Showing posts with label Smart Grids. Show all posts
Showing posts with label Smart Grids. Show all posts

Thursday, 5 January 2012

IEEE standards impacting the future home


Interesting graphic from IEEE-SA depicting various IEEE standards impacting the home - via Steven Crowley on Twitter

Thursday, 14 April 2011

Smart Grids (again)


I blogged about smart grids just the other day but they seem to be the 'in thing' and keep popping up everywhere.

The very interesting picture above is from The Guardian article here, that promises that consumers will be able to cut down on their bills by taking advantage of smart meters.

Meanwhile European Commission is making Smart Grids a high priority. The following is from one of their communique:

The European Commission presented its Communication on smart grids. It sets policy directions to drive forward the deployment of future European electricity networks. Bringing together latest progress in Information and Communication technologies and network development will allow electricity current to flow exactly where and when it is needed at the cheapest cost. Smart grids will give in particular to consumers the ability to follow their actual electricity consumption in real time : smart meters will give consumers strong incentives to save energy and money. Estimates show that smart electricity grids should reduce CO2 emissions in the EU by 9% and the annual household energy consumption by 10%. They also help to ensure secure functioning of the electricity system and are a key enabler of both the internal energy market and integration of vast amounts of renewable.

You can read the complete press summary here. A new report entitled 'Smart Grids: from innovation to deployment' is available to download from here. The European Commission Smart Grids taskforce webpage is here.


The following is from IEEE Spectrum :

On 17 March, game designers at the Institute for the Future, in collaboration with us at IEEE Spectrum, ran a 24-hour forecasting game called Smart Grid 2025. Weenlisted the help of listeners like you and game players around the world to brainstorm solutions to the problems the smart grid will face. That way, by 2025—when all our homes have smart meters and utilities are linking up wind farms and solar plants to national grids—it'll be running as smoothly as it possibly can.

Steven Cherry's guest is Jake Dunagan, the game's project leader at the Institute for the Future in Palo Alto, Calif. He was on this show in early March in advance of the Smart Grid 2025 game to talk about how it would work, and now he's back to tell how it went.

This interview was recorded 4 April 2011. (Listen below)



Background on Smart Grids from the same IEEE article: One of the hottest topics in engineering is the smart grid—the idea of adding computer intelligence to a nation's basic electrical grid. The goal is to transport and use energy more efficiently in the grid itself—and also in your home. By adding intelligence to our electrical meters, fuse boxes, even our home appliances, each of us can use electricity more wisely and consume less of it.

But it's still early days for smart grid deployment. In fact, today, the smart grid still raises more questions than it answers—questions like, who will profit from the smart grid? How do we keep the smart grid from knowing too much about our personal lives? Is the smart grid dangerously hackable? Will the smart grid force you to do your laundry at night? Will the smart grid make us healthier? What kind of appliances are needed to accommodate the smart grid?

Feel free to add your thoughts in the comments.

Monday, 4 April 2011

Smart Grids: Beyond their remit

I blogged about the Smart Grid developments, nearly 2 years back here. Since then we have started talking about the 50 Billion connected M2M devices. Though Smart Grids as such can be just limited to distributing the electricity efficiently and dynamically, it has been said that they can be used for doing more than what they have been created for.

One such discussion in a recently concluded Cambridge Wireless Event on "Avoiding Cellular Gridlock: Finding New Ways Forward in Radio" was to use these smart grids for collecting the information about its surrounding.

It is well known that quite a few whitespace exist in radio communication in every country. We can build a cognitive radio that can use these whitespace and accordingly harness these free spectrum to the advantage of the users. Now since these whitespace would be different in each country and would also change depending on if a certain frequency is allocated in one area but not in another, there would need to be a database that the devices could use to find which spectrum is available or not.

Smart grids can be used to collect this information and update the database as they would have a wide footprint, probably encompassing the whole country. Though this is just an idea that came up in discussion, there could be more similar uses of smart grids.

For those of you who do not know much about smart grids, I have embedded couple of presentation from different chapters of The IET.





One thing worth mentioning is that, there is already a concern that Smart Grids could be an invasion of privacy and could also be exploited by highly skilled theives.

Picture Source: Washington Post

If you look at the picture above, an expert in smart grids could be able to point out the different signatures of power consumption match to a particular event related generally to a device. So for example of you have used a kettle that means you have not gone on holidays, or something like that.

This also gives opportunity for new devices that can randomize these signatures :)

Tuesday, 1 February 2011

6th ETSI Security Workshop

6th ETSI Security workshop was held last month. There were some very interesting areas of discussion including Wireless/Mobile Security, Smart Grids Security, etc.
All presentations are available to download from here.

Tuesday, 7 July 2009

Smart Grids: New Wireless Revolution



In the past two years, M2M (machine-to-machine) applications have become one of the most talked-about topics in the wireless industry. While M2M apps can be used for many purposes (such as smart homes, smart metering/electricity meter reading, fleet management, mobile workforce, automobile insurance and vending machines) and in many sectors (such as healthcare, agriculture, commercial, industrial, retail and utility), smart metering applications--also known as smart grids--present the biggest growth potential in the M2M market today. With many leading wireless service providers and utility companies jumping on the bandwagon and the growing support from states like Texas and California, M2M applications are set to become very successful in the coming years.


AT&T in March announced a new alternative for electric utility companies looking to provide the benefits of smart grid technology to the residential sector. AT&T and SmartSynch are for the first time providing utilities with a cost-effective solution by combining a new suite of service plans from AT&T designed specifically for machine to machine (M2M) communications with SmartSynch's smart grid solutions already deployed at more than 100 utilities throughout North America.

With this new solution from AT&T and SmartSynch, electric utility companies will now be able to concentrate on efficient electricity delivery rather than being distracted by building, maintaining, expanding and upgrading a communications network. This new solution offers a cost-effective point-to-point configuration model in which each meter communicates directly with the utility over the AT&T wireless network.

Smart grids combine "smart meters", wireless technology, sensors and software so customers and utilities can closely monitor energy use and cut back when the availability of electricity is stretched to its limit. The IP-based smart grid model ultimately helps consumers understand the economics of their consumption patterns so they can make intelligent decisions about their power consumption. The smart grid technology will also help to enhance reliability and energy efficiency, lower power-line losses and provide utilities with the ability to remotely automate service, providing cost-savings for consumers.

Key benefits of the point to point smart meter solution to utility companies include:
  • improved speed of deployment over traditional meshed networks
  • the simplicity of an open standard, IP-based network
  • the ability to communicate directly with each meter.

How can T-Mobile, the fourth-largest cell phone carrier in the U.S., generate business in the face of dropping net additional subscribers and competition from low-cost cell phone companies? Get into the smart grid. Like AT&T and Verizon, T-Mobile is hoping to leverage its already built-out wireless networks to tap into the coming smart grid boom spurred by the stimulus package. On Thursday, T-Mobile plans to announce that it’s developing a durable SIM card that can be embedded in smart meters (as well as used for other industrial processes), and a new partnership with smart meter technology maker Echelon.

Mobile’s national director of Machine-to-Machine services, John Horn, told us that T-Mobile has been playing in the connected electric meter space for several years, including working with smart meter maker SmartSynch (AT&T has a deal with them, too), and he says the carrier has several utility pilot projects under way in the Pacific, Southwest and Midatlantic regions with an aggregate of “tens of millions” of smart meters. In some of those trials T-Mobile has been testing out its new smart meter SIM card, which is like the SIM card in your regular cell phone, but smaller — 5 by 6 millimeters — more durable and made of silicon, not plastic. Horn says the SIM, which can be connected to any of T-Mobile’s wireless networks, including 3G, can withstand the heat and environmental conditions of being outdoors in a smart meter much better than a standard SIM card.

One of the first smart meter makers to embed the new SIM is Echelon, which is also working with T-Mobile on a smart meter service that will run over T-Mobile’s wireless networks and, according to the companies, is significantly cheaper for utility customers. T-Mobile is just the latest phone company to drop its prices to attract utilities. AT&T and SmartSynch announced a similar deal last week. Horn said of T-Mobile’s smart grid price move: “We’ve broken historical pricing models.”

Network technologies including LTE, mobile WiMAX, WiFi and ZigBee potentially could be used for future smart grid applications. While it is still too soon to tell which technology is likely to become the big winner in this market, mobile WiMAX appears to have an edge over LTE due to mobile WiMAX's time-to-market advantage. Mobile WiMAX also has the advantage of being more reliable and secure than "pure" unlicensed technologies like WiFi. WiMAX can also count on support from leading companies like GE, Intel, Sprint Nextel, Clearwire, Motorola, Samsung and Google, among others.

Most importantly, WiMAX will enable carriers, utility companies and other key players to build open-standards based smart meters. Ultimately, through WiMAX, third parties will be able to develop many applications and devices, helping to reduce cost. With WiMAX chipsets currently running about $36, some observers believe that the cost could become as low as $8 or $6 in the next 18 months.


In the meantime, WiMAX-based smart meters are already available in the U.S. For instance, GE, in association with Intel and Grid Net software, has built one of the first WiMAX-based smart meters. Intel Capital and GE both invested in Grid Net in 2006. Companies competing with GE include companies like Trilliant, Itron, Silver Spring Networks (also one of GE's partners) and Landis & Gyr.


However, over time, LTE could become a valuable option for many companies involved in this space as LTE becomes widely adopted and prices associated with it start to come down. LTE's larger coverage capacity and ability to support a higher number of points should play a key role here. In our opinion, it will also become critical for LTE carriers to offer a decent revenue share with utility companies and other key players.


Although being a short-range technology, ZigBee could also have a role to play in the M2M apps space as several companies have expressed some interest in the technology. In fact, U.S.-based startup Tendril Networks is well positioned to become a pioneer in this space; the company, which teamed up with Itron and Landis & Gyr, has already developed a product called Tendril Residential Energy Ecosystem (TREE), compatible with various ZigBee-based devices to be used for smart grid apps inside homes.


Lastly, if fully secured, WiFi could also become a disruptor. WiFi-based smart grid apps appear to be gaining traction in the U.S. and Europe. For instance, the city of San Jose, in association with Echelon, is currently testing a whole smart streetlight network using WiFi-based smart grids set to be launched this summer. The system may receive federal stimulus money, and if it does the city plans to revamp the entire 65,000-light network, which would help reduce energy costs by 40 percent. That figure is consistent with the performance of two European cities: Milton Keynes in the United Kingdom and Olso in Norway, which have been implemented by Echelon.

From Ajit Jaokar's Open Gardens Blog:

While Telcos have historically rebelled against 'opening up', the US administration's emphasis on Open is creating huge opportunities for Telecoms and the Cloud

Broadband stimulus grants are tied to net neutrality rules, which means networks have to allow users to connect any device to the network

But this also leads to a huge opportunity because now Telecoms can extend their reach into the Smart Grid through MTM (machine to machine) applications which will generate a much higher number of network connections. These may have less ARPU (i.e. average revenue per user) but a greater number of actual connections with no need to subsidise devices. Hence, they could be profitable.

A smart grid starts with a 'smart meter' which is capable of two way communications and lets the user and provider manage electricity consumption in a more granular way. If the customer's power consumption can be captured in a granular manner, the provider can offer specials/ discounts to the customer. The added potential of smart grids arises from knowing data trends and also extend power management to other devices. These synergies fit well into LTE and home gateways and this explains with LTE and also explains Verizon's emphasis on Ipv6
The Verizon Itron partnership is an example of such a service and this service will be a part of Verizon's LTE deployment in the 700 MHz band for M2M apps.

The Zigbe alliance is also gaining traction as a result of this move by building wireless intelligence and capabilities into everyday devices and all this will lead to the 50 billion devices mark which suddenly does not sound so far away

On the services side, initiatives like Microsoft Hohm are being deployed and even if a utility isn't a part of Hohm, users can enter data directly which means that they can get more benefits the more they contribute to it.Google power meter is a similar initiative from Google.

The wider potential of this trend is discussed in an excellent article from Andrew GesmerEnergy Conservation From Zero to Sixty

Thus, Smart grids, LTE and the Cloud are a huge opportunity for the industry - but the privacy concerns with sensor networks and the Cloud will play an important part here.

Companies are building out the smart grid with various broadband technologies — cellular, WiFi, WiMAX — so why not good ol’ DSL? Smart grid sensor and software maker Current is touting a new smart grid partnership with DSL provider Qwest.

Current largely provides the sensors that monitor different conditions on the electrical network, like voltage and current, as well as the software that processes the sensor information for the utility customer. While Current is mostly focused on the distribution portion of the grid, it can also provide communication gear and sensors for smart meters and in-home gateways, which it is doing for Colorado utility Xcel Energy for its SmartGridCity rollout. Because Current needs to get its information back to the utility, it works with a number of companies that provide that network connection. The latest is Qwest, which Current started partnering with, and is currently working with, for Xcel Energy’s SmartGridCity plan (Qwest provides phone and broadband service in Colorado). The buildout of SmartGridCity is supposed to be completed soon, followed by an assessment of the network’s benefits.

What are the benefits of using DSL? Current’s senior vice president of business solutions, Mae Squier-Dow, says that because DSL is already widely available, using it speeds up the ability to deploy smart grid technology. And because the networks have already been built, she says, the option is more affordable for a utility than building out its own communications network. (Other companies argue that in the long run it’s cheaper to build and own the network). Since DSL is a proven technology, it can help smart grid projects gain access to stimulus funds meant for “shovel-ready” projects, Squier-Dow says.

DSL is also high-speed, so if utilities want to use the networks for more bandwidth-intensive services, they can. And DSL is based on Internet Protocol, so it can more easily connect with other IP-based networks and systems, which are ubiquitous. Ultimately DSL is a standard that’s been used for years, so utilities can be rest assured that the technology is highly reliable.