Showing posts with label Future Technologies. Show all posts
Showing posts with label Future Technologies. Show all posts

Tuesday, January 9, 2024

Technological Complexification and The Return of Magic

I have been meaning to share this video/presentation by Patrick Scannell for quite some time now. Pat Scannell is a technology and telecom industry consultant who is a world leader on 5G and the co-evolution of technology and cognition, specializing in innovation and commercialization of emerging technologies across a wide range of industries.

At the IEEE International Symposium on Digital Privacy and Social Media 2022, Pat gave a talk titled 'The Return of Magic: Technological Complexification'. The outline of the talk says: 

Today’s tech is characterized by rapidly accelerating complexity, both in the densely layered technology itself but also in the increasingly hyper-specialized people who are needed to build it. But each person who builds it, and certainly most people who use tech, have a diminishing ability to understand how the whole of the techno-ecological niche we have created for ourselves (what I term ‘the return of magic’).

The case for this argument is outlined and then shows that the problems associated with this phenomenon are amplified by an inherent characteristic of a complex system - the lack of ability to know, understand, and predict system outcomes.

Against the broad scope of human history, the result of these forces could represent a reversal of a trend that started in the Enlightenment, but it also has very specific and actionable consequences on the day-to-day work of the tech industry and on Digital Privacy of our customers.

This talk aims to frame the problems, but in a constructive way that allows us to begin to build and adopt better technology, which could scaffold a better human experience.

The talk is embedded below, thanks to IEEE TV:

Related Posts

Monday, July 25, 2022

Demystifying and Defining the Metaverse

There is no shortage of Metaverse papers and articles as it is the latest trend in the long list of technologies promising to change the world. Couple of months back I wrote a post about it in the 6G blog here.

IEEE hosted a Metaverse Congress with the Kickoff Session 'Demystifying and Defining the Metaverse' this month as can be seen in the Tweet above. The video embedded below covers the following talks:

  • 0:01:24 - Opening Remarks by Eva Kaili (Vice President, European Parliament)
  • 0:09:51 - Keynote - Metaverse Landscape and Outlook by Yu Yuan (President-Elect, IEEE Standards Association)
  • 0:29:30 - Keynote - Through the Store Window by Thomas Furness (“Grandfather of Virtual Reality”)
  • 0:52:30 - Keynote - XR: The origin of the Metaverse as Water-Human-Computer Interaction (WaterHCI) by Steve Mann (“Father of Wearable Computing”)
  • 1:22:17 - Keynote - A Vision of the Metaverse: AI Infused, Physically Accurate Virtual Worlds by Rev Lebaredian (VP of Omniverse & Simulation Technology, NVIDIA)

Some fantastic definitions, explanations, use cases and vision on Metaverse. The final speaker nicely summarised Metaverse as shown in this slide below.

Worth highlighting point 6 that the Metaverse is device independent. I argued about something similar when we try and link everything to 6G (like we linked everything to 5G before). We are just in the beginning phase, a lot of updates and clarifications will come in the next few years before Metaverse starts taking a final shape.

Related Posts

Monday, April 18, 2022

Holographic Display - The *Wow* Demo from MWC 2022

(click image to see larger picture)

We often associate holograms with futuristic technology and even 6G nowadays but what if holograms could be done in a very simple way just by playing with light? 

At Mobile World Congress 2022, the demo that impressed me most was by a Japanese company called Asukanet. Their ASKA 3D Plate projects images in mid air. This in combination with a 3D sensor allows to manipulate the display without touching. It may be easier to understand this by looking at how this works in the largest convenience store in Japan as shown in the video below:

This is the demo video that I got at MWC

This is us playing with the hologram

While it may not be straightforward, it would complement our smartphones or tablets display nicely. 

You can watch some of the use cases on their page here.

Let me know what you think?

Related Posts:

Tuesday, February 9, 2021

Free 6G Training

Last year we announced the launch of Free 5G Training. It was successful beyond our imagination. While we have just over 1,300 Twitter followers, on LinkedIn, we have over 30,000. The 5G for Absolute Beginners Udemy course already has over 6,000 students. This was a good enough motivation for us to launch a 6G equivalent with world's first 6G training course.

Back in November, we soft-launched the Free 6G Training website/blog along with Twitter and LinkedIn. The initial engagement and following are already very encouraging. 

We also created 'An Introduction to 6G Training Course' here. 6G Candidate technologies, that require most details and is the main area of focus for 6G will be added as and when I find time and have enough material.

There is also a new 6G Wireless R&D LinkedIn group that has been started to share information and discuss doubts, etc. I am hoping many people will be able to join.

If you are a 6G expert or researcher or have ideas on how I can do better or want to contribute with articles, presentations, videos, etc., please feel free to get in touch on LinkedIn.

One final thing, along with all this, the 3G4G page has a section on '6G and Beyond-5G Wireless Technology'. I add links to all publicly available whitepapers and other good material out there. 

It may also be useful to know that the 3G4G page has a search box on top that searches across all our channels and can be helpful in finding information on any mobile technology related topic.

Friday, May 1, 2020

The Futuristic Concept of 'Smart & Intelligent' Batteries


I did a presentation back in 2013 on the concept of smart batteries. Even though there has been a lot of progress in wireless charging since back then, it hasn't reached even close to the vision that I have. As a result, I converted it into a video to start a discussion on if and when this would be possible. The slides and video are embedded below and I welcome any discussion in comments below.






Saturday, April 4, 2020

5G eXtended Reality (5G-XR) in 5G System (5GS)


We have been meaning to make a tutorial on augmented reality (AR), virtual reality (VR), mixed reality (MR) and extended reality (XR) for a while but we have only managed to do it. Embedded below is video and slides for the tutorial and also a playlist of different use cases on XR from around the world.

If you are not familiar with the 5G Service Based Architecture (SBA) and 5G Core (5GC), best to check this earlier tutorial before going further. A lot of comments are generally around Wi-Fi instead of 5G being used for indoors and we completely agree. 3GPP 5G architecture is designed to cater for any access in addition to 5G access. We have explained it here and here. This guest post also nicely explains Network Convergence of Mobile, Broadband and Wi-Fi.





XR use cases playlist



A lot of info on this topic is from Qualcomm, GSMA, 3GPP and 5G Americas whitepaper, all of them in the links in the slides.


Related Posts:

Friday, October 4, 2019

CW Seminar: The present, the future & challenges of AR/VR (#CWFDT)


One of my roles is as a SIG champion of the CW (Cambridge Wireless) Future Devices & Technologies Group. We recently organised an event on "The present, the future & challenges of AR/VR". The CW team has kindly even summarised it here. I have also tried to collect all the tweets from the day here.

Why is this important? Most of the posts on this blog is about the mobile technology and I am guessing most of the readers are from that industry too. While we are focussed too much on connectivity, it's the experience that makes the difference for most of the consumers. On the operator watch blog, I wrote recently about South Korea and the operator LG Uplus. Average data usage by 5G users in Korea is as high as 18.3GB, and average 4G users use 9GB in the same period, according to MSIT in May 2019. 5G data is about 2 times than that of 4G. This remarkable traffic growth is driven by UHD and AR/VR contents. According to the operator LG Uplus, new services featuring AR and VR functions are proving popular and already account for 20% of 5G traffic, compared with 5% for 4G.

Coming back to the CW event, some of the presentations were shared and they are available here for a limited time. There were so many learnings for me, it's difficult to remember and add all of them here.

Our newest SIG champ Nadia Aziz covered many different topics (presentation here) including how to quickly start making your own AR/VR apps and how AR apps will be used more and more for social media marketing in future.


Mariano Cigliano, Creative Developer at Unit9 (presentation here) discussed the journey of their company and what they have learned along the way whilst developing their solution to disrupt the design process through integrating immersive technologies.


Aki Jarvinen from Digital Catapult (presentation here) explained about Brown-boxing and Bodystorming. Both very simple techniques but can help get the app designers story straight and save a lot of time, effort and money while creating the app.


James Watson from Immerse (presentation here) talked about VR training. So many possibilities if done correctly and can be more interactive than the online or classroom training's.



Schuyler Simpson, Vice President - Strategic Partnerships & Operations at Playfusion (presentation here) discussed the reality of enhanced reality, diving deep into the challenges about creating an experience that resonates best with audiences. In his own words, "Enhanced Reality blends visual, audio, haptic, and intelligent components to create highly personalized, immersive, and most importantly, valuable experiences for organizations and their audiences."

The most valuable learning of the day was to create an AR/VR app (just in theory), assuming there is no technology limitation. The whole journey consisted of:

  • Brainstorming of the Use Case
  • Key Pain Points
  • Sort the pain points in priority and select top 3 or 5
  • Map customer journey
  • Define persona for which the app is being designed
  • Map their journey
  • Touch points
  • What can be improved on those touch points 
  • Design a VR/AR application for the defined problem 
  • Storyboarding AR/VR use case
  • UX design considerations – spatial, emotional.. 
  • Scribe a prototype 
  • Playback to others.


Thanks to everyone who helped make this whole event possible, from the SIG champs to the CW team and the host & sponsors NTT Data. Special thanks to our newest SIG champ, Nadia Aziz for tirelessly working to make this event a success.

Related Articles:

Sunday, June 2, 2019

Couple of talks by NTT Docomo on 5G and Beyond (pre-6G)


The Japanese operator, NTT Docomo is a very bold MNO. Not only do they do interesting research but they are very open about what they have been doing and share it publicly. For example, last month they announced development of a safe, blade-free drone propelled by Ultrasonic Vibrations (tweet). This was just amazing as it has a potential to use drones in many new areas where the conventional drones are deemed too dangerous. This is why I was very pleased to see couple of talks by Docomo available online.

The first one is by Takehiro Nakamura, SVP and General Manager of the 5G Laboratories in NTT DOCOMO, Inc. at the 6G Summit in Finland. Slides available here. Video embedded below




The next one is by Seizo Onoe, Chief Technology Architect, NTT DOCOMO, INC. and President, DOCOMO Technology, Inc. from Brooklyn 5G Summit. Unfortunately the slides are not shared but the video is worth a watch below.





Related Posts:

Tuesday, April 16, 2019

Slides and Videos from the 1st 6G Wireless Summit - March 2019


The first 6G wireless summit was held in Levi ski resort, in beautiful Lapland. According to the report by University of Oulu, 287 participants from 28 different countries spanning all inhabited continents took part. According to the report:

At the Summit, the participants’ were asked to project themselves into the world in 2030, potentially very different from today. As professor Matti Latva-aho, the director of 6G Flagship at the University of Oulu, and the driving force behind the vision of global 6G, puts it: ”The vision for 2030 is that our society is data-driven, enabled by near-instant, unlimited connectivity. We will be facing a growing and ageing population, demands for increased productivity and the need to connect the billions who are not currently connected. We challenged all of the conference attendants, pressing them to consider this future world beyond 5G and the most essential aspects of 6G research -- a decade in advance.”

Peter Vetter, Head of the Access Research at Nokia Bell Labs and a Bell Labs Fellow, took on Latva-aho’s vision for the future. Vetter says that in the future, the network needs to be thought of as a platform that creates network instances for specific environments. Specialized uses can be easily imagined including hospitals, elderly care, traffic and power plants. At the heart of it all is enhancing the human condition, Vetter says. “6G is still ten years and longer out, and I think that this is a consensus among the 6G Summit participants. However, it is time to start the research right now, because it takes 10-20 years before a new innovation sees a commercial launch,” Vetter says.

For wireless revolution to happen, there needs to be a revolutionary communication technology, a revolutionary application of that technology and a whole ecosystem for continued innovation, says Dr. Wen Tong, Head of Wireless Research and Head of Communications Technologies Laboratories at Huawei. “Wireless as a field has plenty of room for innovation. We need a young generation of researchers and an environment that will sustain continued innovation. This is very important, as without the young generation of research leaders the sustainability of the ecosystem will become problematic,” Dr. Tong explains.

