lower latency communications, and to improve session processing performance for connecting massive numbers of terminals simultaneously.

Conventional single gateway devices have both Control Plane (C-Plane) functions to manage communication sessions and control communications, and User Plane (U-Plane) functions to handle communications traffic. Therefore, if the previously assumed balance between the number of sessions and communications capacity is disrupted, either the C-Plane or the U-Plane will have excess processing capacity. In high-speed, high-capacity communications, the C-Plane has excess processing power, and in multiple terminal simultaneous connections, the U-Plane has excess processing power because the volume of communications is small compared to the number of sessions. If the C-Plane and U-Plane can be scaled independently, these issues can be resolved, and efficient facility design can be expected. In addition, low-latency communications require distributed deployment of the U-Plane function near the base station facilities to reduce propagation delay. However, in the distributed deployment of conventional devices with integrated C-Plane and U-Plane functions, the number of sessions and communication volume are unevenly distributed among the gateway devices, resulting in a decrease in the efficiency of facility utilization. Since there is no need for distributed deployment of C-Plane functions, if the C-Plane and U-Plane functions can be separated and the way they are deployed changed according to their characteristics, the loss of facility utilization efficiency related to C-Plane processing capacity could be greatly reduced.

CUPS is an architecture defined in 3GPP TS 23.214 that separates the Serving GateWay (SGW)/Packet data network GateWay (PGW) configuration of the EPC into the C-Plane and U-Plane. The CUPS architecture is designed so that there is no difference in the interface between the existing architecture and the CUPS architecture - even with CUPS architecture deployed in SGW/PGW, opposing devices such as a Mobility Management Entity (MME), Policy and Charging Rules Function (PCRF), evolved NodeB (eNB)/ next generation NodeB (gNB), and SGWs/PGWs of other networks such as Mobile Virtual Network Operator (MVNO) and roaming are not affected. For C-Plane, SGW Control plane function (SGW-C)/PGW Control plane function (PGW-C), and for U-Plane, SGW User plane function (SGW- U)/PGW User plane function (PGW-U) are equipped with call processing functions. By introducing CUPS, C-Plane/U-Plane capacities can be expanded individually as needed. Combined SGW-C/PGW-C and Combined SGW-U/PGW-U can handle the functions of SGW and PGW in common devices. In the standard specification, in addition to SGW/PGW, the Traffic Detection Function (TDF) can also be separated into TDF-C and TDF-U, but the details are omitted in this article.

From above background, NTT DOCOMO has been planning to deploy Control and User Plane Separation (CUPS) architecture to realize the separation of C-Plane and U-Plane functions as specified in 3rd Generation Partnership Project Technical Specification (3GPP TS) 23.214. Separating the C-Plane and U-Plane functions of gateway devices with CUPS architecture makes it possible to scale the C-Plane and U-Plane independently and balance the centralized deployment of C-Plane functions with the distributed deployment of U- Plane functions, thereby enabling the deployment and development of a flexible and efficient core network. In addition to solving the aforementioned issues, CUPS will also enable independent equipment upgrades for C-Plane and U-Plane functions, and the adoption of U-Plane devices specialized for specific traffic characteristics.

In the user perspective, the introduction of CUPS can be expected to dramatically improve the user experience through the operation of facilities specializing in various requirements, and enable further increases in facilities and lower charges to pursue user benefits by improving the efficiency of core network facilities.

Regarding the CUPS architecture, a source of value for both operators and users, this article includes an overview of the architecture, additional control protocols, U-Plane control schemes based on traffic characteristics, and future developments toward a 5G Stand-Alone (5G SA) architecture.

The article is available here.

Related Posts

Monday, August 22, 2022

DCCA Features and Enhancements in 5G New Radio

In another new whitepaper on 5G-Advanced, Nokia has detailed DCCA (DC + CA) features and enhancements from Rel-15 until Rel-18. The following is an extract from the paper:

Mobility is one of the essential components of 5G-Advanced. 3GPP has already defined a set of functionalities and features that will be a part of the 5G-Advanced Release 18 package. These functionalities can be grouped into four areas: providing new levels of experience, network extension into new areas, mobile network expansion beyond connectivity, and providing operational support excellence. Mobility enhancements in Release 18 will be an important part of the ‘Experience enhancements” block of features, with the goal of reducing interruption time and improving mobility robustness.

Fig. 2 shows a high-level schematic of mobility and dual connectivity (DC)/Carrier Aggregation (CA) related mechanisms that are introduced in the different 5G legacy releases towards 5G-Advanced in Release 18. Innovations such as Conditional Handover (CHO) and dual active protocol stack (DAPS) are introduced in Release 16. More efficient operation of carrier aggregation (CA), dual connectivity (DC), and the combination of those denoted as DCCA, as well as Multi-Radio Access Technology DC (MR-DC) are introduced through Releases 16 and 17.

For harvesting the full benefits of CA/DC techniques, it is important to have an agile framework where secondary cell(s) are timely identified and configured to the UE when needed. This is of importance for non-standalone (NSA) deployments where a carrier on NR should be quickly configured and activated to take advantage of 5G. Similarly, it is of importance for standalone (SA) cases where e.g. a UE with its Primary Cell (PCell) on NR Frequency Range 1 (FR1) wants to take additional carriers, either on FR1 and/or FR2 bands, into use. Thus, there is a need to support cases where the aggregated carriers are either from the same or difference sites. The management of such additional carriers for a UE shall be highly agile in line with the user traffic and QoS demands; quickly enabling usage of additional carriers when needed and again quickly released when no longer demanded to avoid unnecessary processing at the UE and to reduce its energy consumption. This is of particular importance for users with time-varying traffic demands (aka burst traffic conditions).

In the following, we describe how such carrier management is gradually improved by introducing enhancements for cell identification, RRM measurements and reduced reporting delays from UEs. As well as innovations related to Conditional PSCell Addition and Change (CPAC) and deactivation of secondary cell groups are outlined.

The paper goes on to discuss the following scenarios in detail for DCCA enhancements:

  • Early measurement reporting
  • Secondary cell (SCell) activation time improvements
    • Direct SCell activation
    • Temporary RS (TRS)-based SCell Activation
  • Conditional Secondary Node (SN) addition and change for fast access
  • Activation of secondary cell group

The table below summarizes the DCCA features in 5G NR

Related Posts

Tuesday, August 16, 2022

Managing 5G Signalling Storms with Service Communication Proxy (SCP)

When we made our 5G Service Based Architecture (SBA) tutorial some four years back, it was based on Release-15 of the 3GPP standards. All Network Functions (NFs) simply sent discovery requests to the Network Repository Function (NRF). While this works great for trials and small scale deployments it can also lead to issues as can be seen in the slide above.

In 3GPP Release-16 the Service Communication Proxy (SCP) has now been introduced to allow the Control Plane network to handle and prioritize massive numbers of requests in real time. The SCP becomes the control point that mediates all Signalling and Control Plane messages in the network core.

SCP routing directs the flow of millions of simultaneous 5G function requests and responses for network slicing, microservice instantiation or edge compute access. It also plays a critical role in optimizing floods of discovery requests to the NRF and in overall Control Plane load balancing, traffic prioritization and message management.

A detailed whitepaper on '5G Signaling and Control Plane Traffic Depends on Service Communications Proxy (SCP)' by Strategy Analytics is available on Huawei's website here. This report was a follow on from the 'Signaling — The Critical Nerve Center of 5G Networks' webinar here.

Related Posts:

Wednesday, August 10, 2022

AI/ML Enhancements in 5G-Advanced for Intelligent Network Automation

Artificial Intelligence (AI) and Machine Learning (ML) has been touted to automate the network and simplify the identification and debug of issues that will arise with increasing network complexity. For this reason 3GPP has many different features that are already present in Release-17 but are expected to evolve further in Release-18. 

I have already covered some of this topics in earlier posts. Ericsson's recent whitepaper '5G Advanced: Evolution towards 6G' also has a good summary on this topic. Here is an extract from that:

Intelligent network automation

With increasing complexity in network design, for example, many different deployment and usage options, conventional approaches will not be able to provide swift solutions in many cases. It is well understood that manually reconfiguring cellular communications systems could be inefficient and costly.

Artificial intelligence (AI) and machine learning (ML) have the capability to solve complex and unstructured network problems by using a large amount of data collected from wireless networks. Thus, there has been a lot of attention lately on utilizing AI/ML-based solutions to improve network performance and hence providing avenues for inserting intelligence in network operations.

AI model design, optimization, and life-cycle management rely heavily on data. A wireless network can collect a large amount of data as part of its normal operations. This provides a good base for designing intelligent network solutions. 5G Advanced addresses how to optimize the standardized interfaces for data collection while leaving the automation functionality, for example, training and inference up to the proprietary implementation to support full flexibility in the automation of the network.

AI/ML for RAN enhancements

Three use cases have been identified in the Release 17 study item related to RAN performance enhancement by using AI/ML techniques. Selected use cases from the Release 17 technical report will be taken into the normative phase in the next releases. The selected use cases are: 1) network energy saving; 2) load balancing; and 3) mobility optimization.

The selected use cases can be supported by enhancements to current NR interfaces, targeting performance improvements using AI/ML functionality in the RAN while maintaining the 5G NR architecture. One of the goals is to ensure vendor incentives in terms of innovation and competitiveness by keeping the AI model implementation specific. As shown in Fig.2 (on the top) an intent-based management approach can be adopted for use cases involving RAN-OAM interactions. The intent will be received by the RAN. The RAN will need to understand the intent and trigger certain functionalities as a result.

AI/ML for physical layer enhancements

It is generally expected that AI/ML functionality can be used to improve the radio performance and/or reduced the complexity/overhead of the radio interface. 3GPP TSG RAN has selected three use cases to study the potential air interface performance improvements through AI/ML techniques, such as beam management, channel state information feedback enhancement, and positioning accuracy enhancements for different scenarios. The AI/ML-based methods may provide benefits compared to traditional methods in the radio interface. The challenge will be to define a unified AI/ML framework for the air interface by adequate AI/ML model characterization using various levels of collaboration between gNB and UE.

AI/ML in 5G core

5G Advanced will provide further enhancements of the architecture for analytics and on ML model life-cycle management, for example, to improve correctness of the models. The advancements in the architecture for analytics and data collection serve as a good foundation for AI/ML-based use cases within the different network functions (NFs). Additional use cases will be studied where NFs make use of analytics with the target to support in their decision making, for example, network data analytics functions (NWDAF)- assisted generation of UE policy for network slicing.

If you are interested in studying this topic further, check out 3GPP TR 37.817: Study on enhancement for data collection for NR and ENDC. Download the latest version from here.

Related Posts

Monday, March 7, 2022

GSMA Releases Mobile Economy Report 2022

The GSMA Mobile Economy report series provides the latest insights on the state of the mobile industry worldwide. Produced by GSMA's in-house research team, GSMA Intelligence, these reports contain a range of technology, socio-economic and financial datasets, including forecasts out to 2025. The global version of the report is published annually at MWC Barcelona, while regional editions are published throughout the year.

The Infographic above (PDF) shows the latest update from 2022. The PDF of report is available here.

Selective extract from the executive summary as follows:

The mobile industry has been instrumental in extending connectivity to people around the world. In 2021, the number of mobile internet subscribers reached 4.2 billion people globally. Operators’ investments in network infrastructure over the last decade have helped to shrink the coverage gap for mobile broadband networks from a third of the global population to just 6%. But although the industry continues to invest in innovative solutions and partnerships to extend connectivity to still underserved and far-flung communities, the adoption of mobile internet services has not kept pace with the expansion of network coverage. This has resulted in a significant usage gap. In 2021, the usage gap stood at 3.2 billion people, or 41% of the global population. 

The reasons for the usage gap are multifaceted and vary by region, but they generally relate to a lack of affordability, relevance, knowledge and skills, in addition to safety and security concerns. Furthermore, the barriers to mobile internet adoption are particularly acute among certain segments of the population, including women, the elderly, those in rural areas and persons with disabilities – or a combination thereof. Addressing the usage gap for these key groups will extend the benefits of the internet and digital technology to more people in society, and will require concerted efforts by a broad range of stakeholders working together with mobile operators and other ecosystem players, such as device manufacturers and digital content creators.

5G adoption continues to grow rapidly in pioneer markets, with the total number of connections set to reach 1 billion in 2022. Momentum has been boosted by a number of factors, including the economic recovery from the pandemic, rising 5G handset sales, network coverage expansions and overall marketing efforts by mobile operators. Meanwhile, a new wave of 5G rollouts in large markets with modest income levels (such as Brazil, Indonesia and India) could further incentivise the mass production of more affordable 5G devices, which in turn could further bolster subscriber growth. By the end of 2025, 5G will account for around a quarter of total mobile connections and more than two in five people around the world will live within reach of a 5G network.

4G still has room to grow in most developing markets, particularly in SubSaharan Africa, where 4G adoption is still below a fifth of total connections and operators are stepping up efforts to migrate existing 2G and 3G customers to 4G networks. However, rising 5G adoption in leading markets, such as China, South Korea and the US, means that 4G adoption on a global level is beginning to decline. Globally, 4G adoption will account for 55% of total connections by 2025, down from a peak of 58% in 2021.

By the end of 2021, 5.3 billion people subscribed to mobile services, representing 67% of the global population. In a growing number of markets, most adults now own a mobile phone, meaning that future growth will come from younger populations taking out a mobile subscription for the first time. Over the period to 2025, there will be an additional 400 million new mobile subscribers, most of them from Asia Pacific and Sub-Saharan Africa, taking the total number of subscribers to 5.7 billion (70% of the global population). 

In 2021, mobile technologies and services generated $4.5 trillion of economic value added, or 5% of GDP, globally. This figure will grow by more than $400 billion by 2025 to nearly $5 trillion as countries increasingly benefit from the improvements in productivity and efficiency brought about by the increased take-up of mobile services. 5G is expected to benefit all economic sectors of the global economy during this period, with services and manufacturing experiencing the most impact.

You can download all reports from here.

For anyone interested in keeping a track of which 2G/3G networks are undergoing sunset, you can follow my Twitter thread that lists all the networks I become aware of 

Related Posts

Thursday, November 11, 2021

Network Slicing using User Equipment Route Selection Policy (URSP)

Google announced that its latest smartphone OS will include support for 5G network slicing. Last week Telecom TV brought this news to my attention. The article explains:

It's a move designed to leverage its expertise in devices in order to give it the edge over its rival hyperscalers.

It comes in two flavours. The first is for enterprise-owned handsets, and routes all data sent and received by a device over the network slices provided by that company's mobile operator. Android 12 gives operators the ability to manage slices using a new dynamic policy control mechanism called User Equipment Route Selection Policy (URSP). URSP enables devices to automatically switch between different network slices according to which application they are using. For example, someone working for a financial institution might require a highly-secure network slice for sending and receiving sensitive corporate data, but will then require a reliable, high-throughput, low-latency slice so they can participate in a video meeting.

The second flavour is implemented in the work profile. For years, enterprises have had the option of creating work profiles on Android devices – irrespective of whether they are owned by the organisation or the individual – to use as a separate repository for enterprise apps and data. When Android 12 comes out next year, enterprises will be able to route data to and from that repository over a network slice.

Google said it has already carried out network slicing tests with both Ericsson and Nokia using test versions of its recently released Pixel 6 smartphone running on the as-yet-unreleased Android 12 OS.

Last week Taiwanese operator Far EasTone (FET) and Ericsson announced they have completed the world’s first proof of concept (PoC) for simultaneously connecting multiple network slices per device running on Android 12 commercial release. The press release said:

The trial, carried out on FET’s 5G standalone (SA) infrastructure built on Ericsson’s radio access network and cloud-native Core network, successfully demonstrated the 5G user equipment slicing policy feature (User Equipment Route Selection Policy, or URSP) on multiple Android devices. This marks a breakthrough in network slicing capabilities on a 5G standalone network and paves the way for further ecosystem development in this important area.

With more 5G networks evolving to standalone architecture around the globe, end-to-end network slicing, which includes Ericsson RAN Slicing to secure Quality of Service (QoS) differentiation, plays a key role in enabling new services for end users, with which multiple virtual 5G networks are created on top of one physical network. The 5G trial, in collaboration with FET, Ericsson and Android, went even further in network slicing capabilities by introducing and demonstrating 5G user equipment (UE) slicing policy (URSP) features that allow devices to simultaneously operate on dynamic policy control and selection between multiple 5G network slices. This enables the steering of applications and services with specific requirements to defined slices without switching devices.

Multiple slices allow devices to have multiple profiles to secure different levels of experience, security, and privacy requirements, based on the needs of the different applications and in correspondence with the user profile.  For instance, a device can have a personal profile with private data from apps or off-work entertainment, and a work profile with enterprises productivity apps. With URSP features, employers can customize the work profile with increased security and enable better use of RAN Slicing with QoS so that enterprise-related apps can work even during network congestion.

Some security-sensitive apps, such as mobile banking, can also benefit from different routing mechanisms of the traffic enabled by URSP. For instance, the banking app would not need to send its traffic to the internet and then to the app server as it does today. Instead, it could go straight to the app server and avoid the routing through internet. With the shortest route by connecting to a defined slice, users could reduce the risk of being attacked by hackers.

In their technical whitepaper on Network Slicing, Samsung explains: 

Along with the concept of network slicing and features in the RAN and Core network, UE Route Selection Policy (URSP) is introduced as a way to manage network slice information for the UE. URSP is a network slice feature enabled by the PCF which informs the network slice status to the UE via the AMF. In 4G network systems, it was near impossible to install new services in the network for a UE. But through the URSP feature, 5G network operators can easily configure new service for a UE. Figure 12 (top of this blog post) shows the difference in network slice selection in 4G and 5G Network. In 5G network, slice selection policy can be configured dynamically through URSP, while slice selection policy is pre-defined and cannot be changed dynamically in 4G network.

URSP contains OSId, AppId, IP descriptors to define the application and Single-Network Slice Selection Assistance Information (S-NSSAI), Data Network Name (DNN), Session and Service Continuity (SSC) mode information for the application and network slice mapping.

The S-NSSAI identifies each network slice service and provides information to properly assign network slice/functions. An S-NSSAI is comprised of:

  • A Slice/Service type (SST), which refers to the expected network slice behavior in terms of features and services;
  • A Slice Differentiator (SD), which is an optional information that complements the Slice/Service type(s) to differentiate amongst multiple network slices of the same Slice/Service type.

3GPP allows the use of the Slice Differentiator (SD) field that can build customized network slices. The SD field can be used to describe services, customer information and priority.

Here is a short video from Mpirical explaining 5G UE Route Selection.

It it worth reminding here that this feature, like many of the other 5G features, is dependent on 5G Core. We hope that the transition to 5G Standalone Networks happens as soon as possible.

Related Posts:

Tuesday, August 24, 2021

3GPP's 5G-Advanced Technology Evolution from a Network Perspective Whitepaper


China Mobile, along with a bunch of other organizations including China Unicom, China Telecom, CAICT, Huawei, Nokia, Ericsson, etc., produced a white paper on what technology evolutions will we see as part of 5G-Advanced. This comes not so long after the 3GPP 5G-Advanced Workshop which a blogged about here.

The abstract of the whitepaper says:

The commercialization of 5G networks is accelerating globally. From the perspective of industry development drivers, 5G communications are considered the key to personal consumption experience upgrades and digital industrial transformation. Major economies around the world require 5G to be an essential part of long-term industrial development. 5G will enter thousands of industries in terms of business, and technically, 5G needs to integrate DOICT (DT - Data Technology, OT - Operational Technology, IT - Information Technology and CT - Communication Technology) and other technologies further. Therefore, this white paper proposes that continuous research on the follow-up evolution of 5G networks—5G-Advanced is required, and full consideration of architecture evolution and function enhancement is needed.

This white paper first analyzes the network evolution architecture of 5G-Advanced and expounds on the technical development direction of 5G-Advanced from the three characteristics of Artificial Intelligence, Convergence, and Enablement. Artificial Intelligence represents network AI, including full use of machine learning, digital twins, recognition and intention network, which can enhance the capabilities of network's intelligent operation and maintenance. Convergence includes 5G and industry network convergence, home network convergence and space-air-ground network convergence, in order to realize the integration development. Enablement provides for the enhancement of 5G interactive communication and deterministic communication capabilities. It enhances existing technologies such as network slicing and positioning to better help the digital transformation of the industry.

The paper can be downloaded from China Mobile's website here or from Huawei's website here. A video of the paper launch is embedded below:

Nokia's Antti Toskala wrote a blog piece providing the first real glimpse of 5G-Advanced, here.

Related Posts

Wednesday, June 30, 2021

Open RAN Terminology and Players


When we made our little Open RAN explainer, couple of years back, we never imagined this day when so many people in the industry will be talking about Open RAN. I have lost track of the virtual events taking place and Open RAN whitepapers that have been made available just in the last month.

One of the whitepapers just released was from NTT Docomo, just in time for MWC 2021. You can see the link in the Tweet

Even after so much information being available, many people still have basic questions about Open RAN and O-RAN. I helped make an Open RAN explainer series and blogged about it here. Just last week, I blogged about the O-RAN explainer series that I am currently working on, here.

There were some other topics that I couldn't cover elsewhere so made some short videos on them for the 3G4G YouTube channel. The first video/presentation explains Open RAN terminology that different people, companies and organizations use. It starts with open interfaces and then looks at radio hardware disaggregation and compute disaggregation. Moving from 2G/3G/4G to 5G, it also explains the Open RAN approach to a decomposed architecture with RAN functional splits.

If you look at the Telecom Infra Project (TIP) OpenRAN group or O-RAN Alliance, the organizations driving the Open RAN vision and mission, you will notice many new small RAN players are joining one or both of them. In addition, you hear about other Open RAN consortiums that again include small innovative vendors that may not be very well known. 

The second video is an opinion piece looking at what is driving these companies to invest in Open RAN and what can they expect as return in future.

As always, all 3G4G videos' slides are available on our SlideShare channel.

Related Posts:

Thursday, March 4, 2021

The Fifth Generation Fixed Network (F5G)


Back in Feb 2020, ETSI announced the launch of a new group dedicated to specifying the fifth generation of Fixed Network (ETSI ISG F5G). The press release said:

We are entering an exciting new era of communications, and fixed networks play an essential role in that evolution alongside and in cooperation with mobile networks. Building on previous generations of fixed networks, the 5th generation will address three main use cases, a full-fiber connection, enhanced fixed broadband and a guaranteed reliable experience.

For home scenarios, emerging services such as Cloud VR (virtual reality) and AR (augmented reality) video streaming or online gaming introduce the necessity for ultra-broadband, extremely low latency and zero packet loss. Business scenarios such as enterprise Cloudification, leased line, or POL (Passive Optical LAN) require high reliability and high security. Other industry sectors have specific requirements on the deployment of fiber infrastructures including environmental conditions such as humidity, temperature or electromagnetic interference.

The ETSI ISG F5G aims at studying the fixed-network evolution required to match and further enhance the benefits that 5G has brought to mobile networks and communications. It will define improvements with respect to previous solutions and the new characteristics of the fifth-generation fixed network. This opens up new opportunities by comprehensively applying fiber technology to various scenarios, turning the Fiber to the Home paradigm into Fiber to Everything Everywhere.

ISG F5G considers a wide range of technologies, and therefore seeks to actively cooperate with a number of relevant standardization groups as well as vertical industrial organizations. ISG F5G will address aspects relating to new ODN technologies (Optical Distribution Network), XG(S)-PON and Wi-Fi 6 enhancements, control plane and user plane separation, smart energy efficiency, end-to-end full-stack slicing, autonomous operation and management, synergy of Transport and Access Networks, and adaptation of the Transport Network, amongst others.

The five work items approved last week deal with:

  • F5G use cases: the use cases include services to consumers and enterprises and will be selected based on their impact in terms of new technical requirements identified.
  • Landscape of F5G technology and standards: this work will study technology requirements for F5G use cases, explore existing technologies, and perform the gap analysis.
  • Definition of fixed network generations: to evaluate the driving forces and the path of fixed network evolution, including transport, access and on-premises networks. It will also identify the principal characteristics demarcating different generations and define them.
  • Architecture of F5G: this will specify the end-to-end network architectures, features and related network devices/elements’ requirements for F5G, including on-premises, Access, IP and Transport Networks.
  • F5G quality of experience: to specify the end-to-end quality of experience (QoE) factors for new broadband services. It will analyze the general factors that impact service performance and identify the relevant QoE dimensions for each service.

Then in May, at Huawei Global Analyst Summit 2020 (#HAS2020), Huawei invited global optical industry leaders to discuss F5G Industry development and ecosystem construction, and launched the F5G global industry joint initiative to draw up a grand blueprint for the F5G era. The press conference video is as follows:

Then in September 2020, ETSI released a whitepaper, "The Fifth Generation Fixed Network: Bringing Fibre to Everywhere and Everything"

Now there are couple of standards available that provides more insights.

ETSI GR F5G 001 - Fifth Generation Fixed Network (F5G); F5G Generation Definition Release #1:

In the past, the lack of a clear fixed network generation definition has prevented a wider technology standards adoption and prevented the creation and use of global mass markets. The success of the mobile and cable networks deployments, supported by clear specifications related to particular technological generations, has shown how important this generation definition is.

The focus of the 5th generation fixed networks (F5G) specifications is on telecommunication networks which consist fully of optical fibre elements up to the connection serving locations (user, home, office, base station, etc.). That being said, the connection to some terminals can still be assisted with wireless technologies (for instance, Wi-Fi®).

The main assumption behind the present document foresees that, in the near future, all the fixed networks will adopt end-to-end fibre architectures: Fibre to Everywhere.

The present document addresses the history of fixed networks and summarizes their development paths and driving forces. The factors that influence the definition of fixed, cable and mobile network generations will be analysed. Based upon this, the business and technology characteristics of F5G will be considered.

This table comparing the different generations of fixed networks is interesting too


ETSI GR F5G 002 - Fifth Generation Fixed Network (F5G); F5G Use Cases Release #1:

The present document describes a first set of use cases to be enabled by the Fifth Generation Fixed Network (F5G). These use cases include services to consumers and enterprises as well as functionalities to optimize the management of the Fifth Generation Fixed Network. The use cases will be used as input to a gap analysis and a technology landscape study, aiming to extract technical requirements needed for their implementations. Fourteen use cases are selected based on their impact. The context and description of each use case are presented in the present document.


The use cases as described in the present document are driving the three dimensions of characteristics that are specified in the document on generation definitions [i.1], namely eFBB (enhanced Fixed BroadBand), FFC (Full-Fibre Connection), and GRE (Guaranteed Reliable Experience). Figure 2 shows that:

  • depending on the use case, one or more dimensions are particularly important, and
  • all dimensions of the F5G system architecture are needed to implement the use cases.

I will surely be adding more stuff as and when it is available.

Related Posts:

Monday, February 15, 2021

Open RAN Explanation, Videos, White papers and Other Resources


Couple of years back, just before MWC 2019, we made what I would like to think of as the first proper explanation of Open RAN. I posted it on this blog here and the video has been viewed nearly 45,000 times. At that time, the concept of Open RAN was still quite new and in my day job with Parallel Wireless*, I was spending quite some time explaining what it really means.

Anyway, I think it made the concept of Open RAN so easy to understand that I have seen tens, if not hundreds, of people copy it, but only a few kind people give credit. 

With the Telecom Infra Project (TIP) and O-RAN driving the ecosystem further, I along with my Parallel Wireless colleagues, created a series of videos to explain the concept a bit more in detail. As expected, the introductory videos have been extremely popular while the others have been reasonably popular as well. The concept from these videos have been copied even far and wider than the original one. 

Embedded below is the playlist of all the videos (6 currently but 1 more in works):

In addition to these, I maintain a list of Open RAN whitepapers (publicly available without registration), some good articles, etc. on the 3G4G website here. I try and update the site on a regular basis so feel free to put any resources in the comments of this post and I will add them on the site during the next update.

Related Posts:

*Full Disclosure: I work for Parallel Wireless as a Senior Director, Technology & Innovation Strategy. This blog is maintained in my personal capacity and expresses my own views, not the views of my employer or anyone else. Anyone who knows me well would know this. 

Thursday, September 3, 2020

Two Types of SMS in 5G


GSMA recently published updated "5G Implementation Guidelines: SA Option 2". It explains the two types of SMS in 5G, the same way there were 2 types of SMS in LTE.

Within 5GC, SMS Function (SMSF) supports SMS over NAS (SMSoNAS) defined in 3GPP TS 23.501. Besides, SMSoIP can also be considered as IMS based SMS solution under 5G network. SMSoIP can be deployed simultaneously with voice service over IMS to provide both voice and short message service. It is recommended to use SMSoNAS solution if voice services over IMS is not supported or for a 5G data card/Machine Type Communications (MTC)/Non-IMS device without voice service. The network architecture of SMSoIP and SMSoNAS is shown in Figure.
Mpirical explains it in the video as embedded below:


You may also find "5G SMS is Very Real and Here to Stay" by William Dudley useful. It covers a lot of technical details and signalling. It's available here.

Related  posts:

Wednesday, August 12, 2020

Telecom Services and Data Pricing

With the mobile technology gaining even more subscribers and smartphones becoming common, the telecom services pricing that includes voice, SMS and data is falling. Many operators are now including bundles with generous amounts to satisfy everyone. In many European countries, it is very common to have plans with unlimited everything. 

One of the reports that ITU releases is called "Measuring Digital Development: ICT Price Trends". The latest report for 2019 was released in May this year. The press release says:

On average, prices for mobile-voice, mobile-data and fixed-broadband services are decreasing steadily around the world, and in some countries even dramatically. The reduction in price relative to income is even more dramatic, suggesting that, globally, telecommunication and information and communication technology services are becoming more affordable. However, both trends do not translate into rapidly increasing Internet penetration rates which suggests that there are other barriers to Internet use, concludes ITU in its new statistical report, Measuring Digital Development: ICT Price Trends 2019.

The latest statistics from ITU confirm that affordability may not be the only barrier to Internet uptake, and that other factors such as: 

  • low level of education, 
  • lack of relevant content, 
  • lack of content in local languages, 
  • lack of digital skills, and a 
  • low-quality Internet connection may also prevent effective use. 


Key results​:

  • An entry-level mobile-voice basket remains broadly affordable in most countries. In 70 countries, a low-usage mobile-voice plan was available for less than 1 per cent of gross national income (GNI) per capita, and in a further 37 countries it stood below 2 per cent. Although causality is difficult to prove, price reductions have undoubtedly helped contribute to the rapid rise in the mobile-voice penetration rate, alongside growing competition and better price monitoring and evaluation by regulators.
  • The expansion of bundled services has further reduced prices, as combined data-and-voice baskets are generally less expensive than the sum of the two separate baskets in most markets.
  • Prices have decreased from 2013 to 2019 relative to GNI per capita The global average price of a mobile-data basket of 1.5 GB shrank from 8.4 per cent of GNI per capita in 2013 to 3.2 per cent in 2019, at a compound annual growth rate of almost -15 per cent. When expressed in USD, the global average price of a mobile-data basket of at least 1.5 GB dropped by 7 per cent on average annually between 2013 and 2019.
  • Good progress has been made towards the Broadband Commission for Sustainable Development's target of achieving affordable broadband costing 2-5 per cent of GNI per capita by 2025, but still more remains to be done. There are still nine developing countries and 31 LDCs that have yet to reach the 2 per cent target by 2025.
  • Fixed-broadband packages remain generally more expensive than mobile-data packages (although data allowances are not always directly comparable). Over the past four years, the affordability of fixed broadband has not changed substantially, but advertised download speeds continue to increase.

(click on the image to enlarge)

Some of the results are quite interesting as shown in the image above. The picture on top left shows the different types of packages. The report analyses price data for five key services based on the following five baskets:

  1. mobile-data-and-voice basket (i.e. voice, SMS and mobile data combined) – low consumption (70 minutes, 20 SMSs and 500 MB);
  2. mobile-data-and-voice basket – high consumption (140 minutes, 70 SMSs and 1.5 GB);
  3. mobile-voice (including voice and SMS);
  4. mobile-data;
  5. fixed-broadband.

Chart 1 shows Mobile data and voice baskets in USD for 2019. LDCs stands for Least Developed Countries

Chart 2 shows Mobile data and voice baskets in PPP$, where PPP stands for purchasing power parity. This is defined as basket of goods based comparison approach (see here)

Finally, chart 3 shows Mobile data and voice basket as a % of GNI p.c. GNI stands for gross national income. Expressing prices relative to GNI per capita (GNI p.c.), as a measure of affordability, reveals huge gaps between prices for different levels of development. In developed countries, the price of a low-consumption mobile-data-and-voice basket was equivalent to 1 per cent of GNI p.c. in 2019. In developing countries, this basket cost 7.5 per cent of GNI p.c., while in the LDCs this rose sharply to 17 per cent. For high-consumption mobile-data-and-voice baskets, the differences were even larger.

Source - Visual capitalist. Click link to see complete picture

Visual Capitalist has a nice summary of data prices for 1GB of Mobile data in different parts of the world. A striking trend worth noting is that four out of five of the most expensive countries (Malawi, Benin, Chad, Yemen & Botswana) for mobile data are in Sub-Saharan Africa (SSA).


Cable.co.uk have an interactive map here, that allows you to see prices in different parts of the world. As you would guess, the cheapest data prices in the world is in India.

Finally, eXtensia has a list of data costs in African countries from 2019 here, a lot has changed in the last year so you may have to check if the information you need is correct as of today.

Related Posts: