Thursday 24 February 2022

IP Multimedia Subsystem (IMS) Support for Service Based Architecture (SBA)

I looked at IMS briefly in my LTE voice tutorial here. The Nokia Lectures covered IMS in-depth in part 5 of the video. I recently came across a short overview of IMS for SBA. You can see our old tutorial on Service Based Architecture (SBA) for 5G Core (5GC) here.

I came across this short video from Mpirical that nicely explains the IMS support for SBA. It's embedded below. The related posts at the bottom may also be worth checking out.

Related Posts:

Tuesday 15 February 2022

What Is the Role of AI and ML in the Open RAN and 5G Future?

Artificial Intelligence and Machine Learning have moved on from just being buzzwords to bringing much needed optimization and intelligence in devices, networks and infrastructure; whether on site, on the edge or in the cloud.

Qualcomm has been very active in talking about AI/ML in webinars and on their site. A detailed blog post looking at 'What’s the role of artificial intelligence in the future of 5G and beyond?' is available here. It was posted in time for a Light Reading webinar where Gabriel Brown, Principal Analyst – Mobile Networks and 5G, Heavy Reading and Tingfang Ji, Senior Director, Engineering - Wireless R&D, Qualcomm discuss the topic. The video is embedded below and slide deck is available here.

Louis Scialabba, Senior Director of Marketing at Mavenir, looking at AI and Analytics spoke at Layer 123 conference on the topic, 'AI/ML for Next Gen 5G Mobile Networks'. His talk is embedded below and a blog post by him on the topic, 'The RIC Opens a New World of Opportunities for CSPs' is available here.

Related Posts

Tuesday 8 February 2022

Extending 5G TDD Coverage With XDD (Cross Division Duplex)

A new 3GPP Technical report, TR 38.858 (draft not available yet) will look at Study on evolution of NR duplex operation (FS_NR_duplex_evo) in Rel-18. RP-213591 provides a justification on why this new duplex evolution needs to be studied:

TDD is widely used in commercial NR deployments. In TDD, the time domain resource is split between downlink and uplink. Allocation of a limited time duration for the uplink in TDD would result in reduced coverage, increased latency and reduced capacity. As a possible enhancement on this limitation of the conventional TDD operation, it would be worth studying the feasibility of allowing the simultaneous existence of downlink and uplink, a.k.a. full duplex, or more specifically, subband non-overlapping full duplex at the gNB side within a conventional TDD band.

The NR TDD specifications allow the dynamic/flexible allocation of downlink and uplink in time and CLI handling and RIM for NR were introduced in Rel-16. Nevertheless, further study may be required for CLI handling between the gNBs of the same or different operators to enable the dynamic/flexible TDD in commercial networks. The inter-gNB CLI may be due to either adjacent-channel CLI or co-channel-CLI, or both, depending on the deployment scenario. One of the problems not addressed in the previous releases is gNB-to-gNB CLI.

This study aims to identify the feasibility and solutions of duplex evolution in the areas outlined above to provide enhanced UL coverage, reduced latency, improved system capacity, and improved configuration flexibility for NR TDD operations in unpaired spectrum. In addition, the regulatory aspects need to be examined for deploying identified duplex enhancements in TDD unpaired spectrum considering potential constraints.

Samsung has a technical white paper on this topic which they refer to as XDD (Cross Division Duplex), available here. The abstract says:

XDD (Cross Division Duplex) is one of the key technologies that Samsung is proposing as part of Rel-18 NR (5G-Advanced) to address the coverage issue observed during the initial phase of 5G deployment. XDD provides improved coverage, capacity, and latency compared to conventional TDD. Instead of relying solely on orthogonal time resources for DL-UL separation as in TDD, XDD allows simultaneous DL-UL operation by using non-overlapping frequency resources within a carrier bandwidth.

This white paper provides a high level description of XDD concept, benefits, and implementation challenges. First, an overview of XDD including a comparison with conventional TDD and FDD is provided. Next, the implementation challenges of XDD especially at the base station to handle self-interference mitigation is provided. Furthermore, several features that we consider critical in realizing XDD in actual deployment scenarios are provided along with some performance results. Finally, Samsung’s view on XDD for the next phase of 5G (5G-Advanced) is provided.

An open access IEEE Access paper, 'Extending 5G TDD Coverage With XDD', written by Samsung researchers provides a much more detailed insight into this topic. The abstract says:

In this paper, an advanced duplex scheme called cross-division duplex (XDD) is proposed to enhance uplink (UL) coverage in time division duplex (TDD) carriers by utilizing self-interference cancellation (SIC) capability at a base station. With XDD, it is possible to combine TDD’s ability to efficiently handle asymmetric UL and downlink (DL) traffic with frequency division duplex’s coverage advantage. To do so, XDD simultaneously operates UL and DL on the same TDD carrier but on different frequency resources. Such operation leads to severe interference on the received UL signal at the base station which requires two levels of SIC implementation; antenna and digital SIC. More than 50 dB of interference is removed through the antenna SIC using electromagnetic barriers between the transmitting and receiving antennas. The remaining interference is removed by the digital SIC based on estimating the non-linear channel of the circuit at the receiver baseband. It is verified by simulation and analysis that with the proposed XDD, the UL coverage can be improved by up to 2.37 times that of TDD. To check the feasibility of XDD, a Proof-of-Concept was developed where it was observed that the benefits of XDD can indeed be realized using the proposed SIC techniques

In the segment of the video embedded below, Dr. Hyoung Ju Ji, Principal Engineer, Samsung Electronics, Korea explains how XDD is a Realistic Option for Full Duplex Realization.

Related Posts:

Tuesday 1 February 2022

Bug hunting in 5G Networks and Devices

Pentests or Penetration testing is ethical hacking that is an authorized simulated cyberattack on a computer system, performed to evaluate the security of the system. They are performed to identify weaknesses or vulnerabilities, including the potential for unauthorized parties to gain access to the system's features and data, as well as strengths, enabling a full risk assessment to be completed.

Sébastien Dudek, Founder and Security Engineer at PentHertz did a presentation at No Hat conference 2021. The outline of his talk says:

Expected to be released in 2021, we only see the early stage of 5G-NR connectivity in rare places around the world and we cannot talk yet about "real 5G" as current installations are put on the Non-Standalone mode (NSA) using 4G infrastructures. But in the meantime, it is important to get prepared for this upcoming technology and ways we can practically simulate real-world attacks in the future, with Standalone (SA) mode-capable devices and networks. In this presentation, we will see how to conduct practical security assignments on future 5G SA devices and networks, and how to investigate the protocol stack. To begin the presentation, we briefly present the differences with 2G-5G in terms of security applied to security assessment contexts, i.e. the limit we are left with, and how to circumvent them. Then we see how a 5G-NR security testbed looks like, and discuss what type of bugs are interesting to spot. Third, we make more sense about some attacks on devices by showing attacks that could be performed on the core side from the outside. Finally, we briefly introduce how we could move forward by looking at the 5G protocol stack and the state of the current mean.

Slides are available here and the video is embedded below:

A post on their website also looks at penetration of standalone 5G core. The post contains a video as well which can also be directly accessed here.

A new white paper from 5G Americas provides nearly annual updates around the topic of security in wireless cellular networks. The current edition addresses emerging challenges and opportunities, making recommendations for securing 5G networks in the context of the evolution to cloud-based and distributed networks. 

Additionally, the white paper provides insight into securing 5G in private, public, and hybrid cloud deployment models. Topics such as orchestration, automation, cloud-native security, and application programming interface (API) security are addressed. The transition from perimeter-based security to a zero-trust architecture to protect assets and data from external and internal threats is also discussed.

Related Posts