Takehiro Nakamura, SVP and General Manager of the 5G Laboratories in NTT DoCoMo brought up the requirements for many future use cases, such as low latency, reliability, massive connectivity etc. and made a point that most of these will be met with 5G. “Then, there will be new combinations of extreme requirements for specific use cases. We need to provide extreme high reliability for a guaranteed quality of service for industry, peak data rates of over 100 Gbps, gigabyte-rate coverage everywhere, and to have everything run at extreme low energy consumption and cost,” Nakamura says. As Nakamura sees it, the future will have high-quality, real-time VR and AR. Massive IoT for anything and anywhere, like satellites in space. Broadband for flying mobility, which will need high coverage and high reliability.

Qi Bi, President of China Telecom Technology Innovation Center and CTO of China Telecom Research Institute thinks that 6G could be a turning point and a real revolution from 5G also in other terms besides technological. Even if we don’t yet know what 6G will be, it is going to be based on past generations and some traits will be there, Dr. Bi says. As far as gauging 6G research today, Dr. Bi says that the Summit was a great event for percolating a lot of ideas.

Some of the hot topics in 5G and in 6G are machine learning and artificial intelligence. Head of Ericsson Research Magnus Frodigh is a big believer in the coming 5G evolution. As networks are Ericsson’s strong point, Frodigh says it will be very interesting to see what distributed AI is going to bring to the game.

You can read the complete report here.

All the slides that were shared, can be downloaded from here.

Finally, embedded below are the videos that have been made available.


Related posts:

Friday, December 14, 2018

Robots in Telecoms World - A presentation from #CWFDT event on 'Robots: Assistance, Automation, Entertainment'


Another of the CW (Cambridge Wireless) Future Devices & Technologies (#CWFDT) event 'Robots: Assistance, Automation, Entertainment' happened a few weeks back. I had helped arrange the event and as always when a speaker dropped out at the last minute, I prepared a short talk on what role Robots play in the telecoms world. More later.

Robots have been part of human imagination for decades for example they feature heavily in popular culture and we typically have a favourite robot character. My favourite was 'Johnny Sokko And His Flying Robot'. Even though it was made in 1967, I saw it only in 1986.

The anticipated future impact of Robots is widely discussed. Their potential use in military operations may well change the face of future warfare, whilst in civilian life, industrial and domestic, it is speculated how they will both be our assistants and our replacements.

The intention of the event was to reflect on the challenges of lives transformed by new human-robot relationships.

While we had interesting talks and I think we succeeded in achieving what we set out to, not all speakers shared their presentations but you can see the ones available here.

My talk along with the videos is embedded below. If you prefer to hear my talk as it was, it's on YouTube here.



A twitter moment with some of the tweets from the day is embedded below:





Related Post:

Friday, October 26, 2018

The Yin and the Yang of AI & Blockchain


Today I read about HTC's Exodus 1, new Blockchain smartphone that only people with crypto-currency can buy. SCMP described in very simple terms what this phone is for:

Both HTC’s Exodus and Sirin’s Finney smartphones feature a built-in digital wallet application that will enable users to securely store and use cryptocurrencies, such as bitcoin and ethereum, in daily transactions.

Those smartphones are designed to replace the special memory sticks, which employ complex usernames and passwords to access, that cryptocurrency investors use to store their digital money. These investors typically store most of their cryptocurrencies in such hardware, which are kept offline as a means of security.

“There are things that a phone manufacturer can do with a chip that nobody else can,” said Chen. “We want to be safer than the existing hardware wallets … HTC has a track record of making trusted hardware.”

The company’s Exodus smartphone, for example, can serve as a “node”, which can connect to certain blockchain networks to enable trading of tokens between users. It will also be able to act as a so-called mining rig for users to earn new tokens tied to the Exodus blockchain.

“At some point, we’ll do our own utility token,” said Chen, adding that there was no timetable for such a token release.

HTC’s foray into blockchain, the distributed ledger technology behind cryptocurrencies like bitcoin, represents a strategy to keep the company relevant in smartphones, which is a market dominated by Samsung Electronics and Apple, followed by Huawei Technologies, Xiaomi and other major Chinese brands.

Anyway, the blockchain smartphone reminds me of the joke above (via marketoonist). The second technology mentioned in this joke is AI or Artificial Intelligence.

I heard HP Enterprise talk about AI recently and this picture above is a nice simple way to show how Deep Learning (DL), Artificial Neural Networks (ANN), Machine Learning (ML) and Artificial Intelligence (AI) are related.

I see AI and blockchain often referred to together. This does not necessarily mean that they are related. iDate allowed me to share a recent presentation (embedded below) that refers to AI & blockchain as Yin and Yang. Anyway, I am happy to learn more so if you have any thoughts please feel free to share.



Further Reading:


Related Posts:

Wednesday, September 5, 2018

LiFi can be a valuable tool for densification

LiFi has been popping up in the news recently. I blogged about it (as LED-Fi) 10 years back. While the concept has remained the same, many of the limitations associated with the technology has been overcome. One of the companies driving LiFi is Scottish startup called pureLiFi.


I heard Professor Harald Haas at IEEE Glasgow Summit speak about how many of the limitations of LiFi have been overcome in the last few years (see videos below). This is a welcome news as there is a tremendous amount of Visible Light Spectrum that is available for exploitation.


While many discussions on LiFi revolve round its use as access technology, I think the real potential lies in its use as backhaul for densification.

For 5G, when we are looking at small cells, every few hundred meters, probably on streetlights and lamp posts, there is a requirement for alternative backhaul to fiber. Its difficult to run fiber to each and every lamp post. Traditionally, this was solved by microwave solutions but another option available in 5G is Integrated Access and Backhauling (IAB) or Self-backhauling.


A better alternative could be to use LiFi for this backhauling between lamp posts or streetlights. This can help avoid complications with IAB when multiple nodes are close by and also any complications with the technology until it matures. This approach is of course being trialed but as the picture above shows, rural backhaul is just one option.
LiFi is being studied as part of IEEE 802.11bb group as well as its potential is being considered for 5G.

Here is a vieo playlist explaining LiFi technology in detail.




Further reading:

Sunday, August 5, 2018

ITU 'Network 2030': Initiative to support Emerging Technologies and Innovation looking beyond 5G advances

Source: ITU

As per this recent ITU Press Release:

The International Telecommunication Union, the United Nations specialized agency for information and communication technology (ICT), has launched a new research initiative to identify emerging and future ICT sector network demands, beyond 2030 and the advances expected of IMT-2020 (5G) systems. This work will be carried out by the newly established ITU Focus Group on Technologies for Network 2030, which is open to all interested parties.

The ITU focus group aims to guide the global ICT community in developing a "Network 2030" vision for future ICTs. This will include new concepts, new architecture, new protocols – and new solutions – that are fully backward compatible, so as to support both existing and new applications.

"The work of the ITU Focus Group on Technologies for 'Network 2030' will provide network system experts around the globe with a very valuable international reference point from which to guide the innovation required to support ICT use cases through 2030 and beyond," said ITU Secretary-General Houlin Zhao.

These ICT use cases will span new media such as hologrammes, a new generation of augmented and virtual reality applications, and high-precision communications for 'tactile' and 'haptic' applications in need of processing a very high volume of data in near real-time – extremely high throughput and low latency.   

Emphasizing this need, the focus group's chairman, Huawei's Richard Li, said, "This Focus Group will look at new media, new services and new architectures. Holographic type communications will have a big part to play in industry, agriculture, education, entertainment – and in many other fields. Supporting such capabilities will call for very high throughput in the range of hundreds of gigabits per second or even higher."

The ITU Focus Group on Technologies for 'Network 2030' is co-chaired by Verizon's Mehmet Toy, Rostelecom's Alexey Borodin, China Telecom's Yuan Zhang, Yutaka Miyake from KDDI Research, and is coordinated through ITU's Telecommunication Standardization Sector – which works with ITU's 193 Member States and more than 800 industry and academic members to establish international standards for emerging ICT innovations.

The ITU focus group reports to and will inform a new phase of work of the ITU standardization expert group for 'Future Networks' – Study Group 13. It will also strengthen and leverage collaborative relationships with and among other standards development organizations including: The European Telecommunications Standards Institute (ETSI), the Association for Computing Machinery's Special Interest Group on Data Communications (ACM SIGCOMM), and the Institute of Electrical and Electronics Engineers' Communications Society (IEEE ComSoc).
Source: ITU

According to the Focus Group page:

The FG NET-2030, as a platform to study and advance international networking technologies, will investigate the future network architecture, requirements, use cases, and capabilities of the networks for the year 2030 and beyond. 

The objectives include: 

• To study, review and survey existing technologies, platforms, and standards for identifying the gaps and challenges towards Network 2030, which are not supported by the existing and near future networks like 5G/IMT-2020.
• To formulate all aspects of Network 2030, including vision, requirements, architecture, novel use cases, evaluation methodology, and so forth.
• To provide guidelines for standardization roadmap.
• To establish liaisons and relationships with other SDOs.

An ITU interview with Dr. Richard Li, Huawei, Chairman of the ITU-T FG on Network 2030 is available on YouTube here.

A recent presentation by Dr. Richard Li on this topic is embedded below:



First Workshop on Network 2030 will be held in New York City, United States on 2 October 2018. Details here.

Related News:

Wednesday, May 16, 2018

100 Gbps wireless transmission using Orbital Angular Momentum (OAM) multiplexing


From a press release by NTT Group:

Nippon Telegraph and Telephone Corporation (NTT, Head Office: Chiyoda-ku, Tokyo, President and CEO: Hiroo Unoura) has successfully demonstrated for the first time in the world 100 Gbps wireless transmission using a new principle — Orbital Angular Momentum (OAM) multiplexing — with the aim of achieving terabit-class wireless transmission to support demand for wireless communications in the 2030s. It was shown in a laboratory environment that dramatic leaps in transmission capacity could be achieved by an NTT devised system that mounts data signals on the electromagnetic waves generated by this new principle of OAM multiplexing in combination with widely used Multiple-Input Multiple-Output (MIMO) technology. The results of this experiment revealed the possibility of applying this principle to large-capacity wireless transmission at a level about 100 times that of LTE and Wi-Fi and about 5 times that of 5G scheduled for launch. They are expected to contribute to the development of innovative wireless communications technologies for next-generation of 5G systems such as connected cars, virtual-reality/augmented-reality (VR/AR), high-definition video transmission, and remote medicine.


NTT is to present these results at Wireless Technology Park 2018 (WTP2018) to be held on May 23 – 25 and at the 2018 IEEE 87th Vehicular Technology Conference: VTC2018-Spring, an international conference sponsored by the Institute of Electrical and Electronics Engineers (IEEE) to be held on June 3 – 6.


For more technical details look at the bottom of this link.

Related Post:

Sunday, April 22, 2018

Short summary of #CWFDT event 'Smart Devices of 2025'


Last month, just before the Easter break, I along with some other SIG champions of the Future Devices & Technologies group at CW (Cambridge Wireless) organised an event titled 'Smart Devices of 2025'. Technologies are moving at such an amazing speed that it is not easy to foresee anything beyond 6-8 years. Hence 2025, 7 years from now.



As this was the inaugural event for the revamped SIG, the slides above are my quick introduction to the SIG. We not only talked about the future but we had some nice futuristic devices too. The nuFood 3D Food Printer by Dovetailed printed out some fancy toppings that could go on cheesecake and on other food, making it more appetising. Here is the video on how it works.



All the talks were very informative and very well explained. Its amazing how all of them came together to form a complete picture. The talks are all available here (limited time for non-CW members)

The starting talk by David Wood (@dw2), chair of London Futurists was not only informative and relevant to the subject being discussed but equally entertaining, especially for those who have been in the mobile industry for a long time. He has kindly agreed for me to share his slides which are embedded below.



David talks about NBIC (slide 18) and how it could be combined with Social-tech and Planetary-tech in future to do a lot more than what we can do with it today. While David explains NBIC in his slides, I found this short video on this topic that I think is worth embedding.



It was also good to hear Dr Jenny Tillotson again after a long time. I blogged about smell transmission some 6 years back here. This is something that is still work in progress and probably will be ready by 2025. In the meantime 'Context-Driven Fragrances' can be used for variety of purposes from entertainment to health.


Finally, here is another small presentation (with embedded video) on Telepresence Robots that I did.



Related posts:

Sunday, September 10, 2017

Smartphone Batteries Round-up: Technology, Charging & Recycling

Back in 2013, I spoke about Smart Batteries. Still waiting for someone to deliver on that. In the meantime I noticed that you can use an Android phone to charge another phone, via cable though. See the pic below:


You are probably all aware of the Samsung Galaxy Note 7 catching fires. In case you are interested in knowing the reasons, Guardian has a good summary here. You can also see the pic below that summarises the issue.


Lithium-ion batteries have always been criticized for its abilities to catch fire (see here and here) but researchers have been working on ways to reduce the risk of fire. There are some promising developments.


The electrochemical masterminds at Stanford University have created a lithium-ion battery with built-in flame suppression. When the battery reaches a critical temperature (160 degrees Celsius in this case), an integrated flame retardant is released, extinguishing any flames within 0.4 seconds. Importantly, the addition of an integrated flame retardant doesn't reduce the performance of the battery.

Researchers at the University of Maryland and the US Army Research Laboratory have developed a safe lithium-ion battery that uses a water-salt solution as its electrolyte. Lithium-ion batteries used in smartphones and other devices are typically non-aqueous, as they can reach higher energy levels. Aqueous lithium-ion batteries are safer as the water-based electrolytes are inflammable compared to the highly flammable organic solvents used in their non-aqueous counterparts. The scientists have created a special gel, which keeps water from reacting with graphite or lithium metal and setting off a dangerous chain reaction.


Bloomberg has a good report as to why we’re going to need more Lithium.

Starting about two years ago, fears of a lithium shortage almost tripled prices for the metal, to more than $20,000 a ton, in just 10 months. The cause was a spike in the market for electric vehicles, which were suddenly competing with laptops and smartphones for lithium ion batteries. Demand for the metal won’t slacken anytime soon—on the contrary, electric car production is expected to increase more than thirtyfold by 2030, according to Bloomberg New Energy Finance.

Even if the price of lithium soars 300 percent, battery pack costs would rise only by about 2 percent.

University of Washington researchers recently demonstrated the world's first battery-free cellphone, created with funding from the U.S. National Science Foundation (NSF) and a Google Faculty Research Award for mobile research.

The battery-free technology harvests energy from the signal received from the cellular base station (for reception) and the voice of the user (for transmission) using a technique called backscattering. Backscattering for battery-free operation is best known for its use in radio frequency identification (RFID) tags, typically utilized for applications such as locating products in a warehouse and keeping track of high-value equipment. An RFID base station (called a reader) "pings" the tag with an RF pulse, which allows the tag to harvest microwatts of energy from it—enough to return a backscattered RF signal modulated with the identity of the item.



Unfortunately, harvesting generates very little energy; so little, that you really need a new standard. For instance, Wi-Fi signals transmit continuously, but harvesting that energy constantly will only enable transmissions of about 10 feet today. Range will be the big challenge for making this technology successful.

So we wont be seeing them anytime soon unfortunately.

Recycling of materials is always a concern, especially now that the use of Lithium-ion is increasing. Financial Times (FT) recently did a good summary of all the companies trying to recycle Lithium, Cobalt, etc.

Mr Kochhar estimates over 11m tonnes of spent lithium-ion batteries will be discarded by 2030. The company is looking to process 5,000 tonnes a year to start with and eventually 250,000 tonnes — a similar amount to a processing plant for mined lithium, he said.

The battery industry currently uses 42 percent of global cobalt production, a critical metal for Lithium-ion cells. The remaining 58 percent is used in diverse industrial and military applications (super alloys, catalysts, magnets, pigments…) that rely exclusively on the material.

According to Wikipedia, The purpose of the Cobalt (Co) within the LIBs is to act as a sort of bridge for the lithium ions to travel on between the cathode (positive end of the battery) and the anode (the negative end). During the charging of the battery, the cobalt is oxidized from Coᶾ⁺ to Co⁴⁺. This means that the transition metal, cobalt, has lost an electron. During the discharge of the battery the cobalt is reduced from Co⁴⁺ to Coᶾ⁺. Reduction is the opposite of oxidation. It is the gaining of an electron and decreases the overall oxidation state of the compound. Oxidation and reduction reactions are usually coupled together in a series of reactions known as red-ox (reduction-oxidation) reactions. This chemistry was utilized by Sony in 1990 to produce lithium ion cells.

From Treehugger: An excellent investigative piece by the Washington Post called “The cobalt pipeline: From dangerous tunnels in Congo to consumers’ mobile tech” explores the source of this valuable mineral that everyone relies on, yet knows little about.
“Lithium-ion batteries were supposed to be different from the dirty, toxic technologies of the past. Lighter and packing more energy than conventional lead-acid batteries, these cobalt-rich batteries are seen as ‘green.’ They are essential to plans for one day moving beyond smog-belching gasoline engines. Already these batteries have defined the world’s tech devices.
“Smartphones would not fit in pockets without them. Laptops would not fit on laps. Electric vehicles would be impractical. In many ways, the current Silicon Valley gold rush — from mobile devices to driverless cars — is built on the power of lithium-ion batteries.”
What The Post found is an industry that’s heavily reliant on ‘artisanal miners’ or creuseurs, as they’re called in French. These men do not work for industrial mining firms, but rather dig independently, anywhere they may find minerals, under roads and railways, in backyards, sometimes under their own homes. It is dangerous work that often results in injury, collapsed tunnels, and fires. The miners earn between $2 and $3 per day by selling their haul at a local minerals market.

There is a big potential for reducing waste and improving lives, hopefully we will see some developments on this front soon.

Sunday, May 21, 2017

Research on Unvoiced Speech Communications using Smartphones and Mobiles

A startup on kickstarter is touting world's first voice mask for smartphones. Having said that Hushme has been compared to Bane from Batman and Dr. Hannibal Lecter. Good detail of Hushme at Engadget here.

This is an interesting concept and has come back in the news after a long gap. Even though we are well past the point of 'Peak Telephony' because we now use text messages and OTT apps for non-urgent communications. Voice will always be around though for not only urgent communications but for things like audio/video conference calls.


Back in 2003 NTT Docomo generated a lot of news on this topic. Their research paper "Unvoiced speech recognition using EMG - mime speech recognition" was the first step in trying to find a way to speak silently while the other party can hear voice. This is probably the most quoted paper on this topic. (picture source).


NASA was working on this area around the same time. They referred to this approach as 'Subvocal Speech'. While the original intention of this approach was for astronauts suits, the intention was that it could also be available for other commercial use. Also, NASA was effectively working on limited number of words using this approach (picture source).

For both the approaches above, there isn't a lot of recent updated information. While it has been easy to recognize certain characters, it takes a lot of effort to do the whole speech. Its also a challenge to play your voice rather than a robotic voice to the other party.

To give a comparison of how big a challenge this is, look at the Youtube videos where they do an automatic captions generation. Even though you can understand what the person is speaking, its always a challenge for the machine. You can read more about the challenge here.

A lot of research in similar areas has been done is France and is available here.


Motorola has gone a step further and patented an e-Tattoo that can be emblazoned over your vocal cords to intercept subtle voice commands — perhaps even subvocal commands, or even the fully internal whisperings that fail to pluck the vocal cords when not given full cerebral approval. One might even conclude that they are not just patenting device communications from a patch of smartskin, but communications from your soul. Read more here.


Another term used for research has been 'lip reading'. While the initial approaches to lip reading was the same as other approaches of attaching sensors to facial muscles (see here), the newer approaches are looking at exploiting smartphone camera for this.

Many researchers have achieved reasonable success using cameras for lip reading (see here and here) but researchers from Google’s AI division DeepMind and the University of Oxford have used artificial intelligence to create the most accurate lip-reading software ever.
Now the challenge with smartphones for using camera for speech recognition will be high speed data connectivity and ability to see lip movement clearly. While in indoor environment this can be solved with Wi-Fi connectivity and looking at the camera, it may be a bit tricky outdoors or not looking at the camera while driving. Who knows, this may be a killer use-case for 5G.

By the way, this is not complete research in this area. If you have additional info, please help others by adding it in the comments section.

Related links: