Wednesday 27 November 2019

Private 4G / 5G Cellular Networks and Bring Your Own Spectrum


With 4G maturing, private cellular networks are finally getting the attention that they deserve and has been promised for quite a while. In a Industry Analyst event, Nokia announced that they are running 120+ private networks including transportation, Energy, Public sector, Smart cities, manufacturing and logistics, etc. (tweet below). The Enterprise Business division is now accounting for 5% of the revenue.
Ray Le Maistre, Editor-in-Chief at Light Reading, in an opinion on Telecoms.com pointed out:

One of the more immediate revenue stream opportunities right now is wireless private networks, and the good news is that this opportunity doesn’t require 5G. Instead, the potential looks set to be enhanced by the availability of a full set of 5G standards (including the yet-to-be concluded core network specs) and the maturity of associated technology.

In the meantime, 4G/LTE has already been the cellular foundation for an increasingly thriving wireless private networks sector that, according to ABI Research, will be worth $16.3 billion by 2025

Another market sizing prediction, this time by SNS Telecom & IT, pitches annual spending on private 4G and 5G networks at $4.7 billion by the end of 2020 and almost $8 billion by 2023. 

However this plays out, there’s clear anticipation of growing investment. What’s particularly interesting, though, is which organizations might pocket that investment. That’s because enterprises and/or organizations looking to benefit from having a private wireless network have a number of options once they decide to move ahead with a private network – here are three permutations that look most likely to me:
  1. Build and run it themselves – technology vendors get some sales in this instance
  2. Outsource the network planning, construction and possibly even the day-to-day. management of the network to a systems integrator (SI) – the SI and some vendors get the spoils. It’s possible here, of course, that the SI could be a technology vendor.
  3. Outsource to a mobile network operator – the operator and some vendors will get some greenbacks.
For sure there will be other permutations, but it shows how many different parts of the ecosystem have some skin in the game, which is what makes this sector so interesting.

What’s also interesting, of course, is what the enterprises do with their private networks: Does it enhance operations? Help reduce costs? Create new business opportunities? All of the above?

Let’s not forget the role of the regulators in all of this. In the US the private wireless sector has been given a shot in the arm by the availability of CBRS (Citizens Broadband Radio Service) shared spectrum in the currently unlicensed 3.5 GHz band: This has given rise to numerous trials and deployments in locations such as sports stadiums, Times Square and even prisons.

In Germany, the regulator has set aside 100MHz of 5G spectrum for private, industrial networks has caused a storm and even led to accusations from the mobile operators that the move ramped up the cost of licenses in the spectrum auction held earlier this year.

In the UK, Ofcom is making spectrum available in four bands:
  • the 1800 MHz and 2300 MHz shared spectrum bands, which are currently used for mobile services;
  • the 3.8-4.2 GHz band, which supports 5G services, and
  • the 26 GHz band, which has also been identified as one of the main bands for 5G in the future.
Slide shared by Mansoor Hanif, CTO, Ofcom at TIP Summit 2019

The process to enable companies and organizations (Ofcom has identified manufacturers, business parks, holiday/theme parks and farms as potential users) in the UK to apply for spectrum will go live before the end of this year, with Ofcom believing that thousands of private networks could be up and running in the coming years.

Dean Bubley from Disruptive Analysis recently spoke about BYOSpectrum – Why private cellular is a game-changer at TAD Summit. The talk is embedded below and is definitely worth listening:



TelecomPaper reported:

The German Federal Ministry for Economic Affairs and Energy said that companies can start to apply to use 5G frequencies in the 3.7-3.8 GHz range on industrial campuses. Local frequencies enable firms to build their own private networks, rather than rely on telecommunications providers to build networks. 

The Automotive Industry Association (VDA) and other industry associations including the VCI, VDMA and ZVEI have welcomed the allocation of frequencies for industrial campuses. According to VDA, several dozen companies have already registered their interest in such frequencies with the Federal Network Agency. 

The firms believe that 5G can replace existing networks, including WLAN, provide improved coverage of entire company premises, enable full control over company data and reduce disruption to public mobile networks.

The spectrum licences will be allocated based on the applicant's geographic footprint and use of a certain area. Prices also take account the area covered by the network, as well as the amount of bandwidth used and duration of the licence.

The formula for the prices is very interesting as shown in the tweet below



In Japan, NTT Docomo is working in co-operation with industry partners to help them to create their own private 5G networks. More announcements on this are expected at MWC next year.



Finally, I am running an Introduction to Private 4G /5G Networks Workshop with Dean Bubley on 04 Feb 2020. If this is an area of interest, consider attending it.



Related Posts:

Friday 22 November 2019

5G Call Drops in EN-DC: A Thread for Service Quality?

As explained in the post about EN-DC setup the addition of 5G NR radio resources to an ongoing LTE connection provides additional bandwidth for user plane data transmission. And it seems to be fair to say that at least in social media today 5G speed test results, especially throughput measurements, are treated as the benchmark for EN-DC service performance. Hence, it is also logical that a loss of the physical 5G radio link (5G drop) could have a serious impact on user experience.

I write "could", because as a matter of fact many 5G drops will not be recognized by subscribers using non-realtime services including HTTP streaming.

Due to the dual connectivity of LTE Master eNodeB (MeNB) and Secondary gNodeB (SgNB) the signaling trigger points indicating a 5G drop are also a bit more complex compared to what we know from LTE. Indeed, both network nodes are able to release 5G radio resources abnormally using three different X2AP message flow scenarios as shown in figure 1.

Figure 1: Three Basic Signaling Flows for Abnormal Release of 5G Radio Resources

Which of these individual message flows will be found in the trace data depends on which of the two base stations is the first one that detects a problem on the 5G radio link.

A particular case that is seen quite often in live networks is illustrated in figure 2.

Figure 2: 5G Drop due to SGC Failure in UE

Here the trigger is a LTE RRC SCG Failure Information NR message sent by the UE to the MeNB. Thus, the MeNB requests the release of 5G radio resources, which is acknowledged and executed by the SgNB.

In addition (not show in the figures) also the GTP/IP-Tunnel for user plane transport between S-GW and gNB is released by the MeNB after successful completion of the X2AP SgNB Release procedure.

For the UE the 5G drop is not as serious as a drop of the LTE radio connection would be. It is just a fallback on plain LTE, so to say. And after the switching the GTP/IP-Tunnel back to a downlink endpoint at the eNB 4G payload transmission continues.

The longer the overall duration of the radio connection the higher is the risk that the 5G radio resources are lost during an EN-DC call. One of my favorite cases is a subscriber with a radio connection that last a bit more than two and a half hours - see figure 3.

Figure 3: Location Session Record of a Single Subscriber indicating a total number 340 SgNB Drops over 2:33 Hours

Thanks to the smart algorithms of NETSCOUT's TrueCall geolocation engine there is high confidence that she or he sits in an indoor environment, but is served by an outdoor 5G cell. Thus, the penetration loss of the 5G signal is significant. Due to the higher frequency the path loss has also higher impact on the 5G than on the 4G radio signal. This seems to be the main reason why the 5G radio link drops as often as 340 times, which leads to an overall 5G (SgNB) Drop Rate of 83% for this connection.

However, the impact on the subscriber experience might not be a serious one as a different KPI, the 5G EN-DC Duration Rate indicates. According to the Duration Rate 99.99% of all the time 5G radio resources have been available for the subscriber. This is possible, because as also shown in figure 2 within a relatively short time new 5G radio resources are allocated again to this connection. Even if the subscriber is watching e.g. a Netflix video the buffering of already downloaded data on the end user device should be sufficient to conceal the short interruption of the data transfer over 5G resources.

With rising amount of EN-DC traffic it might be rather problematic for the network to handle the additional signaling load originating from the frequent 5G additions and releases. In extreme cases this may even lead to congestion due to CPU overload in RAN nodes or virtual network functions.

For realtime services like Voice over New Radio (VoNR) the entire situation changes. Here even short interruptions of the user plane radio transmission can be perceived by subscribers so that the above discussed 5G Duration Rate KPI will become insufficient to estimate the service quality. Hence, this will drive the demand for a fully integrated view of 5G RAN and Core KPIs covering both, signaling and application quality. 

Tuesday 19 November 2019

Cell-free Massive MIMO and Radio Stripes


I wrote about "Distributed Massive MIMO using Ericsson Radio Stripes" after MWC 2019 here. I found it a very interesting concept and it will certainly take a few years before it becomes a reality.

Emil Björnson, Associate Professor at Linköping University have produced couple of videos on this topic. I am embedding both of them below for anyone who may be interested.

"A New Look at Cell-Free Massive MIMO" - based on technical paper from PIMRC 2019 on how to design Cell-free Massive MIMO systems that are both scalable and achieve high performance.



Worth noting the following about this video (based on video comments):
  • There are some minor issues with the sudio
  • Cell-free Massive MIMO is particularly for stadiums, streets, and places with many users or where it is hard to provide sufficient network quality with other methods.
  • This concept is still 4-5 years away from being ready to be practically deployed. It should be ready for later part of 5G, probably 5.5G

"Reinventing the Wireless Network Architecture Towards 6G: Cell-free Massive MIMO and Radio Stripes" looks at the motivation behind Cell-free Massive MIMO and how it can be implemented in 6G using radio stripes.



Worth noting the following on this video (based on video comments):

  • It may be possible that multiple frequency bands can be handled in the same radio stripe. If it is found to be possible then every other antenna  processing unit could manage a different band.
  • In principle, you can make the stripe as long as you need. But you probably need to divide it into segments since the power is supplied from one end of a stripe and it will only reach a limited distance (roughly up to 1 km). There are many implementation ideas and it remains to be seen what works out well in practice.

I am looking forward to see it work as it can solve coverage issues in many tricky scenarios.

Related Posts:

Thursday 7 November 2019

Introduction to 5G ATSSS - Access Traffic Steering, Switching and Splitting


Last month we made a short tutorial on 5G and Fixed-Mobile Convergence (FMC). One of the features covered in that was ATSSS. It deserved a bit more detail so we made a short tutorial on this feature.

Access Traffic Steering, Switching and Splitting or ATSSS for short is being standardized as part of 3GPP Rel-16 and allows traffic steering across multiple accesses at a finer granularities than a PDU session.  It is an optional feature both on the UE and the 5GC network. ATSSS introduces the notion of Multi Access PDU session, a PDU session for which the data traffic can be served over one or more concurrent accesses (3GPP access, trusted non-3GPP access and untrusted non-3GPP access). The simplest way to visualize it is as shown below:


The presentation and video is embedded below:







Related Posts: