Showing posts with label Private Networks. Show all posts
Showing posts with label Private Networks. Show all posts

Thursday, 24 October 2024

4G/LTE, 5G and Private Networks in Africa

The Global mobile Suppliers Association (GSA) recently released its "Regional Spotlight Africa – October 2024" report. It tracks 604 public mobile networks across North and Sub-Saharan Africa, including LTE, LTE-Advanced, 5G, and fixed wireless access networks. The report gives an up-to-date view of 4G and 5G deployment in Africa, using the latest data and insights from GSA's various reports on mobile networks and satellite services.

Africa has seen major progress in telecommunications in recent years. The expansion of 4G LTE networks has improved data speeds, enhanced connectivity, and supported the spread of mobile broadband services. Looking ahead, 5G technology promises even faster speeds, lower latency, and stronger security, opening the door to new possibilities in connectivity.

The report covers key areas of mobile network development, such as:

  • The current state of LTE and 5G rollouts
  • LTE-Advanced advancements
  • 5G standalone networks
  • The growth of private networks
  • Phasing out 2G and 3G technologies
  • Progress in satellite services

Alongside the report, GSA hosted a regional webinar where the research team shared insights on:

  • The status of LTE and LTE-Advanced in Africa and how it compares globally
  • Whether 5G development is being delayed by ongoing LTE rollouts and older devices
  • Recent spectrum auctions and assignments
  • The transition from 2G and 3G networks
  • The potential for satellite non-terrestrial (NTN) services in Africa and how operators are responding

The webinar video is available below.

Related Posts: 

Wednesday, 14 August 2024

3GPP Release 18 Description and Summary of Work Items

The first official release of 3GPP TR 21.918: "Release 18 Description; Summary of Rel-18 Work Items" has been published. It's the first official version of 5G-Advanced. Quoting from the report: 

Release 18 specifies further improvements of the 5G-Avanced system. 

These improvements consist both in enhancements of concepts/Features introduced in the previous Releases and in the introduction of new topics.

Some of the key improvements are:

  • a further integration of the Satellite (NTN) access (introduced in Rel-17) in the 5G System (5GS), 
  • a more efficient support of Internet of Things (IoT), Machine-Type Communication (MTC), including by satellite coverage
  • and also several aspects of proximity communication and location (Sidelink, Proximity, Location and Positioning, better support of the industrial needs (Verticals, Industries, Factories, Northbound API), Multicast and Broadcast Services (MBS), Network Slicing or Uncrewed Aerial Vehicles (UAV).

As for the new topics, some of the key aspects are:

  • Energy Efficiency (EE)
  • Artificial Intelligence (AI)/Machine Learning (ML)
  • eXtended, Augmented and Virtual Reality (XR, AR, VR), immersive communications

The following list is from the v1.0.0 table of contents to make it easier to find the list of topics. If it interests you, download the latest version technical report from the directory here.

5 Satellite / Non-Terrestrial Network (NTN)
5.1 General aspects
5.1.1 User plane: “5G system with satellite backhaul”
5.1.2 Discontinuous coverage: “Satellite access Phase 2”
5.1.3 Radio: "NR NTN enhancements"
5.1.4 Charging and Management aspects of Satelite
5.2 Specific aspects
5.2.1 IoT (Internet of Things) NTN enhancements
5.2.2 Guidelines for Extra-territorial 5G Systems
5.2.3 5G system with satellite access to Support Control and/or Video Surveillance
5.2.4 Introduction of the satellite L-/S-band for NR
5.2.5 Other band-related aspects of satellite

6 Internet of Things (IoT), Machine-Type Communication (MTC)
6.1 Personal IoT and Residential networks
6.2 Enhanced support of Reduced Capability (RedCap) NR devices
6.3 NR RedCap UE with long eDRX for RRC_INACTIVE State
6.4 Application layer support for Personal IoT Network
6.5 5G Timing Resiliency System
6.6 Mobile Terminated-Small Data Transmission (MT-SDT) for NR
6.7 Adding new NR FDD bands for RedCap in Rel-18
6.8 Signal level Enhanced Network Selection
6.9 IoT NTN enhancements

7 Energy Efficiency (EE)
7.1 Enhancements of EE for 5G Phase 2
7.2 Network energy savings for NR
7.3 Smart Energy and Infrastructure

8 Uncrewed Aerial Vehicles (UAV), UAS, UAM
8.1 Architecture for UAV and UAM Phase 2
8.2 Architecture for UAS Applications, Phase 2
8.3 NR support for UAV
8.4 Enhanced LTE Support for UAV

9 Sidelink, Proximity, Location and Positioning
9.1 5GC LoCation Services - Phase 3
9.2 Expanded and improved NR positioning
9.3 NR sidelink evolution
9.4 NR sidelink relay enhancements
9.5 Proximity-based Services in 5GS Phase 2
9.6 Ranging-based Service and sidelink positioning
9.7 Mobile Terminated-Small Data Transmission (MT-SDT) for NR
9.8 5G-enabled fused location service capability exposure

10 Verticals, Industries, Factories, Northbound API
10.1 Low Power High Accuracy Positioning for industrial IoT scenarios
10.2 Application enablement aspects for subscriber-aware northbound API access
10.3 Smart Energy and Infrastructure
10.4 Generic group management, exposure and communication enhancements
10.5 Service Enabler Architecture Layer for Verticals Phase 3
10.6 SEAL data delivery enabler for vertical applications
10.7 Rel-18 Enhancements of 3GPP Northbound and Application Layer interfaces and APIs
10.8 Charging Aspects of B2B
10.9 NRF API enhancements to avoid signalling and storing of redundant data
10.10 GBA_U Based APIs
10.11 Other aspects

11 Artificial Intelligence (AI)/Machine Learning (ML)
11.1 AI/ML model transfer in 5GS
11.2 AI/ML for NG-RAN
11.3 AI/ML management & charging
11.4 NEF Charging enhancement to support AI/ML in 5GS

12 Multicast and Broadcast Services (MBS)
12.1 5G MBS Phase 2
12.2 Enhancements of NR MBS
12.3 UE pre-configuration for 5MBS
12.4 Other MBS aspects

13 Network Slicing
13.1 Network Slicing Phase 3
13.2 Enhancement of NSAC for maximum number of UEs with at least one PDU session/PDN connection
13.3 Enhancement of Network Slicing UICC application for network slice-specific authentication and authorization
13.4 Charging Aspects of Network Slicing Phase 2
13.5 Charging Aspects for NSSAA
13.6 Charging enhancement for Network Slice based wholesale in roaming
13.7 Network Slice Capability Exposure for Application Layer Enablement
13.8 Other slice aspects

14 eXtended, Augmented and Virtual Reality (XR, AR, VR), immersive
14.1 XR (eXtended Reality) enhancements for NR
14.2 Media Capabilities for Augmented Reality
14.3 Real-time Transport Protocol Configurations
14.4 Immersive Audio for Split Rendering Scenarios  (ISAR)
14.5 Immersive Real-time Communication for WebRTC
14.6 IMS-based AR Conversational Services
14.7 Split Rendering Media Service Enabler
14.8 Extended Reality and Media service (XRM)
14.9 Other XR/AR/VR items

15 Mission Critical and emergencies
15.1 Enhanced Mission Critical Push-to-talk architecture phase 4
15.2 Gateway UE function for Mission Critical Communication
15.3 Mission Critical Services over 5MBS
15.4 Mission Critical Services over 5GProSe
15.5 Mission Critical ad hoc group Communications
15.6 Other Mission Critical aspects

16 Transportations (Railways, V2X, aerial)
16.1 MBS support for V2X services
16.2 Air-to-ground network for NR
16.4 Interconnection and Migration Aspects for Railways
16.5 Application layer support for V2X services; Phase 3
16.6 Enhanced NR support for high speed train scenario in frequency range 2 (FR2)

17 User Plane traffic and services
17.1 Enhanced Multiparty RTT
17.2 5G-Advanced media profiles for messaging services
17.3 Charging Aspects of IMS Data Channel
17.4 Evolution of IMS Multimedia Telephony Service
17.5 Access Traffic Steering, Switch and Splitting support in the 5G system architecture; Phase 3
17.6 UPF enhancement for Exposure and SBA
17.7 Tactile and multi-modality communication services
17.8 UE Testing Phase 2
17.9 5G Media Streaming Protocols Phase 2
17.10 EVS Codec Extension for Immersive Voice and Audio Services
17.11 Other User Plane traffic and services items

18 Edge computing
18.1 Edge Computing Phase 2
18.2 Architecture for enabling Edge Applications Phase 2
18.3 Edge Application Standards in 3GPP and alignment with External Organizations

19 Non-Public Networks
19.1 Non-Public Networks Phase 2
19.2 5G Networks Providing Access to Localized Services
19.3 Non-Public Networks Phase 2

20 AM and UE Policy
20.1 5G AM Policy
20.2 Enhancement of 5G UE Policy
20.3 Dynamically Changing AM Policies in the 5GC Phase 2
20.4 Spending Limits for AM and UE Policies in the 5GC
20.5 Rel-18 Enhancements of UE Policy

21 Service-based items
21.1 Enhancements on Service-based support for SMS in 5GC
21.2 Service based management architecture
21.3 Automated certificate management in SBA
21.4 Security Aspects of the 5G Service Based Architecture Phase 2
21.5 Service Based Interface Protocol Improvements Release 18

22 Security-centric aspects
22.1 IETF DTLS protocol profile for AKMA and GBA
22.2 IETF OSCORE protocol profiles for GBA and AKMA
22.3 Home network triggered primary authentication
22.4 AKMA phase 2
22.5 5G Security Assurance Specification (SCAS) for the Policy Control Function (PCF)
22.6 Security aspects on User Consent for 3GPP services Phase 2
22.7 SCAS for split-gNB product classes
22.8 Security Assurance Specification for AKMA Anchor Function Function (AAnF)
22.9 Other security-centric items

23 NR-only items
23.1 Not band-centric
23.1.1 NR network-controlled repeaters
23.1.2 Enhancement of MIMO OTA requirement for NR UEs
23.1.3 NR MIMO evolution for downlink and uplink
23.1.4 Further NR mobility enhancements
23.1.5 In-Device Co-existence (IDC) enhancements for NR and MR-DC
23.1.6 Even Further RRM enhancement for NR and MR-DC
23.1.7 Dual Transmission Reception (TxRx) Multi-SIM for NR
23.1.8 NR support for dedicated spectrum less than 5MHz for FR1
23.1.9 Enhancement of NR Dynamic Spectrum Sharing (DSS)
23.1.10 Multi-carrier enhancements for NR
23.1.11 NR RF requirements enhancement for frequency range 2 (FR2), Phase 3
23.1.12 Requirement for NR frequency range 2 (FR2) multi-Rx chain DL reception
23.1.13 Support of intra-band non-collocated EN-DC/NR-CA deployment
23.1.14 Further enhancements on NR and MR-DC measurement gaps and measurements without gaps
23.1.15 Further RF requirements enhancement for NR and EN-DC in frequency range 1 (FR1)
23.1.16 Other non-band related items
23.2 Band-centric
23.2.1 Enhancements of NR shared spectrum bands
23.2.2 Addition of FDD NR bands using the uplink from n28 and the downlink of n75 and n76
23.2.3 Complete the specification support for BandWidth Part operation without restriction in NR
23.2.4 Other NR band related topics

24 LTE-only items
24.1 High Power UE (Power Class 2) for LTE FDD Band 14
24.2 Other LTE-only items

25 NR and LTE items
25.1 4Rx handheld UE for low NR bands (<1GHz) and/or 3Tx for NR inter-band UL Carrier Aggregation (CA) and EN-DC
25.2 Enhancement of UE TRP and TRS requirements and test methodologies for FR1 (NR SA and EN-DC)
25.3 Other items

26 Network automation
26.1 Enablers for Network Automation for 5G phase 3
26.2 Enhancement of Network Automation Enablers

27 Other aspects
27.1 Support for Wireless and Wireline Convergence Phase 2
27.2 Secondary DN Authentication and authorization in EPC IWK cases
27.3 Mobile IAB (Integrated Access and Backhaul) for NR
27.4 Further NR coverage enhancements
27.5 NR demodulation performance evolution
27.6 NR channel raster enhancement
27.7 BS/UE EMC enhancements for NR and LTE
27.8 Enhancement on NR QoE management and optimizations for diverse services
27.9 Additional NRM features phase 2
27.10 Further enhancement of data collection for SON (Self-Organising Networks)/MDT (Minimization of Drive Tests) in NR and EN-DC
27.11 Self-Configuration of RAN Network Entities
27.12 Enhancement of Shared Data ID and Handling
27.13 Message Service within the 5G system Phase 2
27.14 Security Assurance Specification (SCAS) Phase 2
27.15 Vehicle-Mounted Relays
27.16 SECAM and SCAS for 3GPP virtualized network products
27.17 SECAM and SCAS for 3GPP virtualized network products
27.18 MPS for Supplementary Services
27.19 Rel-18 enhancements of session management policy control
27.20 Seamless UE context recovery
27.21 Extensions to the TSC Framework to support DetNet
27.22 Multiple location report for MT-LR Immediate Location Request for regulatory services
27.23 Enhancement of Application Detection Event Exposure
27.24 General Support of IPv6 Prefix Delegation in 5GS
27.25 5G Timing Resiliency System
27.26 MPS when access to EPC/5GC is WLAN
27.27 Data Integrity in 5GS
27.28 Security Enhancement on RRCResumeRequest Message Protection

28 Administration, Operation, Maintenance and Charging-centric Features
28.1 Introduction
28.2 Intent driven Management Service for Mobile Network phase 2
28.3 Management of cloud-native Virtualized Network Functions
28.4 Management of Trace/MDT phase 2
28.5 Security Assurance Specification for Management Function (MnF)
28.6 5G performance measurements and KPIs phase 3
28.7 Access control for management service
28.8 Management Aspects related to NWDAF
28.9 Management Aspect of 5GLAN
28.10 Charging Aspects of TSN
28.11 CHF Distributed Availability
28.12 Management Data Analytics phase 2
28.12 5G System Enabler for Service Function Chaining
28.13 Other Management-centric items

29 Other Rel-18 Topics

If you find them useful then please get the latest document from here.

Related Posts

Wednesday, 22 May 2024

Real-world Deployment of Digital Twin and Private Cellular at St Pancras Railway Station

PAULEY are a dynamic UK-based SME at the forefront of the exciting emerging market in big data and interactive tools for business. Pioneers in Spatial Computing, our specialist team are working with clients operating in key industries and sectors including transport, safety critical industries and the education and training sector, to embed innovative digital technology into their business processes.

At Athonet's Uptime 2022 conference, Phil Pauley, CEO at Pauley Interactive, spoke about real-life deployment of Digital Twin and Private Cellular at St Pancras railway station. His talk is embedded below:

There is another playlist shared on PAULEY's YouTube channel that us embedded below:

You can read more about their work with HS2 here.

Related Posts

Friday, 5 April 2024

A Different Approach for Mobile Network Densification

I am fascinated by and have previously written blog posts about transparent antennas. Back in 2019 NTT Docomo announced that they have been working with glass manufacturer AGC to create a new transparent antenna that can work with a base station to become an antenna. Then in 2021, NTT Docomo and AGC announced that they have developed a prototype technology that efficiently guides 28-GHz 5G radio signals received from outdoors to specific locations indoors using a film-like metasurface lens that attaches to window surfaces. Transparent antennas/lens are one of the pillars of Docomo’s 6G vision as can be seen here.

Every year at Mobile World Congress I look for a wow product/demo. While there were some that impressed me, the suite of products from Wave by AGC (WAVEANTENNA, WAVETHRU and WAVETRAP) blew me away. Let’s look at each of them briefly:

WAVEANTENNA is the transparent glass antenna which is generally installed indoors, on a window or a glass pane. It can be used to receive signals from outdoors (as in case of FWA) or can be used to broadcast signal outdoors (for densification based on inside-out coverage). In the newer buildings that has thermal insulation films on the glass, the radio signals are highly attenuated in either direction, so this solution could work well in that scenario in conjunction with WAVETHRU.

The WAVETHRU process applies a unique laser pattern to the glazing with 30 µm laser engraved lines that are nearly invisible to the naked eye. Treatment is so gentle, it does not affect the physical properties of the glazing, which remain the same. This radio-friendly laser treatment improves the indoor radio signal by around 25 dB, to achieve almost the same level of performance as the street signal. Just 20% to 30% of the window and floors 0 to 4 need to be treated to improve the indoor signal on all frequency ranges under 6GHz.

In case of coverage densification by providing inside-out radio signals, WAVETRAP can be used for EM wave shielding by stopping back-lobes within the building. 

This video from WAVE by AGC explains the whole densification solution:

 

Now the question is, why was I impressed with this solution? Regular readers of this and the Telecoms Infrastructure Blog will have noticed the various solutions I have been writing about for mobile network densification in downtown areas and historic cities with listed buildings where limited space for infrastructure deployment presents several challenges. 

In brief, we can categorise these challenges as follows:

  • Physical Space Constraints like lack of space or strict regulations as in case of listed buildings and heritage sites. 
  • Aesthetics and Visual Impact could be an important consideration in certain historic city centres. Deploying large antennae or towers can clash with the architectural character and heritage of the area and may require concealing antennae within existing structures like chimneys, bus shelters, phone boxes & lampposts, or using disguised designs like fake trees to minimize visual impact.
  • Technical Challenges can arise in dense urban environments due to interference from neighbouring cells, unreliable backhaul connectivity, interruptions in the power supply due to siphoning, etc.
  • Community Engagement and Perception is another important area to consider. There is no shortage of NIMBY (Not in my back yard) activists that may oppose new infrastructure due to health concerns, aesthetics, or fear of property devaluation. Engaging with the community, providing accurate information about EMF exposure, and addressing misconceptions are crucial.
  • Regulatory and Permitting Hurdles that may arise due to many cities and councils imposing zoning and permits requirements. Obtaining permits for infrastructure deployment involves navigating local regulations, zoning laws, and historic preservation boards. There may also be height restrictions that may hinder optimal antenna placement.
  • Finally, Cost and ROI are important consideration factors as all of the above increases the costs as well as the time required. Customized designs, site acquisition, and compliance with regulations are one of the major factors that not only increase costs but also delays infrastructure rollouts. Operators often weigh the benefits of improved coverage and capacity against all the expenses and headaches of infrastructure deployment and then decide on what to deploy and where.

A solution like WAVEANTENNA in conjunction with WAVETHRU and WAVETRAP can significantly reduce the hurdles and improve coverage significantly. 

While I have talked about the solution in general, it can also be applied indoors to Wi-Fi, in addition to 4G/5G. This may be useful in case of Enterprise Networks where appearance is of importance and probably not of much use in case of warehouses or Industrial/Factory Networks. 

Do let me know what you think.

Related Posts

Wednesday, 13 September 2023

Private Networks Introductory Series

Private Networks has been a hot topic for a while now. We made a technical introductory video which has over 13K views while its slides have over 25K views. The Private Networks blog that officially started in April is now getting over 2K views a month. 

In addition, there are quite a few questions and enquiries that I receive on them on a regular basis. With this background, it makes sense to add these Introductory video series by Firecell in a post. Their 'Private Networks Tutorial Series' playlist, aiming to demystify private networks, is embedded below:

The playlist has five videos at the moment, hopefully they will add more:

  • Introduction to different kinds of mobile networks: public, private and hybrid networks
  • Different Names for Private Networks
  • Drivers and Enablers of Private Networks
  • Mobile Cellular vs Wi-Fi Private Networks
  • Architecture of Mobile Private Networks

I also like this post on different names for private networks.

Related Posts

Wednesday, 3 May 2023

Qualcomm Webinar on 'Realizing mission-critical industrial automation with 5G'

Private 5G networks have immense potential to transform industries by improving flexibility within the shop floor of the industries. Industrial 5G networks hold the promise to transform mission-critical industrial automation by using the built-in 5G features of higher bandwidth, lower latency, greater reliability, and improved security.

Some of the ways in which Industrial 5G (I5G) networks will help transform mission-critical industrial networks using automation include:

  • Enhanced Communication: I5G networks will offer faster and more reliable communication between machines, sensors, and other devices. This will lead to better synchronization, increased efficiency, and reduced downtime in industrial processes.
  • High-Quality Video: I5G networks will provide high-quality video streaming, enabling real-time monitoring of industrial processes. This will be particularly useful in applications such as remote inspections, quality control, and process optimization.
  • Edge Computing: I5G networks will support edge computing, that will enable processing of data close to where it is generated. This will help to keep latency to a minimum thereby improve response times and making it possible to perform critical tasks in real-time.
  • Improved Security: I5G networks will provide improved security features along with network slicing, which will enable the creation of secure virtual networks for specific applications or users. This will in-turn help to protect against cyberattacks and ensure the integrity of data.
  • Reduced Downtime: I5G networks will help to reduce downtime by providing real-time monitoring and predictive maintenance capabilities. This will allow identification of potential problems before they cause downtime thereby enabling proactive maintenance and repairs.

Overall, I5G networks have the potential and the capability to significantly improve mission-critical industrial automation by providing faster, more reliable, and secure communication, enabling real-time monitoring and control, and reducing downtime through predictive maintenance capabilities.

In addition, Private/Industrial 5G will help with Time-Sensitive Networking (TSN) by providing a highly reliable and low-latency wireless communication network that can support real-time industrial control and automation applications. TSN is a set of IEEE standards that enable time-critical data to be transmitted over Ethernet networks with very low latency and high reliability.

I5G networks provide a wireless alternative to wired Ethernet networks for TSN applications, which can be advantageous in environments where deploying Ethernet cabling is difficult or costly. With I5G, TSN traffic can be prioritized and transmitted over the network with low latency and high reliability, which is critical for industrial automation and control applications that require precise timing and synchronization.

Moreover, I5G networks can be deployed with network slicing capabilities, allowing for the creation of multiple virtual networks with different performance characteristics tailored to specific applications or user groups. This means that TSN traffic can be isolated and prioritized over other types of traffic, ensuring that critical data is always transmitted with the highest priority and reliability.

Last year, Qualcomm hosted a webinar on 'Realizing mission-critical industrial automation with 5G'. The webinar is embedded below:

Here is the summary of what the webinar includes:

Manufacturers seeking better operational efficiencies, with reduced downtime and higher yield, are at the leading edge of the Industry 4.0 transformation. With mobile system components and reliable wireless connectivity between them, flexible manufacturing systems can be reconfigured quickly for new tasks, to troubleshoot issues, or in response to shifts in supply and demand. 

5G connectivity enables flexibility in demanding industrial environments with key capabilities such as ultra-reliable wireless connectivity, wireless Ethernet, time-sensitive networking (TSN), and positioning. There is a long history of R&D collaboration between Bosch Rexroth and Qualcomm Technologies for the effective application of these 5G capabilities to industrial automation use cases. At the Robert Bosch Elektronik GmbH factory in Salzgitter, Germany, this collaboration has reached new heights by demonstrating time-synchronized control of an industrial robot, and remote positioning of an automated guided vehicle (AGV) over a live, ultra-reliable 5G private network.

Watch the session to learn how:

  • Qualcomm Technologies and Bosch Rexroth are collaborating to accelerate the Industry 4.0 transformation
  • 5G technologies deliver key capabilities for mission-critical industrial automation
  • Distributed control solutions can work effectively across 5G TSN networks
  • A single 5G technology platform solves connectivity and positioning needs for flexible manufacturing

The video is also available on Qualcomm site here and the slides are here.

A shorter video looking behind the tech to see how Qualcomm and Bosch are partnering to enable mission-critical industrial automation over a 5G private network is as follows:

Related Posts

Tuesday, 23 November 2021

3GPP Presentations from CEATEC Japan 2021

3GPP and its Japanese Organizational Partners TTC (Telecommunication Technology Committee) and ARIB (Association of Radio Industries and Businesses) hosted a “3GPP Summit” online workshop at CEATEC 2021, back in October. The event was co-located with the Japanese Ministry of Internal Affairs and Communications (MIC) and 5G Mobile Communications Promotion Forum (5GMF) 5G day at the event. Here is a summary of the event from 3GPP news:

The “3GPP Summit” featured all three Technical Specification Group (TSG) Chairs and one Japanese leader from each group. After the presentations, they exchanged their views and expectations for 3GPP work – as the industry starts to look at research beyond 5G. The event attracted almost 700 people, keen to understand what is going on in 3GPP.

The first session covered Release 17 and 18 evolution, with each TSG Chair and a domestic leader jointly presenting. Wanshi Chen introduced the latest schedule of each release and potential projects for Release 18 with the result of 3GPP Release 18 workshop held in June. Then, Hiroki Takeda presented some key features on Release 17 such as Redcap, RAN slicing and evolution of duplex.

TSG SA Chair, Georg Mayer introduced the group’s latest activities alongside Satoshi Nagata, covering key Release 17 features, such as enhanced support on Non-public Networks, Industrial IoT and Edge computing.

Next up was the TSG CT Chair, Lionel Morand, presenting the latest activities and roadmap for Core Network evolution from Release 15 to 17. Hiroshi Ishikawa also presented, covering 5G core protocol enhancements and some activities driven by operators.

The second part of the session focused more on activities ‘Beyond 5G’. First, Takaharu Nakamura introduced the latest activities on the topic in Japan. A panel discussion followed, with Satoshi Nagata joining the other 3GPP speakers, to give feedback on 5G developments and future use.

You can download the PPT of presentations from 3GPP site here or get the PDF from 3G4G page here.

Please feel free to add your thoughts as comments below.

Related Posts

Sunday, 21 March 2021

The Status of 5G Standalone (5G SA) Networks - March 2021


I wonder if you have seen as many adverts talking about the 5G revolution as I have. In fact I have collected many of them here. The problem is that most of these promised 5G awesomeness can only be delivered when 5G Standalone networks are launched. 

Before going further, if you don't know what 5G standalone (SA) and non-standalone (NSA) networks are, then you may want to check one of my tutorials/video. For beginners here and slightly advanced version here. If you just want to learn about the 5G core, tutorial here.

I believe that the 5G Non-standalone networks are a hack that were designed mainly to show just the 5G icon and in some cases it also provided enhanced speeds. Some operators have realised this and are thinking about the 5G NSA sunset. There are some potential issues with 5G SA speeds that need sorting out though.

GSA recently held a webinar looking at the status of 5G Standalone networks. The video of the webinar is embedded at the end of the post. The webinar summarised the stats as following:

  • By mid-March 2021, 428 operators in 132 countries/territories were investing in 5G
  • 176 operators in 76 countries/territories had announced they had deployed 3GPP compliant 5G technology in their live networks
  • Of those, a total of 153 operators in 64 countries/territories had launched one or more 3GPP-compliant 5G services
    • 145 operators in 60 countries/territories had launched 3GPP-compliant 5G mobile services
    • 51 operators in 29 countries/territories had launched 3GPP-compliant 5G FWA or home broadband services
  • For comparison, there are 807 public LTE networks worldwide
  • GSA has identified 68 operators in 38 countries/territories that are investing in 5G standalone for public mobile networks
  • Of those, a total of 7 operators in 5 countries/territories had launched 5G SA networks
    • Operators in China have deployed/upgraded hundreds of thousands of base stations 
    • T-Mobile has a nationwide network
    • Plus China Mobile HK, Rain (South Africa) and DirecTV (Colombia)
  • Also ITC KSA (soft launch), STC KSA deployed, Telstra 5G core deployed, plus various contracts for 5G core systems

Private Networks, Non-public networks (NPN) and Industrial 5G Networks are also expected to make use of standalone 5G networks. As 5G networks get virtualized and open, we will see a lot more of these.

The webinar also highlighted the progress of 5G devices:

  • There has been rapid growth in the numbers and types of 5G devices being announced and launched
  • As of end February:
    • 628 5G devices announced
    • 404 commercially available (up from 303 at the end of November)
    • 104 vendors
    • 21 announced form factors
    • Majority are phones (306 announced, 274 commercial)
  • 5G SA devices are also appearing
    • 298 devices announced with 5G SA support
    • 204 commercial devices state support for 5G SA
      • Software upgrades likely to be required
    • Steadily climbing up as % of all 5G devices
      • Now >47% of announced
      • >50% of commercial

Here is the webinar:

Related Posts

Friday, 5 March 2021

How to Identify Network Slices in NG RAN

In my last post I described how NG RAN resources can be divided into network slices. 

Now I would like to show how these network slices and the traffic they carry can be identified. 

The key to this is a parameter from the NG Application Protocol (NGAP) called the Single Network Slice Selection Assistance Information (S-NSSAI). When configuring virtual network functions in NG RAN there are lists of S-NSSAI exchanged, e.g. between gNB-CU CP and AMF during NGAP Setup procedure, to negotiate which network slices have to be supported in general. 

When it comes to connection establishment starting with NGAP Initial Context Setup for each PDU session that is established its individual S-NSSAI is signaled. 

The S-NSSAI - as show in the figure below - consists of two parameters, the Slice/Service Type (SST - 8 bit) and the optional Slice Differentiator (SD - 24 bit). The exact format and numbering ranges are defined in 3GPP 23.003.

3GPP 23.501 defines a set of default values for SST as listed in the following table:

Slice/Service type

SST value

Characteristics

eMBB

 

1

Slice suitable for the handling of 5G enhanced Mobile Broadband.

URLLC

2

Slice suitable for the handling of ultra- reliable low latency communications.

MIoT

3

Slice suitable for the handling of massive IoT.

V2X

4

Slice suitable for the handling of V2X services.

So when looking back at the figure it emerges that for each subscriber represented by an IMSI the SST allows to identify which services are running. 

On the other hand allows to see if in which virtual network the subscriber is active. In my example I have defined that the resources are shared among a Public MNO that I consider the owner of the network hardware and two different private (campus) networks. While IMSI 1 and IMSI 2 are not allowed to use any other network slice the IMSI 3 is allowed to "roam" betweent the public slice and the two private network slices. This explains why a slice-specific authentication functionality as defined in Rel. 16 is necessary. 

Related Posts:

Monday, 21 December 2020

Challenges and Future Perspectives of Industrial 5G

Andreas Mueller, Head of communication and network technology at Bosch Corporate Research and Chair of 5G ACIA recently spoke at 'What Next for Wireless Infrastructure Summit' by TelecomTV about Industrial 5G. The following is paraphrased from his presentation 'Industrial 5G: Remaining challenges and future perspectives' which is embedded below: 

5G has the potential to become the central nervous system of the factory of the future, enabling unprecedented levels of flexibility, efficiency, productivity and also ease of use.  At the same time it's also a very special application domain so in many cases there are very demanding QoS requirements. 

Industrial applications have multi-faceted requirements where one case may require very low latencies and high reliabilities for instance, while for others we may need very high data rates (for example HD cameras). There is no single use case with a single set of requirements but many different use cases with very diverse requirements which also have to be supported in many cases at the very same time. 

As we need only a local network with local connectivity, this performance is required only in a very controlled environment; inside a factory, inside a plant. This allows for specific optimizations and makes certain things easier but we also always have brownfields deployments in many cases that means we have to live what we have in place today so that's typically wired communication in some cases it's wi-fi and similar wireless solutions and we have to be able to smoothly integrate a 5G network into this existing infrastructure

The developments towards Industrial 5G started about three years ago i would say and in the meantime it really has become a hot topic everybody is talking about industrial 5G. It has become a focused topic in standardization in 3GPP and some key capabilities already have been standardized which have been briefly outlined in the presentation. 

Good progress has also been made in the ecosystem development so we've established the 5G Alliance for Connected Industries and Automation two and a half years ago which serves as a global forum for bringing all relevant stakeholders together and for driving industrial 5G and we have 76 members today which includes major players from the telco industry but also from the industrial domain and also of course some universities and so on. We have seen the advent of non-public networks (NPN) so for the first time it will be possible for a manufacturers to deploy and operate such non-public networks inside a factory which are to some extent decoupled from the public networks.

If we look at the standardization timeline this is what you get. The first version of 5G release 15 of 3GPP was approved mid last year and it still had a very strong focus on consumer application and enhanced mobile broadband. If you buy 5G today, this is what you get then. Release-16 has for the first time had a very strong focus on industrial applications this has been approved in June this year and it includes features like ultra reliable low latency communication, non-public networks, time-sensitive communication. It means support for time-sensitive networking 5G and also native layer 2 transport so that we don't necessarily need internet protocol but we can directly transmit ethernet frames over a 5G network which again is very important especially for the industrial domain.

Release 17 is currently underway and it will come along with several enhancements of these features. It also has a stronger focus on positioning which is again very important in manufacturing because knowing where things are is a very valuable information and it will be in this new transmission mode called NR RedCap which is somewhere somewhere in between this high-end mobile broadband mode and also this low-end a massive machine type communication and this might be especially suitable for industrial sensors for example and then of course the journey will continue with Release 18 which is still being defined but with a high probability i would say it will more focus on massive iot applications that means tiny little sensors for example which have to be connected using very low energy and low costs and not just the natural next step.

So many things have been done already towards supporting these industrial applications but if you look at factories today there are only very few of them which already make use of 5g and that's because there are still some challenges to be overcome some of them are listed here first of all having the features in the standard is nice but they also have to be implemented in the chipsets and infrastructure components and that still say test takes some time especially if we consider that really 16 is the first release which really has many of the features that make a difference to the industrial domain

Here is a list of the features that can be prioritised for future 5G releases or even for 6G. As Release-17 has just been delayed slightly, quite possible that some of the features expected in 5G may get pushed on to Beyond 5G and even 6G.

Here is the embedded talk

An interview by Dr. Andreas Müller regarding Bosch 5G activities is available here (in German)

Related Posts: