Tuesday 16 October 2012

Extended Access Barring (EAB) in Release 11 to avoid MTC overload

M2M is going to be big. With the promise of 50 Billion devices by 2020, the networks are already worried about the overloading due to signalling by millions of devices occurring at any given time. To counter this, they have been working on avoiding overloading of the network for quite some time as blogged about here.

The feature to avoid this overload is known as Extended Access Barring (EAB). For E-UTRAN, in Rel-10, a partial solution was implemented and a much better solution has been implemented in Rel-11. For GERAN a solution was implemented in Rel-10. The following presentation gives a high level overview of EAB for E-UTRAN and GERAN.



In Rel-11, a new System Information Block (SIB 14) has been added that is used specifically for EAB. Whereas in Rel-10, the UE would still send the RRCConnectionRequest, in Rel-11, the UE does not even need to do that, thereby congesting the Random Access messages.

The following is from RRC 36.331 (2012-09)
***

–                SystemInformationBlockType14

The IE SystemInformationBlockType14 contains the EAB parameters.
SystemInformationBlockType14 information element
-- ASN1START

SystemInformationBlockType14-r11 ::= SEQUENCE {
    eab-Param-r11                        CHOICE {
       eab-Common-r11                       EAB-Config-r11,
       eab-PerPLMN-List-r11                 SEQUENCE (SIZE (1..6)) OF EAB-ConfigPLMN-r11
    }                                                  OPTIONAL, -- Need OR
    lateNonCriticalExtension             OCTET STRING          OPTIONAL, -- Need OP
    ...
}

EAB-ConfigPLMN-r11 ::=               SEQUENCE {
    eab-Config-r11                   EAB-Config-r11            OPTIONAL -- Need OR
}

EAB-Config-r11 ::=               SEQUENCE {
    eab-Category-r11                 ENUMERATED {a, b, c, spare},
    eab-BarringBitmap-r11            BIT STRING (SIZE (10))
}

-- ASN1STOP

SystemInformationBlockType14 field descriptions
eab-BarringBitmap
Extended access class barring for AC 0-9. The first/ leftmost bit is for AC 0, the second bit is for AC 1, and so on.
eab-Category
Indicates the category of UEs for which EAB applies. Value a corresponds to all UEs, value b corresponds to the UEs that are neither in their HPLMN nor in a PLMN that is equivalent to it, and value c corresponds to the UEs that are neither in the PLMN listed as most preferred PLMN of the country where the UEs are roaming in the operator-defined PLMN selector list on the USIM, nor in their HPLMN nor in a PLMN that is equivalent to their HPLMN, see TS 22.011 [10].
eab-Common
The EAB parameters applicable for all PLMN(s).
eab-PerPLMN-List
The EAB parameters per PLMN, listed in the same order as the PLMN(s) occur in plmn-IdentityList in SystemInformationBlockType1.

***

Here is my attempt to explain the difference in overload control mechanism in Rel-8, Rel-10 and Rel-11. Please note that not actual message names are used.





As usual, happy to receive feedback, comments, suggestions, etc.

Monday 15 October 2012

Machine Type Communications (MTC): Architecture, Features, Standards in 3GPP Rel-10



The following 14 MTC Features have been identified during the 3GPP Release-10 timelines:


  • Low Mobility
  • Time Controlled
  • Time Tolerant
  • Packet Switched (PS) Only
  • Small Data Transmissions
  • Mobile Originated Only
  • Infrequent Mobile Terminated
  • MTC Monitoring
  • Priority Alarm Message (PAM)
  • Secure Connection
  • Location Specific Trigger
  • Network Provided Destination for Uplink Data
  • Infrequent Transmission
  • Group Based MTC Features




In Rel 10, 3GPP will focus on the general functionality required to support these features:

  • Overload control (Radio Network Congestion use case, Signalling Network Congestion use case and Core Network Congestion use case)
  • Addressing
  • Identifiers
  • Subscription control
  • Security



The following specifications are associated with the MTC work

Spec   - Specifications associated with or affected by MTC work
22.011 - Service accessibility
22.368 - Service requirements for Machine-Type Communications (MTC); Stage 1
23.008 - Organization of subscriber data
23.012 - Location management procedures
23.060 - General Packet Radio Service (GPRS); Service description; Stage 2
23.122 - Non-Access-Stratum (NAS) functions related to Mobile Station (MS) in idle mode
23.203 - Policy and charging control architecture
23.401 - General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access
23.402 - Architecture enhancements for non-3GPP accesses
23.888 - System improvements for Machine-Type Communications (MTC)
24.008 - Mobile radio interface Layer 3 specification; Core network protocols; Stage 3
24.301 - Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3
24.368 - Non-Access Stratum (NAS) configuration Management Object (MO)
25.331 - Radio Resource Control (RRC); Protocol specification
29.002 - Mobile Application Part (MAP) specification
29.018 - General Packet Radio Service (GPRS); Serving GPRS Support Node (SGSN) - Visitors Location Register (VLR); Gs interface layer 3 specification
29.060 - General Packet Radio Service (GPRS); GPRS Tunnelling Protocol (GTP) across the Gn and Gp interface
29.118 - Mobility Management Entity (MME) - Visitor Location Register (VLR) SGs interface specification
29.274 - 3GPP Evolved Packet System (EPS); Evolved General Packet Radio Service (GPRS) Tunnelling Protocol for Control plane (GTPv2-C); Stage 3
29.275 - Proxy Mobile IPv6 (PMIPv6) based Mobility and Tunnelling protocols; Stage 3
29.282 - Mobile IPv6 vendor specific option format and usage within 3GPP
31.102 - Characteristics of the Universal Subscriber Identity Module (USIM) application
33.868 - Security aspects of Machine-Type Communications
36.331 - Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification
37.868 - RAN Improvements for Machine-type Communications
43.868 - GERAN Improvements for Machine-type Communications
44.018 - Mobile radio interface layer 3 specification; Radio Resource Control (RRC) protocol
44.060 - General Packet Radio Service (GPRS); Mobile Station (MS) - Base Station System (BSS) interface; Radio Link Control / Medium Access Control (RLC/MAC) protocol
45.002 - Multiplexing and multiple access on the radio path


Here are couple of presentations I have extracted the above information from:



Saturday 13 October 2012

Imagine the Future - by Cisco

Here is a video from Cisco from the last year, that I think is still relevant to help put in perspective where the future is going:




There is also a slide cast worth watching on the same topic from last month:



Wednesday 10 October 2012

Small Cell Backhaul Solution Types

This is from a presentation by Julius Robson of CBNL, representing NGMN in the Cambridge Wireless Small Cells SIG event.
Interesting to see all possible options for Backhaul for small cells.

The presentation is available to view and download from here.

Related blog posts:


Monday 8 October 2012

Small Cells as a Service - SCaaS

Last year I blogged about Femtocell as a Service (FaaS) but since we are talking in terms of Small Cell, we can use the term SCaaS that can form a superset to FaaS. This is from a presentation by Prof. Simon Saunders, in the Cambridge Wireless event.



Available to download from slideshare.

Sunday 7 October 2012

Summary of Cambridge Wireless Event on Small Cells, 3rd Oct. 2012



We had another successful Small Cells SIG Event (jointly powered by the Radio Technology SIG) in Cambridge Wireless on the theme “Radio Challenges and Opportunities for Large Scale Small Cell Deployments”. I will be looking at the presentations in detail in separate blog posts as there are interesting bits and pieces from each of them that can easily be overlooked. Here is a high level summary of this event.






We had over a hundred delegates in this event and as one of the speakers admitted privately, they were expecting to see around a dozen people and were a bit overwhelmed by the number and caliber of the people. The delegates included small cell vendors, chipset vendors, test & measurement vendors, operators, industry analysts, regulators, etc. It was a lovely day to be in Cambridge with the sun shining the whole of morning and the afternoon to show us the best of the Downing college.


The event was kicked off by Prof. Simon Saunders, formerly the founding chairman of Small Cell Forum who talked about the long journey the small cells (or Femtocells as they were then known) have gone through, the benefits and the road ahead.


This was followed by a talk from Julius Robson of CBNL, who was also representing NGMN. The focus of the talk was on backhaul.



Nick Johnson, CTO of ip.access was the next speaker who started his presentation with humorous note. His presentation was titled "Building the World’s Largest Residential Small-Cell network" but as he said he was very tempted to change the title to “How to Screw Up the World’s Largest Residential Small Cell Deployment”. His talk had lots of real life examples on where and how things can go wrong and how to make sure they dont. If they do, what lessons should be learnt. Some of these problems have been faced by me too in various test scenarios. It was a very interesting talk.


After the break we heard a presentation from Steve Brown of Telefonica O2 UK. The talk was a bit familiar for me (and my blog readers) as I have already blogged on similar information in the past. It was though new information for the audience and could see that they were enjoying this information. A lot of questions were asked after the presentation and also in the panel discussion at the end. There is some interesting new information that I will blog later on.



The final talk was by Iris Barcia of Keima who talked about "Small Cell Network Design".

Finally we had a panel discussion with lots of interesting questions. Once the discussions finished there were people discussing and debating issues among themselves for a long time. I am looking forward to the next event in January in London on the topic "Lets get real!" where we are hoping to be able to hear from some more operators/vendors on the deployment and rollout issues. More details available on the Cambridge Wireless page here.

Friday 5 October 2012

3D-Beamforming and 3D-MIMO

When I did the summary from Rel-12 workshop, one of the feature proposed by many companies was the feature on 3D MIMO/Beamforming. Here is a quick introduction from different presentations.




A presentation by China mobile lists the motivations and Challenges is embedded below:





Wednesday 3 October 2012

#LTEAsia 2012 Highlights - via Alan Quayle

A summary of LTE Asia 2012, slides and highlights via Alan Quayle blog.



Some of the interesting findings from the conference include:
  • TD-LTE is gaining momentum, and its beyond WiMAX operators and China mobile, many APAC operators are considering it for unpaired spectrum and to efficiently meet the asymmetric capacity requirements of mobile broadband which is mainly download
  • Software defined radio and self-organizing networks are proving critical to manage operational costs
  • Single RAN is proving the best way to manage network performance
  • Signaling is in a mess - what is the good of standards when it creates such a mess?
  • IMS gaps continue - what is the good of standards when it doesn't meet basic migration needs?
  • The SS7 guys have reinvented themselves as the Diameter guys
  • Business model innovation - LTE is not just for mobile devices, LTE is for quad play and an interesting array of business applications
  • The 3G network of many operators is congested - forcing the move to LTE
  • CSFB (Circuit Switched Fall Back) works
  • VoLTE testing / roaming / network issues remain - given voice remains by revenue the core service, our industry should be ashamed we're having so many problems with VoLTE
  • A belief on OTT partnering, but not quantification on the OTT's willingness to pay for QoS (Quality of Service)
  • Many operators have a question mark on the use of WiFi off-load - its not a technology issue rather one of economics and customer experience, LTE-A and small cells in hotspots appears to be the focus.

Briefly reviewing the slides shown below:

  • LTE Data Points
    • 96 Commercial LTE deployments mainly in the 1.8 and 2.8GHz bands
    • APAC has 40% of LTE subscribers, likely to be the high growth region
    • Drivers for LTE: Throughput, efficiency and low latency
    • TD-LTE: 12 commercial deployments, 24 contracts and 53 Trials
    • Streaming video dominates traffic on handheld devices, with YouTube being the top traffic generator at 27% of peak traffic
  • South Korea Data Explosion
    • South Korea has seen OTT explode, Kakao Talk 51 mins of usage per day
    • 20 times smartphone growth in 2 years (28M in June 2012, 53% penetration)
    • 60 times mobile data growth to 37TB per month in 2 years, 32% is from LTE devices
    • LTE subs use 2.9GB per month compared to 3G sub on average use 1.2GB
    • LTE subs reached 10M, 141% monthly growth
    • Customer drive for LTE is speed (37%) and latest device (31%)
    • Challenge Jan 2010 and Jan 2012 ARPU fallen from $48-$35 while data use risen from 180MB to 992MB
    • Focus beyond voice, messaging and data into VAS: virtual goods (Korean thing), ICT (Information and Communication Technology) and cloud services / solutions (focus on enterprise)
  • HK CSL Migration to LTE
    • 3G is congested, LTE is not
    • Key is LTE devices available, unlike the early 3G days
    • Migrating customers away from unlimited plans to family and shared plans that deliver value
    • LTE sub uses 2-5 times the data of 3G subs
    • CSFB works
    • Average speed seen is 20 Mbps
    • Using Software Defined Radio, Single vendor RAN, Self-Organizing Networks
    • Migration to LTE-A, small cells and WiFi where appropriate
  • Starhub's migration to LTE (they launched LTE at the event)
    • 50% of voice traffic is still on 2G
    • Using AMR to re-farm 2G spectrum to LTE
    • Site access is critical - drive to software defined radio to avoid site visits
  • NTT DoCoMo's VoLTE Evolution
    • 70% devices in portfolio are now LTE
    • All smartphones support CSFB
    • Drive to VoLTE is simply to switch off 3G voice (2G already off)
    • BUT IMS has missing functionality / standards - migration from 3G to VoLTE is not easy - example of failing in standards on basic issues
  • Yes: Example of innovative converged 4G operator in an developing market that uses web principles for service delivery
  • Role of Mobile Identity in BYOD (Bring Your Own Device)
    • BYOD is as significant a trend if APAC as any other market
    • Provides a nice review of the approaches in managing BYOD
  • LTE Quad-Play in Emerging Markets: TD-LTE case study
  • Smartphone growth implications: Review of the signaling problem and mitigation strategies across 3G and LTE.  Highlights challenge current standards process 


Read the complete post here.

Monday 1 October 2012

LTE: What is a Tracking Area

Even though I have known tracking area for a long time, the other day I struggled to explain exactly what it is. I found a good explanation in this new book 'An Introduction to LTE: LTE, LTE-Advanced, SAE and 4G Mobile Communications By Christopher Cox'. An extract from the book and Google embed is as follows:

The EPC is divided into three different types of geographical area, which are illustrated in Figure 2.6. (see Embed below).

An MME pool area is an area through which the mobile can move without a change of serving MME. Every pool area is controlled by one or more MMEs, while every base station is connected to all the MMEs in a pool area by means of the S1-MME interface. Pool areas can also overlap. Typically, a network operator might configure a pool area to cover a large region of the network such as a major city and might add MMEs to the pool as the signalling load in that city increases.

Similarly, an S-GW service area is an area served by one or more serving gateways, through which the mobile can move without a change of serving gateway. Every base station is connected to all the serving gateways in a service area by means of the S1-U interface. S-GW service areas do not necessarily correspond to MME pool areas.

MME pool areas and S-GW service areas are both made from smaller, non-overlapping units known as tracking areas (TAs). These are used to track the locations of mobiles that are on standby and are similar to the location and routing areas from UMTS and GSM.

Tuesday 25 September 2012

LTE, M2M Device Addressing and IMSI


I was made aware of the following statement on the Verizon wireless brochure:

LTE’s inherent support for IPV6 addressing and IMSI-based telephone number identifiers makes mass deployments over LTE more easily achievable. The deployment of large numbers of mobile devices (think tens of thousands) becomes much more feasible because of LTE’s use of 15-digit IMSI telephone number identifiers for large-scale deployments, such as M2M or embedded wireless applications. 3G network technologies were limited by their use of 10-digit telephone number identifiers, which made large-scale deployments more difficult. With LTE, mass deployment of wireless services and applications, such as VoIP, smart metering, vending, and telematics, is now practical.

Now we know about the much touted 50 Billion connections by 2025 of which the majority would be M2M devices. So how are we going to handle the issue of addressing these many devices.

In the earlier presentation here, there was a mention of the direction for the solution as below:





The IMSI structure is as shown above. So depending on how it is used this can help alleviate the number shortage problem. 3GPP TR 23.888 gives the following information:


5.13      Key Issue - MTC Identifiers

5.13.1    Use Case Description

The amount of MTC Devices is expected to become 2 orders of magnitude higher than the amount of devices for human to human communication scenarios. This has to be taken into account for IMSI, IMEI and MSISDN. Regulatory bodies indicate shortages of IMSIs and MSISDNs.
The MTC Feature PS Only in TS 22.368 [2] includes a requirement that PS Only subscriptions shall be possible without an MSISDN. In principle an MSISDN is not used in any of the PS based signalling procedures. However, it will have to be assured that all PS procedures indeed work and subscriptions can be uniquely identified without providing an MSISDN. Furthermore, TS 22.368 [2] specifies that remote MTC Device configuration shall be supported for PS only subscriptions without an MSDISDN assigned. Current remote MTC Device configuration solutions (i.e. Device Management and Over-the-Air configuration) are based on SMS, which assumes the use of MSISDNs. So a solution to support remote MTC Device configuration that does not require the use of MSISDNs is needed.
The identifiers can be categorised into:
-     Internal Identifiers: used within the 3GPP system to identify a UE using a subscription (or the subscription itself e.g. when the UE is not registered).
-     External Identifiers: used from outside the 3GPP system (e.g. at the MTCsp interface), to refer to a UE using a subscription (or the subscription itself e.g. when the UE is not registered).

5.13.2    Required Functionality

-     It shall be possible to uniquely identify the ME.
NOTE 1:   This requirement relates to the ME which is generally identified by the IMEI.
-     It shall be possible to uniquely identify the UE using a subscription or the subscription itself.
NOTE 2:   The two requirements above also apply to human-to-human communications. However, for Machine-Type Communication identifiers will have to be able to cater for a number of identifiers up to two orders of magnitude higher than for human-to-human communications.
-     It shall be possible to use the following identifiers:
1.       IMSI, for internal usage within the 3GPP operator domain, and either
2.       E.164 MSISDN, for usage outside the 3GPP operator domain, or
3.       Unique identifier (e.g. FQDN), other than E.164 MSISDN, for usage outside the 3GPP operator domain.
NOTE 3: Use of IMSI outside the 3GPP operator domain is an operator option (i.e. not subject to standardization)
-     If no (unique or common) MSISDN is assigned to a PS only subscription, the Internal Identifier (IMSI) shall be used as charging identifier.
-     It shall be possible to associate one or more External Identifiers to the same Internal Identifier (e.g. several MSISDNs associated with the same IMSI).
-     Globally unique External Identifiers shall be supported for identifying UEs used for MTC that must be globally reachable (i.e. irrespective of which mobile operator owns the subscription)
-     Operator specific External Identifiers (e.g. based on a private numbering plan) may be supported for identifying UEs used for MTC that have to be reachable only from the operator domain to which they are subscribed.
-     The Internal Identifier shall be globally unique.
-     Remote MTC Device configuration shall still be supported for subscriptions without an MSISDN.
NOTE 4:   Current remote MTC Device configuration solutions (i.e. Device Management and Over-the-Air configuration) are based on SMS, which assumes the use of MSISDNs.


Any more information on this subject, more than welcome.

Wednesday 19 September 2012

"No-Edge Networks" and Multi-Stream Aggregation (MSA)

The following is from Huawei press release:


The LTE-Advanced Multi-Stream Aggregation (MSA) technology standard is capable of increasing data rates at the cell's edge. A key component of Huawei's "No-Edge Networks" concept, MSA technology coordinates macro cells to improve user data rates at the cell's edge and also between heterogeneous networking scenarios to improve peak rates and simplify mobile management to ensure a consistent user experience.

With the development of mobile broadband, operators are mostly concerned about user experience. With mobile coverage, should able to enjoy the same quality of services no matter where they are. However, with mobile communication systems, the most challenging issue is system performance at the cell's edge.

The concept behind Huawei's MSA technology is that the user is always able to receive downlink data and aggregate downlink data streams from a cell or cell group with the best signal quality. A similar method applies to uplink data, where the user always transmits uplink data to a cell or cell group with the best signal quality. The uplink data streams are aggregated on the network side.

Huawei's MSA technology reduces the number of handovers, lowering device power transmission and increasing device standby time. These advantages are in accordance with the concept of delivering a "borderless network" and "green" wireless communications. It's expected that MSA technology will improve system performance at the cell's edge by almost 30%.

MSA technology is especially suitable for macro-micro HetNets. In hotspot area, macro cells provide basic LTE coverage while the micro cells provides capacity enhancement. The use of MSA technology allows users to receive controlled signaling from macro cells and services from best quality HetNet cell. Users at any location within the network can then enjoy fast and stable data services with ultra broadband, zero waiting and ubiquitous connectivity. MSA technology brings users high speeds and high quality as well as a simple service experience.

The advanced MSA technology proposed by Huawei is set to become a key feature of the evolution to 3GPP LTE-Advanced standards. Huawei has contributed 293 core standards to the 3GPP LTE/LTE-Advanced standardization process, 20% of the global total and the most of any other company.

I wasnt able to find much information but there is this couple of slides that were submitted in Rel-12 workshop that is embedded below:




What do you think of this feature?

Tuesday 18 September 2012

Tech Quotes we should know about - #TechQuotes



“My God, it's full of stars!” - David Bowman 2001: A Space Odyssey



Clarke's Three Laws:

Arthur C. Clarke formulated the following three "laws" of prediction:

  • When a distinguished but  elderly scientist states that something is possible, he is almost  certainly right. When he states that something is impossible, he is  probably wrong.
  • The only way of discovering the limits of the possible is to venture a little way past them into the impossible.
  • Any sufficiently advanced technology is indistinguishable from magic.



“Every revolutionary idea seems to evoke three stages of reaction. They may be summed up by the phrases:
1. It's completely impossible.
2. It's possible, but it's not worth doing.
3. I said it was a good idea all along.”
Arthur C Clarke


“Anyone who has lost track of time when using a computer knows the propensity to dream, the urge to make dreams come true and the tendency to miss lunch.” -  Tim Berners-Lee


“The future is already here.”
“It’s just not evenly distributed.”
William Gibson


“Computers make excellent and efficient servants, but I have no wish to serve under them.” - Spock, Star Trek


Technological progress is like an axe in the hands of a pathological criminal. - Albert Einstein 


If we knew what it was we were doing, it would not be called research, would it? - Albert Einstein 


"Nothing is withheld from us what we have conceived to do." - Russell Kirsch, inventor of the first internally programmable computer and process for displaying images digitally 


The best way to predict the future is to invent it.  -- Alan Kay




"Man is the lowest-cost, 150-pound, nonlinear, all-purpose computer system which can be mass-produced by unskilled labor." - NASA in 1965


“New technology is common, new thinking is rare.” - Sir Peter Blake



“The interface between man and machine … is more important than the power of the man or the power of the machine in determining overall capability.” — Shyam Sankar


Further Reading:


Please feel free to add more quotes sites via comments.

Sunday 16 September 2012

10 Billion out of 50 Billion - The Connected World


Remember the mantra of 50 Billion connected devices (blogged here and here) but 202x, apparently 10Billion are already here. The above slide is from a latest presentation by Chetan Sharma Consulting (embedded below). There are already 7 Billion mobile devices (phones + dongles) and 3 Billion others. The number of others will increase with M2M being the main focus and is touted as the next big thing, especially with LTE. 3GPP is focussing very heavily on standardising the MTC and is working on new features in upcoming releases.

Coming back to the topic of connected world, the presentation is embedded below and is a good read.



Wednesday 12 September 2012

UK: Spectrum, Operators, Vendors and LTE

So LTE (or '4G') is about to be launched in the UK as announced yesterday. Its going to be branded as 4GEE.

Here is a summary of the Spectrum in the UK that will be used for LTE and would be auctioned by Ofcom.


Here is the current allocation of Spectrum in the UK

The above pics are from a presentation by Ofcom in LTE World Summit 2012 in Barcelona, available here.



The last table is from an Ofcom document here. Its very interesting read. For example I didnt know that The L-band was the first major part of Ofcom spectrum awards programme relevant to mobile services. It consists of 40MHz between 1452MHz and 1492MHz. The auction took place in May 2008, in which Qualcomm won the entirety of the available spectrum.

Here is the summary of the operators working on LTE:


Everything Everywhere (EE = Orange + T-Mobile) - They are calling their '4G' service as EE, covering up to 70% of the UK by the end of 2013. Network kit provided by Huawei.

Three - Samsung will provide the Radio Access Network, and the core infrastructure, for Three's LTE (4G) network. That includes the base stations, and radio core. 3 UK has agreed to purchase 2 x 15 MHz of 1800 MHz spectrum from Everything everywhere, and plans commercial launch of LTE service in 2013.

Telefonica (O2) trial network - Equipment supplied by Nokia Siemens Networks (NSN) for both the Radio and Core network elements. Backhaul for the 4G trial network has been provided using Microwave Radio Equipment from Cambridge Broadband Networks Limited, NEC and Nokia Siemens Networks.

Updated 13/09/12 - 11:25

UK Broadband rolled out the first commercial TD-LTE network in London back in February (available to customers since May 2012). The equipment is provided by Huawei. They have 40MHz in Band 42 (3.5GHz) and 84MHz in band 43 (3.6GHz).

Vodafone - No news.


Anything else I missed?

Tuesday 11 September 2012

New Carrier-Aggregation Proposed Bands

Carrier Aggregation (CA) the promised feature of LTE-A that will make it compatible to IMT-A is not fully exploited in Rel-10. There are only 2 bands supported for CA in Rel-10 and the same for Rel-11. The following are the bands for Rel-10

And the following for Rel-11

Unfortunately these are not enough for all the operators launching LTE/LTE-A. As a result there is currently a study on lots of other bands ongoing within 3GPP. Here is my understanding of the bands that would be needed and the region where they would be needed. Interested in knowing if there are other operators/regions where other bands need to be included.
 

Wednesday 5 September 2012

Qualcomm's 1000x Challenge

Qualcomm has been promoting the '1000x' challenge and has recently held a webinar to make everyone aware of how 1000 times efficiency may be achieved. I think there is always a scope of achieving a better efficiency but putting a figure may not necessarily give the desired results. Anyway, here are the slides.



You can listen to the webinar here. The promotional video is available here.

A writeup on this topic by Steven Crowley is available here.

Tuesday 4 September 2012

Data Consumed by Different Streaming Applications


Interesting table from the 4G Americas presentation about data consumption by different streaming apps. With LTE getting deployed and tablets becoming popular, I wont be surprised to see 1GB allowance consumed in couple of days. In a blog post on Verizon Wireless website earlier they had mentioned that 4GB data bucket will be minimum that is needed. In the end I think we may all stick with the trusted and reliable WiFi for thats fast and free!

Monday 3 September 2012

Cellular or WiFi: Which is the preferred network access?

I was going through this report by Cisco on "What do Consumers want from WiFi" and came across this interesting picture. 

With the ease and availability of easy WiFi, it would be the preferred access technology whenever possible. Cellular access would be generally reserved for mobility scenarios or where there is no wifi network to allow access.

Another interesting observation from above is that the survey puts WiFi and Cellular security to the same level. Though the cellular is more secure in case of an open public WiFi scenario where an eavesdropper may be able to get hold of login/password information it is generally at the same level of security to a secured WiFi. On the other hand with cellular, lawful interception may be much more easy as compared to using secure WiFi.

I am sure that the content of last paragraph are debatable and am happy to hear your viewpoints.

A slidecast of the Cisco whitepaper mentioned above is embedded as follows: