Pages

Wednesday, May 31, 2023

New 5G NTN Spectrum Bands in FR1 and FR2

Release-17 includes two new FR1 bands for NTN; n255 (a.k.a. NTN 1.6GHz) and n256 (a.k.a. NTN 2GHz). The picture is from a slide in Rohde & Schwarz presentation available here. Quoting from an article by Reiner Stuhlfauth, Technology Manager Wireless, Rohde & Schwarz:

Currently, several frequency ranges are being discussed within 3GPP for NTN. Some are in the FR1 legacy spectrum, and some beyond 10 GHz and FR2. The current FR1 bands discussed for NTN are:

  • The S-band frequencies from 1980 to 2010 MHz in uplink (UL) direction and from 2170 to 2200 MHz in downlink (DL) direction (Band n256).
  • The L-band frequencies from 1525 to 1559 MHz DL together with 1626.5 to 1660.5 MHz for the UL (Band n255).1

These frequency ranges have lower path attenuation, and they’re already used in legacy communications. Thus, components are available now, but the bands are very crowded, and the usable bandwidth is restricted. Current maximum bandwidth is 20 MHz with up to 40-MHz overall bandwidth envisaged in the future [TR 38.811].

As far as long-term NTN spectrum use is concerned, 3GPP is discussing NR-NTN above 10 GHz. The Ka-band is the highest-priority band with uplinks between 17.7 and 20.2 GHz and downlinks between 27.5 and 30 GHz, based on ITU information regarding satellite communications frequency use.2 Among current FR2 challenges, one is that some of the discussed bands fall into the spectrum gap between FR1 and FR2 and that NTN frequencies will use FDD duplex mode due to the long roundtrip time.

Worth highlighting again that the bands above, including n510, n511 and n512 are all FDD bands due to the long round trip times.

The latest issue of 3GPP highlight magazine has an article on NTN as well. Quoting from the article:

The NTN standard completed as part of 3GPP Release 17 defines key enhancements to support satellite networks for two types of radio protocols/interfaces:

  • 5G NR radio interface family also known as NR-NTN
  • 4G NB-IoT & eMTC radio interfaces family known as IoT-NTN

These critical enhancements including adaptation for satellite latency and doppler effects have been carefully defined to support a wide range of satellite network deployment scenarios and orbits (i.e., LEO, MEO and GEO), terminal types (handheld, IoT, vehicle mounted), frequency bands, beam types (Earth fixed/Earth moving) and sizes. The NTN standard also addresses mobility procedures across both terrestrial and non-terrestrial network components. Release 17 further includes Radio Frequency and Radio Resource Management specifications for terminals and satellite access nodes operating in two FR1 frequency ranges allocated to Mobile Satellite Services (i.e., n255 and n256).

You can read it here.

Related Posts

Tuesday, May 23, 2023

Top 10 New (2022) Security Standards That You Need to Know About!

I had been meaning to add this session to the blog for a while. Some security researchers may find these useful. 

At RSA Conference 2022, Bret Jordan, CTO, Emerging Technologies, Broadcom and Kirsty Paine, Advisor - Technology & Innovation, EMEA, Splunk Inc. presented a talk covering what they described as the most important, interesting and impactful technical standards, hot off the press and so 2022. From the internet and all its things, to the latest cybersecurity defenses, including 5G updates and more acronyms than one can shake a stick at. 

The video is embedded below and the slides are available here.

Related Posts

Wednesday, May 3, 2023

Qualcomm Webinar on 'Realizing mission-critical industrial automation with 5G'

Private 5G networks have immense potential to transform industries by improving flexibility within the shop floor of the industries. Industrial 5G networks hold the promise to transform mission-critical industrial automation by using the built-in 5G features of higher bandwidth, lower latency, greater reliability, and improved security.

Some of the ways in which Industrial 5G (I5G) networks will help transform mission-critical industrial networks using automation include:

  • Enhanced Communication: I5G networks will offer faster and more reliable communication between machines, sensors, and other devices. This will lead to better synchronization, increased efficiency, and reduced downtime in industrial processes.
  • High-Quality Video: I5G networks will provide high-quality video streaming, enabling real-time monitoring of industrial processes. This will be particularly useful in applications such as remote inspections, quality control, and process optimization.
  • Edge Computing: I5G networks will support edge computing, that will enable processing of data close to where it is generated. This will help to keep latency to a minimum thereby improve response times and making it possible to perform critical tasks in real-time.
  • Improved Security: I5G networks will provide improved security features along with network slicing, which will enable the creation of secure virtual networks for specific applications or users. This will in-turn help to protect against cyberattacks and ensure the integrity of data.
  • Reduced Downtime: I5G networks will help to reduce downtime by providing real-time monitoring and predictive maintenance capabilities. This will allow identification of potential problems before they cause downtime thereby enabling proactive maintenance and repairs.

Overall, I5G networks have the potential and the capability to significantly improve mission-critical industrial automation by providing faster, more reliable, and secure communication, enabling real-time monitoring and control, and reducing downtime through predictive maintenance capabilities.

In addition, Private/Industrial 5G will help with Time-Sensitive Networking (TSN) by providing a highly reliable and low-latency wireless communication network that can support real-time industrial control and automation applications. TSN is a set of IEEE standards that enable time-critical data to be transmitted over Ethernet networks with very low latency and high reliability.

I5G networks provide a wireless alternative to wired Ethernet networks for TSN applications, which can be advantageous in environments where deploying Ethernet cabling is difficult or costly. With I5G, TSN traffic can be prioritized and transmitted over the network with low latency and high reliability, which is critical for industrial automation and control applications that require precise timing and synchronization.

Moreover, I5G networks can be deployed with network slicing capabilities, allowing for the creation of multiple virtual networks with different performance characteristics tailored to specific applications or user groups. This means that TSN traffic can be isolated and prioritized over other types of traffic, ensuring that critical data is always transmitted with the highest priority and reliability.

Last year, Qualcomm hosted a webinar on 'Realizing mission-critical industrial automation with 5G'. The webinar is embedded below:

Here is the summary of what the webinar includes:

Manufacturers seeking better operational efficiencies, with reduced downtime and higher yield, are at the leading edge of the Industry 4.0 transformation. With mobile system components and reliable wireless connectivity between them, flexible manufacturing systems can be reconfigured quickly for new tasks, to troubleshoot issues, or in response to shifts in supply and demand. 

5G connectivity enables flexibility in demanding industrial environments with key capabilities such as ultra-reliable wireless connectivity, wireless Ethernet, time-sensitive networking (TSN), and positioning. There is a long history of R&D collaboration between Bosch Rexroth and Qualcomm Technologies for the effective application of these 5G capabilities to industrial automation use cases. At the Robert Bosch Elektronik GmbH factory in Salzgitter, Germany, this collaboration has reached new heights by demonstrating time-synchronized control of an industrial robot, and remote positioning of an automated guided vehicle (AGV) over a live, ultra-reliable 5G private network.

Watch the session to learn how:

  • Qualcomm Technologies and Bosch Rexroth are collaborating to accelerate the Industry 4.0 transformation
  • 5G technologies deliver key capabilities for mission-critical industrial automation
  • Distributed control solutions can work effectively across 5G TSN networks
  • A single 5G technology platform solves connectivity and positioning needs for flexible manufacturing

The video is also available on Qualcomm site here and the slides are here.

A shorter video looking behind the tech to see how Qualcomm and Bosch are partnering to enable mission-critical industrial automation over a 5G private network is as follows:

Related Posts