Showing posts with label UK. Show all posts
Showing posts with label UK. Show all posts

Wednesday, May 22, 2024

Real-world Deployment of Digital Twin and Private Cellular at St Pancras Railway Station

PAULEY are a dynamic UK-based SME at the forefront of the exciting emerging market in big data and interactive tools for business. Pioneers in Spatial Computing, our specialist team are working with clients operating in key industries and sectors including transport, safety critical industries and the education and training sector, to embed innovative digital technology into their business processes.

At Athonet's Uptime 2022 conference, Phil Pauley, CEO at Pauley Interactive, spoke about real-life deployment of Digital Twin and Private Cellular at St Pancras railway station. His talk is embedded below:

There is another playlist shared on PAULEY's YouTube channel that us embedded below:

You can read more about their work with HS2 here.

Related Posts

Monday, May 9, 2022

Transitioning from eCall to NG-eCall and the Legacy Problem

eCall (an abbreviation of "emergency call") is an initiative by the European Union, intended to bring rapid assistance to motorists involved in a collision anywhere within the European Union. The aim is for all new cars to incorporate a system that automatically contacts the emergency services in the event of a serious accident, sending location and sensor information. eCall was made mandatory in all new cars sold within the European Union as of April 2018.

In UK, the National Highways have a fantastic summary of the eCall feature here. The following video explains how this feature works:

Last year, ETSI hosted the Next Generation (NG) eCall webinar and Plugtests. The presentations from the event are available here. The presentations from GSMA, Qualcomm and Iskratel have a fantastic summary of many of the issues and challenges  with eCall and transitioning to NG eCall.

From the Qualcomm presentation:

The eCall standardisation began in 2004 when 2G networks were prevalent and 3G was being deployed. The chosen solution was in-band modem and Circuit Switched (CS) 112 call. The in-band modem was optimised for GSM (2G) and UMTS (3G) as the standard completed in 2008.

eCall for 4G (NG eCall) standardisation was started in 2013 and completed in 2017. As there is no CS domain in 4G/5G, IMS emergency calling will replace circuit switched emergency call. Next generation (NG) eCall provides an extension to IMS emergency calls and support for 5G (NR) has since been added.

The picture above from GSMA presentation highlights the magnitude of the problem if NG eCall deployment is delayed. GSMA is keen for the mobile operators to switch off their 2G/3G networks and only keep 4G/5G. There are problems with this approach as many users and services may be left without connectivity. Fortunately the European operators and countries are leaving at least one previous generation of technology operational for the foreseeable future.

GSMA's presentation recommends the following:

  • New technology neutral eCall Regulation (type approval and related acts) to be amended, adopted by European Commission and enter into force by end 2022 the latest.
  • OEMs to start installing NG eCall /remotely programable/exchangeable modules by end 2022; by end 2024 all new vehicles sold in the market should be NG eCall only
  • New vehicle categories to start with NG eCall only by 2024
  • MNOs have initiated to phase out 2G/3G between 2020 and 2025 , whereas the optimal transition path of their choice beyond this date will depend on market and technology specifics, and may require alignment with NRAs.
  • By 2022 , the industry will develop solutions for the transition period that need to be implemented country by country, which will also assess the amount of needed public funding to be economically feasible.
  • Retrofitting to be acknowledged, completed and formalised as a process by end 2024; standards should already be available in 2022.
  • Aftermarket eCall solution to be completed (including testing) and formalised by end 2024; standards should already be available in 2022.
  • The European Commission to make available public funding to support OEMs and alternative solutions to legacy networks starting from 2022 , under the RRF/ recovery package (or other relevant instruments)
  • Legacy networks availability until 2030 at the latest. By then deployment of all alternative solutions simultaneously would have ensured that the remaining legacy fleet will continue to have access to emergency services through NG eCall.

EENA, the European Emergency Number Association, is a non-governmental organisation whose mission is to contribute to improving people’s safety & security. One of the sessions at the EENA 2021 Conference was on eCall. The video from that is embedded below and all information including agenda and presentations are available here.

Related Posts:

Tuesday, January 26, 2021

Banana and Egg gets 5G Telesurgery


Last year I wrote a detailed post on '5G Remote Surgery and Telehealth Solutions' here. Since then many people with little or no understanding of how the technology works have got in touch with me to educate me about all the 5G remote surgeries taking place. 

I am always prepared to learn new things and looked at both of these surgeries (detailed below) with open mind. I was still unable to see the 5G angle here. In fact in the case of banana, I don't even know if 5G was used.

Back in 2014, a BBC article detailed how a surgeon in Canada has performed over 20 remote surgeries with the help of a robot including colon operations and hernia repairs. The article goes on to ask, "The technology behind long-distance surgery is now mature enough to be used more widely, allowing people to access world-leading expertise and better healthcare without having to travel. Could it become the norm in hospitals?"

The first case is from Aug 2020 as shown in the video above where Doctor Liu Rong from a hospital in Beijing takes on the challenge of remotely controlling a medical robot in distant Qingdao City via the 5G network to finish an egg membrane suture surgery in 90 minutes.

The question here is that where exactly was 5G used and why? Did both the ends have 5G or just one end? Etc. I was unable to find a schematic to show the end-to-end details that would provide credibility to such a scenario.

To explain what I mean, when Vodafone UK launched 5G, they demonstrated low latency by giving an example of Haptic tackle using TeslaSuit. You can read the details and watch the video here

As you can see, the end-to-end solution architecture is nicely explained as shown in this picture. I would expect a similar kind of schematic for the surgery scenario. While I can clearly understand the use case for sports outdoor, I am not able to understand the use case for the surgery indoors. Where was the access point? What frequency was used? Was this Standalone or Non-Standalone network? And many other questions like these. 

The second case was a more recent one. The video is embedded below.

Even though the video mentions 5G and many other sites (see this LinkedIn post with nearly 2.5 million views) that have picked this up mention 5G, the original Instagram video does not mention 5G. In all likelihood there is no 5G connection with this one.

Surely there will be a real life 5G remote surgery use case someday that will capture our imagination but not today.

Related Posts:

Sunday, March 29, 2020

Mobile Voice Communications is neither Dying, nor Dead!

If you have been following the mobile industry for a long time, you could be forgiven for thinking that voice communications is dead. This 2013 article for example talks about the impending death of voice and this 2018 article talks about how smartphones have killed the art of conversation. These are just examples and I have read many similar articles in the last 5-10 years.

The thing is that a lot of unnecessary calls became SMS and messages once the price of SMS and data went down. Similarly, voice ceased to be a differentiator in many markets so they started offering unlimited voice and/or SMS locally. This does not necessarily solve my requirements for international calling so I moved on to Viber, WeChat and WhatsApp.

The annual TeleGeography Report and Database update (just released) estimates that international over-the-top (OTT) voice traffic reached 1 trillion minutes in 2019, compared to just 432 billion minutes of international carrier traffic.

Anyway, with the lockdown in many countries because of coronavirus COVID-19, people have re-discovered the use of voice communications again. While I prefer having meetings on the internet, sometimes it's just simpler to call using your phone. A friend discovered that while she has some 40 GB data allowance that was generally more than enough, working from home means that she is having to use her device as a hotspot that is using up all her data. Switching from OTT calling to unlimited voice calling in her package means that she doesn't have to worry about voice calls eating her data package.

She is not alone. Operators all over are reporting the rise in voice communications:

  • 27 Mar 2020 - O2 UK reported, "Since March 16th we have seen approximately 57% more voice traffic at the busiest point of the day. Typically voice traffic increases 5% year on year, and in a week we have experienced an increase of voice traffic comparable to nine years of regular demand." (link)
  • 26 Mar 2020 - Official numbers reported by CTIA from Verizon, AT&T, T-Mobile, Sprint and U.S. Cellular stated that mobile voice traffic was up 24.3% while mobile data traffic was up 9.2% (see photo above - link)
  • 24 Mar 2020 - Telenor Norwar tweeted, "Traffic has increased sharply since the coronary smith was seriously registered in this country. 50% increase in mobile voice, 25% increase in mobile data and 30-40% increase in fixed broadband"
  • 24 Mar 2020 - T-Mobile USA released some interesting stats including gaming, etc. With regards to voice, their announcement said, "People are talking and texting more. Messaging is up dramatically, with a 26% increase in SMS (texting) and a 77% increase in MMS (pictures, multi-party texts, etc.). And, the amount of time people spend on calls has increased 17% nationwide." (link)
  • 20 Mar 2020 - Telia in Denmark reported, "Thursday, March 12, the volume of speech in the network thus increased by 24% compared to the day before. Over the weekend 50% more was spoken - obviously due to a need to gain status on family and friends in the new situation. In the past working week, about 60% more has been spoken on the phone than on a normal week in March." (translated from original)
Is voice important for an operator? Probably not very much in the developed markets where users pay a good amount for data packages. In developing countries, voice is still a good source of revenue. At the TIP summit last year, Malaysian telecom giant Axiata said that ""every gigabyte costs about $1.40 to manufacture...generates only 80 cents in revenue...The 2G voice business currently funds any losses". This is not a long term sustainable model for these operators.


Funnily I just remembered that in a survey of over 1000 people in the USA regarding what they want from 5G, the third most important thing was "clearer voice quality". If you want to understand how voice quality is measured that see this tweet below


We may keep on seeing a boom in voice traffic as more lockdowns occur and they are even stricter. We will have to wait and see of this habit of talking sticks or it's just for this unusual situation.

Related Posts:

Wednesday, November 27, 2019

Private 4G / 5G Cellular Networks and Bring Your Own Spectrum


With 4G maturing, private cellular networks are finally getting the attention that they deserve and has been promised for quite a while. In a Industry Analyst event, Nokia announced that they are running 120+ private networks including transportation, Energy, Public sector, Smart cities, manufacturing and logistics, etc. (tweet below). The Enterprise Business division is now accounting for 5% of the revenue.
Ray Le Maistre, Editor-in-Chief at Light Reading, in an opinion on Telecoms.com pointed out:

One of the more immediate revenue stream opportunities right now is wireless private networks, and the good news is that this opportunity doesn’t require 5G. Instead, the potential looks set to be enhanced by the availability of a full set of 5G standards (including the yet-to-be concluded core network specs) and the maturity of associated technology.

In the meantime, 4G/LTE has already been the cellular foundation for an increasingly thriving wireless private networks sector that, according to ABI Research, will be worth $16.3 billion by 2025

Another market sizing prediction, this time by SNS Telecom & IT, pitches annual spending on private 4G and 5G networks at $4.7 billion by the end of 2020 and almost $8 billion by 2023. 

However this plays out, there’s clear anticipation of growing investment. What’s particularly interesting, though, is which organizations might pocket that investment. That’s because enterprises and/or organizations looking to benefit from having a private wireless network have a number of options once they decide to move ahead with a private network – here are three permutations that look most likely to me:
  1. Build and run it themselves – technology vendors get some sales in this instance
  2. Outsource the network planning, construction and possibly even the day-to-day. management of the network to a systems integrator (SI) – the SI and some vendors get the spoils. It’s possible here, of course, that the SI could be a technology vendor.
  3. Outsource to a mobile network operator – the operator and some vendors will get some greenbacks.
For sure there will be other permutations, but it shows how many different parts of the ecosystem have some skin in the game, which is what makes this sector so interesting.

What’s also interesting, of course, is what the enterprises do with their private networks: Does it enhance operations? Help reduce costs? Create new business opportunities? All of the above?

Let’s not forget the role of the regulators in all of this. In the US the private wireless sector has been given a shot in the arm by the availability of CBRS (Citizens Broadband Radio Service) shared spectrum in the currently unlicensed 3.5 GHz band: This has given rise to numerous trials and deployments in locations such as sports stadiums, Times Square and even prisons.

In Germany, the regulator has set aside 100MHz of 5G spectrum for private, industrial networks has caused a storm and even led to accusations from the mobile operators that the move ramped up the cost of licenses in the spectrum auction held earlier this year.

In the UK, Ofcom is making spectrum available in four bands:
  • the 1800 MHz and 2300 MHz shared spectrum bands, which are currently used for mobile services;
  • the 3.8-4.2 GHz band, which supports 5G services, and
  • the 26 GHz band, which has also been identified as one of the main bands for 5G in the future.
Slide shared by Mansoor Hanif, CTO, Ofcom at TIP Summit 2019

The process to enable companies and organizations (Ofcom has identified manufacturers, business parks, holiday/theme parks and farms as potential users) in the UK to apply for spectrum will go live before the end of this year, with Ofcom believing that thousands of private networks could be up and running in the coming years.

Dean Bubley from Disruptive Analysis recently spoke about BYOSpectrum – Why private cellular is a game-changer at TAD Summit. The talk is embedded below and is definitely worth listening:



TelecomPaper reported:

The German Federal Ministry for Economic Affairs and Energy said that companies can start to apply to use 5G frequencies in the 3.7-3.8 GHz range on industrial campuses. Local frequencies enable firms to build their own private networks, rather than rely on telecommunications providers to build networks. 

The Automotive Industry Association (VDA) and other industry associations including the VCI, VDMA and ZVEI have welcomed the allocation of frequencies for industrial campuses. According to VDA, several dozen companies have already registered their interest in such frequencies with the Federal Network Agency. 

The firms believe that 5G can replace existing networks, including WLAN, provide improved coverage of entire company premises, enable full control over company data and reduce disruption to public mobile networks.

The spectrum licences will be allocated based on the applicant's geographic footprint and use of a certain area. Prices also take account the area covered by the network, as well as the amount of bandwidth used and duration of the licence.

The formula for the prices is very interesting as shown in the tweet below



In Japan, NTT Docomo is working in co-operation with industry partners to help them to create their own private 5G networks. More announcements on this are expected at MWC next year.



Finally, I am running an Introduction to Private 4G /5G Networks Workshop with Dean Bubley on 04 Feb 2020. If this is an area of interest, consider attending it.



Related Posts:

Thursday, August 29, 2019

LTE / 5G Broadcast Evolution


It's been a while since I last wrote about eMBMS. A report by GSA last month identified:
- 41 operators known to have been investing in eMBMS
- 5 operators have now deployed eMBMS or launched some sort of commercial service using eMBMS
- GSA identified 69 chipsets supporting eMBMS, and at least 59 devices that support eMBMS


BBC R&D are testing the use of 4G/5G broadcast technology to deliver live radio services to members of the public as part of 5G RuralFirst - one of 6 projects funded under the UK Government’s 5G Phase 1 testbeds and trials programme (link).

A press release by Samsung Electronics back in May announced that it has signed an expansion contract with KT Corporation (KT) to provide public safety (PS-LTE) network solutions based on 3GPP standard Release 13 for 10 major metropolitan regions in South Korea including Seoul by 2020. One of the features of PS-LTE that the PR listed was LTE Broadcast (eMBMS): A feature which allows real time feeds to hundreds of devices simultaneously. It enables thousands of devices to be connected at once to transfer video, images and voice simultaneously using multicast technology

Dr. Belkacem Mouhouche – Samsung Electronics Chief Standards Engineer  and Technical Manager of 5G projects: 5G-Xcast and 5G-Tours Presented an excellent overview on this topic at IEEE 5G Summit Istanbul, June 2019. His presentation is embedded below.



5G-Xcast is a 5GPPP Phase II project focused on Broadcast and Multicast Communication Enablers For the Fifth Generation of Wireless Systems.

They have a YouTube channel here and this video below is an introduction to project and the problems it looks to address.




Further Reading:

Related posts:

Thursday, July 18, 2019

5G SpeedTests and Theoretical Max Speeds Calculations


Right now, Speed Tests are being described as 5G killer apps.



A good point by Benedict Evans



Everyone is excited and want to see how fast 5G networks can go. If you use Twitter, you will notice loads and loads of speed tests being done on 5G. An example can be seen above.


I recently heard Phil Sheppard, Director of Strategy & Architecture, '3 UK' speak about their 5G launch that is coming up soon. Phil clearly mentioned that because they have a lot more spectrum (see Operator Watch blog post here and here) in Capacity Layer, their 5G network would be faster than the other UK operators. He also provided rough real world Peak Speeds for Three and other operators as can be seen above. Of course the real world speeds greatly depend on what else is going on in the network and in the cell so this is just a guideline rather than actual advertised speeds.


I have explained multiple times that all 5G networks being rolled out today are Non-Stand Alone (NSA) 5G networks. If you don't know what SA and NSA 5G networks are, check this out. As you can see, the 5G NSA networks are actually 4G Carrier Aggregated Networks + 5G Carrier Aggregated Networks. Not all 4G spectrum will be usable in 5G networks but let's assume it is.

To calculate the theoretical maximum speed of 5G NSA networks, we can calculate the theoretical maximum 4G Network speeds + theoretical maximum 5G Network speeds.

I have looked at theoretical calculation of max LTE Carrier Aggregated Speeds here. Won't do calculation here but assuming 3CA for any network is quite possible.

I also looked at theoretical calculation of 5G FDD New Radio here but then found a website that helps with 5G NR calculation here.

If we calculate just the 5G part, looking at the picture from Three, we can see that they list BT/EE & O2 speeds as 0.61 Gbps or 610 Mbps, just for the 5G part.

Looking at the calculation, if we Input Theoretical max values in this equation:

Calculating just for DL

J - number of aggregated component carriers,
maximum number (3GPP 38.802): 16
input value: 1

v(j)Layers - maximum number of MIMO layers ,
3GPP 38.802: maximum 8 in DL, maximum 4 in UL
input value: 8

Q(j)m modulation order (3GPP 38.804)
For UL and DL Q(j)m is same (QPSK-2, 16QAM-4, 64QAM-6, 256QAM-8)
input value: 8 (256QAM)

f(j) Scaling factor (3GPP 38.306)
input value: 1

FR(j) Frequency Range 3GPP 38.104:
FR1 (450 MHz – 6000 MHz) и FR2 (24250 MHz – 52600 MHz)
input value: FR1

µ(j) -value of carrier configuration (3GPP 38.211)
For DL and UL µ(j) is same (µ(0)=15kHz, µ(1)=30kHz, µ(2)=60kHz, µ(3)=120kHz)
input value: 0 (15kHz)

BW(j)- band Bandwidth, MHz (3GPP 38.104),
should be selected with Frequency Range and µ(i) configuration:
input value: BW:40MHz FR1 µ:15kHz:

Enter a PRB value (if other)
default: 0

Rmax (if you don't know what is it, don't change)
Value depends on the type of coding from 3GPP 38.212
(For LDPC code maximum number is 948/1024 = 0.92578125)
default: 0.92578125

*** Only for TDD ***
Part of the Slots allocated for DL in TDD mode,
where 1 = 100% of Slots (3GPP 38.213, taking into account Flexible slots).
Calculated as: the number of time Slots for DL divided by 14
default value: 0.857142

Part of the Slots allocated for UL in TDD mode,
where 1 = 100% of Slots (3GPP 38.213, taking into account Flexible slots).
Calculated as: 1 minus number of Slots for DL
default value: 0.14285800000000004

Calculated 5G NR Throughput, Mbps: 1584


As you may have noticed, BTE/EE has 40 MHz spectrum while Vodafone in UK have 50 MHz of spectrum.

Changing
BW(j)- band Bandwidth, MHz (3GPP 38.104),
should be selected with Frequency Range and µ(i) configuration:
input value: BW:50MHz FR1 µ:15kHz:

Calculated 5G NR Throughput, Mbps: 1982

Now Three UK has 100 MHz, immediately available for use. So changing

µ(j) -value of carrier configuration (3GPP 38.211)
For DL and UL µ(j) is same (µ(0)=15kHz, µ(1)=30kHz, µ(2)=60kHz, µ(3)=120kHz)
input value: 1 (30kHz)

BW(j)- band Bandwidth, MHz (3GPP 38.104),
should be selected with Frequency Range and µ(i) configuration:
BW:100MHz FR1 µ:30kHz:


Calculated 5G NR Throughput, Mbps: 4006

In theory, a lot of speed is possible with the 100 MHz bandwidth that Three will be able to use. We will have to wait and see who can do a theoretical max SpeedTest. In the meantime remember that a 1Gbps speed test will use over 1 GB of data.



Related Posts:

Sunday, March 17, 2019

Update on UK's Emergency Services Network (ESN) from #BAPCO2019


I have discussed about the UK's Emergency Services Network (ESN) multiple times but I manged to hear about the progress first hand this week. Bryan Clark, ESN Programme Director, Home Office gave a keynote address at BAPCO on Day 2 and the title of his presentation was "2019: The year vision becomes reality"

British APCO or BAPCO Annual Conference and Exhibition 2019 was going to be a big launchpad for the ESN network. The ESN LinkedIn post said "Representatives from ESN and EE will be on hand to discuss coverage and ESN Assure. See an installation of the ESN Gateway solution within a police car, plus a live demonstration showing how ESN coverage can be extended from a vehicle into a building. We’ll also have a ‘Motorola Zone’ where you can watch demos of Kodiak and the ESN self-service portal – and a large touchscreen demo of the Samsung ESN Galaxy"


Bryan started by cracking a joke about people referring to 'ESN' as 'ES When' programme because it has been delayed multiple times. He said straight in the beginning that he going to talk about what the ESN programme is doing now and what comes next.

He started with this short video, embedded below but detailed info available on this LinkedIn post

x

So here is a short summary of the talk:
  • There are roughly 350,000 customers of this service
  • There are 137 separate organizations that will take advantage of this new this new technology. 
  • There are couple of vehicles in the display area (pic on the top and video below) and roughly 50,000 vehicles that need to have a kit
  • Over 100 aircraft need to have an air network access that currently isn't there. 
  • There are nearly 30 direct suppliers to the program and that doesn't include the whole supply chain through each of those suppliers.
  • Looking at the coverage, there is a commitment to providing a signal along half a million (0.5 million) kilometers of roads in England, Scotland & Wales. It extends 12 nautical miles out to sea and 10,000 feet in the air right across England, Scotland & Wales.
  • In London alone there are over 400 kilometres of tunnels that were actually almost finished cabling out.
  • 300 masts are being built as part of the ESN programme to extend services into remote areas.
  • EE has extended their network by adding 700 additional masts. 
  • Thousands of special locations will need to have effective access to ESN network
  • ESN is a large programme so it's hardly surprising that it's very late. It's Bryan's job over the past 10 months to work out how to get it back on track. 
  • People are going through quite a detailed review of where ESN has got to in terms of next steps. 
  • The programme now has a very clear and approved plan to complete the technical element of the work, most of it should be done by late summer next year.
  • One of the first products, Assure, is a way of testing the effectiveness of the network in the field. 
  • A demonstration of Push-To-Talk (PTT) on a 4G network will be demoed within 3 weeks.
  • This is the first generation end-to-end solution
  • Emergency services is critical national infrastructure so any new solution can only replace the legacy once we are absolutely confident that we've got an effective replacement
  • Even though the technical piece is quite challenging, when you compare it to the business change that follows, the technical part looks pretty simple. 
  • To ensure that everything works effectively operationally, plans are in place but more detailed plans are going to follow in the coming three to four months.
  • Individual components are already being tested in the field
  • Programme deployment should start by the end of 2019 in terms of having basically completed laying the core components and a clear plan will be in place for how to test in an operational context. 
  • The ESN programme is not only responsible for the replacement solution but also for operations to date based on the Airwave contract with Motorola currently
  • The number one priority is to provide critical voice communications of sufficient quality that people can rely on in the field and enable them to move away from the TETRA technology that served them so well. So we aren't going anywhere until we've got rock solid critical voice communications. It's our number one priority, simply because people's lives depend on it.
The following are various videos from the ESN demo area. The Gateway device (which is a mobile small cell) is supplied by Parallel Wireless*.



In case you missed BAPCO, Ken Rehbehn, a very well known Industry Analyst who works as a Principal Analyst at Critical Communications Insights and is also Montgomery County Firefighter/EMT, shared his observations and reflections from conference. Very grateful for his interview which is embedded below



Further Reading:




Related posts:

*Full Disclosure: I work for Parallel Wireless as a Senior Director in Strategic Marketing. This blog is maintained in my personal capacity and expresses my own views, not the views of my employer or anyone else. Anyone who knows me well would know this.

Friday, September 29, 2017

Smartphone Wi-Fi Analytics for Travel Route Optimisations

Transport for London (TFL), the local government body responsible for transport in London, which also runs the London Underground (known as Tubes) has been using smartphone Wi-Fi data to work out how people travel on the stations.

They did the trial and collected data in 2016 and have also openly talked about it (see this talk for example), they have now published their findings which is available here. One of the interesting findings for example is that 18 different routes taken by customers between King's Cross St Pancras and Waterloo - and many people don't use the shortest route changing Tube lines

Its interesting to think that because many people do not have their Wi-Fi switched on while outside and many others who put their phone in plane more while in the underground (no mobile coverage, in case you are wondering), this data is probably not as detailed as it could have been.

Nevertheless, there is a talk of bringing Mobile connectivity into the underground network. Once its there, the combination of data could be far more valuable.

Sunday, June 11, 2017

Theoretical calculation of EE's announcement for 429Mbps throughput


The CEO of UK mobile network operator EE recently announced on twitter that they have achieved 429 Mbps in live network. The following is from their press release:

EE, the UK’s largest mobile network operator and part of the BT Group, has switched on the next generation of its 4G+ network and demonstrated live download speeds of 429Mbps in Cardiff city centre using Sony’s Xperia XZ Premium, which launched on Friday 2 June. 
The state of the art network capability has been switched on in Cardiff and the Tech City area of London today. Birmingham, Manchester and Edinburgh city centres will have sites upgraded during 2017, and the capability will be built across central London. Peak speeds can be above 400Mbps with the right device, and customers connected to these sites should be able to consistently experience speeds above 50Mbps. 
Sony’s Xperia XZ Premium is the UK’s first ‘Cat 16’ smartphone optimised for the EE network, and EE is the only mobile network upgrading its sites to be able to support the new device’s unique upload and download capabilities. All devices on the EE network will benefit from the additional capacity and technology that EE is building into its network. 
... 
The sites that are capable of delivering these maximum speeds are equipped with 30MHz of 1800MHz spectrum, and 35MHz of 2.6GHz spectrum. The 1800MHz carriers are delivered using 4x4 MIMO, which sends and receives four signals instead of just two, making the spectrum up to twice as efficient. The sites also broadcast 4G using 256QAM, or Quadrature Amplitude Modulation, which increases the efficiency of the spectrum.

Before proceeding further you may want to check out my posts 'Gigabit LTE?' and 'New LTE UE Categories (Downlink & Uplink) in Release-13'

If you read the press release carefully, EE are now using 65MHz of spectrum for 4G. I wanted to provide a calculation for whats possible in theory with this much bandwidth.

Going back to basics (detailed calculation for basics in slideshare below), in LTE/LTE-A, the maximum bandwidth possible is 20MHz. Any more bandwidth can be used with Carrier Aggregation. So as per the EE announcement, its 20 + 10 MHz in 1800 band and 20 + 15 MHz in 2600 band

So for 1800 MHz band:

50 resource blocks (RBs) per 10MHZ, 150 for 30MHz.
Each RB has 12x7x2=168 symbols per millisecond in case of normal modulation support cyclic prefix (CP).
For 150 RBs, 150 x 168 = 25200 symbols per ms or 25,200,000 symbols per second. This can also be written as 25.2 Msps (Mega symbols per second)
256 QAM means 8 bits per symbol. So the calculation changes to 25.2 x 8 = 201.6 Mbps. Using 4 x 4 MIMO, 201.6 x 4 = 806.4Mbps
Removing 25% overhead which is used for signalling, this gives 604.80 Mbps


Repeating the same exercise for 35MHz of 2600 MHz band, with 2x2 MIMO and 256 QAM:

175 x 168 = 29400 symbols per ms or 29,400,000 symbols per second. This can be written as 29.4 Msps
29.4 x 8 = 235.2 Mbps
Using 2x2 MIMO, 235.2 x 2 = 470.4 Mbps
Removing 25% overhead which is used for signalling, this gives 352.80 Mbps

The combined theoretical throughput for above is 957.60 Mbps

For those interested in revisiting the basic LTE calculations, here is an interesting document:




Further reading:

Saturday, April 8, 2017

The Iconic British Red Phone Boxes

Source: BBC

Brits love their red phone boxes. Even with mobiles prevalent today, we don't want to get rid of the phone boxes. The BBC estimates that there are 46,000 phones boxes in use today, including 8,000 red ones.

Some of these phone boxes are being put to other interesting uses too. One of them has become 'world's smallest museum', another has been converted into a coffee shop, yet another one is a salad bar and another one in Cumbria is hosting life saving medical equipment. This is all thanks to BT that has encouraged adoption of some of these much loved icons for as little as £1.



Two British Phonebox enthusiasts, Prof. Nigel Linge and Prof. Andy Sutton have written a very well researched and comprehensive book on this topic looking at the history and evolution of the humble phone boxes through all of its major models, including those that were introduced by organisations such as the emergency services. The British Phonebox is available to purchase from Amazon and other popular bookshops.


In addition to the book, they have also written an article in 'The Journal' that gives a taster of whats in the book. Its available to download here.

5 interesting facts from the little reading that I did on this topic:

  • The model K1 (K stand for Kiosk) was very unpopular and hence a competition was held to find the best possible design. The winning design by Sir Giles Gilbert Scott became K2 that was rolled out in 1926
  • Sir Giles had suggested silver colour with blue and green interior. This was changed to red for making it easy to spot
  • The latest model is called KX100+
  • The most popular and loved model is the K6 that was designed to celebrate King George V’s Silver Jubilee, though he died before any of them were actually installed.
  • Before Queen Elizabeth came along, a vague representation of the Tudor crown was used on the telephone boxes. Wanting to put her stamp on things after she ascended to the throne in 1952, QEII had all of the crowns changed to St. Edward's Crown, the crown actually used in coronations. Scotland opted to keep the Crown of Scotland on theirs, and so all K6 boxes manufactured after 1955 had to be made with a slot in the top to insert the plate with the correct crown depending on the location of the booth.

Related Links:

Sunday, March 19, 2017

Latest on 5G Spectrum - March 2017

In an earlier post I mentioned that there will be three different types of spectrum that would be needed for 5G; coverage layer, capacity layer and high throughput layer. There is now a consensus within the industry for this approach.


In a 5G seminar, back in Jan, there were a few speakers who felt that there is an informal agreement about the frequencies that will be used. One such slide from Ofcom could be seen in the picture above. Ofcom has also recently released a report expanding on this further.


Analysys Mason has nicely summarized the bands suggested by Ofcom and possibly available in the UK for 5G in the picture above.

Global mobile Suppliers Association (GSA) has also nicely summarised the bands under investigations and trials as follows:

Coverage Layer600 MHz, 700 MHz, 800 MHz, 900 MHz, 1.5 GHz, 2.1 GHz, 2.3 GHz and 2.6 GHz

Capacity Layer:

Europe                     3400 – 3800 MHz (awarding trial licenses)

China                       3300 – 3600 MHz (ongoing trial), 4400 – 4500 MHz, 4800 – 4990 MHz

Japan                       3600 – 4200 MHz and 4400-4900 MHz

Korea                       3400 – 3700 MHz

USA                          3100 – 3550 MHz (and 3700 – 4200 MHz)

High Throughput Layer:

USA:      27.5 – 28.35 GHz and 37 – 40 GHz pre-commercial deployments in 2018

Korea:   26.5 – 29.5 GHz trials in 2018 and commercial deployments in 2019

Japan:   27.5 – 28.28 GHz trials planned from 2017 and potentially commercial deployments in 2020

China:    Focusing on 24.25 – 27.5 GHz and 37 – 43.5 GHz studies

Sweden: 26.5 – 27.5 GHz awarding trial licenses for use in 2018 and onwards

EU:        24.25 – 27.5 GHz for commercial deployments from 2020

Finally, as a reminder, list of bands originally approved for IMT-2020 (5G) as follows:


Another potential band, not being mentioned above is the 66-76GHz spectrum. This band is adjacent to the 60 GHz Wi-Fi (57 GHz - 66 GHz). Lessons learned from that band can be applied to the 5G band too.

Related links:



Friday, February 24, 2017

Connecting Rural Scotland using Airmasts and Droneways


This week EE has finally done a press release on what they term as Airmasts (see my blog post here). Back in Nov. last year, Mansoor Hanif, Director of Converged Networks and Innovation BT/EE gave an excellent presentation on connecting rural Scottish Islands using Airmasts and Droneways at the Facebook TIP Summit. Embedded below are the slides and video from that talk.





In other related news, AT&T is showing flying COWs (Cell On Wheels) that can transmit LTE signals


Their innovation blog says:

It is designed to beam LTE coverage from the sky to customers on the ground during disasters or big events.
...
Here’s how it works. The drone we tested carries a small cell and antennas. It’s connected to the ground by a thin tether. The tether between the drone and the ground provides a highly secure data connection via fiber and supplies power to the Flying COW, which allows for unlimited flight time.  The Flying COW then uses satellite to transport texts, calls, and data. The Flying COW can operate in extremely remote areas and where wired or wireless infrastructure is not immediately available. Like any drone that we deploy, pilots will monitor and operate the device during use.

Once airborne, the Flying COW provides LTE coverage from the sky to a designated area on the ground.  

Compared to a traditional COW, in certain circumstances, a Flying COW can be easier to deploy due to its small size. We expect it to provide coverage to a larger footprint because it can potentially fly at altitudes over 300 feet— about 500% higher than a traditional COW mast.  

Once operational, the Flying COW could eventually provide coverage to an area up to 40 square miles—about the size of a 100 football fields. We may also deploy multiple Flying COWs to expand the coverage footprint.

Nokia on the other hand has also been showcasing drones and LTE connectivity for public safety at D4G Award event in Dubai


Nokia's Ultra Compact Network provides a standalone LTE network to quickly re-establish connectivity to various mission-critical applications including video-equipped drones. Drones can stream video and other sensor data in real time from the disaster site to a control center, providing inputs such as exact locations where people are stranded and nature of the difficulty of reaching the locations.

Related Posts:



Friday, July 1, 2016

EE's vision of Ultra-Reliable Emergency Network


Many of my readers would be aware that UK is probably the first country to have decided to move its emergency services network from an existing TETRA network to a commercial LTE network operated by EE.

While some people have hailed this as a very bold move in the right direction, there is no shortage of critics. Around 300,000 emergency services users will share the same infrastructure used by over 30 million general users.

The following is from an article in Wireless Magazine:

Steve Whatson, deputy director Delivery, Emergency Services Mobile Communications Programme (ESMCP) – the organisation within the UK Home Office procuring ESN – assured delegates that ESN will match the existing dedicated Airwave emergency services communication network in terms of coverage for roads, outdoor hand portable devices and marine coverage. Air to ground (A2G) will extend its reach from 6,000ft to 12,000ft.

Whatson also pointed out that coverage is not one single piece, but will comprise a number of different elements, which all need to mesh into one seamless network run by the ESN Lot 3 Mobile Services (main 4G network) provider – EE.

This includes: EE’s main commercial 4G network; Extended Area Services (hard-to-reach areas of the UK where new passive sites are to be built under a separate contract and then equipped with EE base stations); air-to-ground; London Underground; Crossrail; marine coverage (to 12 nautical miles); and special coverage solutions.

EE is currently rolling out new 4G sites – it will eventually have some 19,500 sites – and is upgrading others with 800MHz spectrum, which propagates over longer distances and is better at penetrating buildings than its other 4G spectrum holdings. Crucially for ESN, it is also switching on a Voice over LTE (VoLTE) capability, starting with the UK’s main cities.
...
Mission critical networks must be always available and have levels of resilience far in excess of commercial networks. Speaking exclusively to Wireless in early May, Tom Bennett, group director Technology Services, Architecture & Devices at EE, said: ‘We already achieve a very high availability level, but what the Home Office was asking for effectively was about a 0.3% increase against our existing commercial availability levels.

‘Now for every 0.1% increase in availability there is a significant investment because you are at the extreme top end of the curve where it is harder and harder to make a noticeable difference.’

There are very specific requirements for coverage and availability of the ESN network for the UK road system. Bennett says: ‘Mobile is based on a probability of service. No more than 1% of any constabulary’s roads are allowed to be below 75% availability, and on major roads it is 96% availability. A coverage gap in this context is no more than 1km.’

The current Airwave network has approximately 4,000 sites, many with back-up generators on site with fuel for seven days of autonomous running if the main power is cut, along with a range of resilient backhaul solutions.

Bennett says that out of EE’s 18,500 sites it has about the same number of unique coverage sites (ie. no overlapping coverage) – around 4,000. ‘As part of our investment programme, those unique coverage sites will need a significant investment in the causes of unavailability – ie. resilient backhaul and back-up batteries.’

He explains that EE has undertaken a lot of analysis of what causes outages on its network, and it has combined that data with the Home Office’s data on where the natural disasters in the UK have occurred over the past 10 years.

From this, EE is able to make a reasonable assessment of which sites are likely to be out of action due to flooding or other disasters for more than three or four days. ‘For those sites – and it is less than 4,000 – you need generators too, because you may not be able to physically access the sites for some days,’ says Bennett.

For obvious reasons, the unique coverage sites are mostly in rural areas. But as Bennett points out, the majority of cases where the emergency services are involved is where people are – suburban and urban areas.

‘In these areas EE has overlapping coverage from multiple sites to meet the capacity requirements, so if a site goes down, in the majority of cases we have compensation coverage. A device can often see up to five tower sites in London, for example,’ he says.

Having adequate backhaul capacity – and resilient backhaul at that – is vital in any network. Bennett says EE is installing extra backhaul, largely microwave and fibre, but other solutions will also be used including satellite and LTE relay from base station to base station – daisy chaining. On 9 May 2016, EE announced a deal with satellite provider Avanti to provide satellite backhaul in some areas of the UK.

Additional coverage and resilience will be offered by RRVs (rapid response vehicles), which EE already has in its commercial network today, for example, to provide extra capacity in Ascot during the racing season.

‘We would use similar, although not exactly the same technology for disaster recovery and site/service recovery, but with all the backhaul solutions,’ says Bennett. ‘Let’s say we planned some maintenance or upgrade work that involved taking the base station out for a while.

‘We’d talk to the chief inspector before the work commences. If he says, there’s no chance of doing that tonight, we can put the RRV there, and provided we maintain coverage, we can carry out the work. RRVs are a very good tool for doing a lot of things.’

At the British APCO event, Mansoor Hanif, director of Radio Access Networks at EE said it was looking at the possibility of using ‘airmasts’ to provide additional coverage. Meshed small cells, network in a box and repeater solutions are becoming available for these ‘airmasts’, which will provide coverage from balloons, or UAVs – tethered drones with power cables and optical fibre connected to them.

Mansoor Hanif, Director of RAN at EE gave a presentation on this at Critical Communications World 2016 and has also given an interview. Both are embedded below.






Feel free to let me know if you believe this will work or not and why.