Showing posts with label China. Show all posts
Showing posts with label China. Show all posts

Thursday 30 May 2013

Internet Trends by Mary Meeker at #D11

The last time I posted the presentation by Mary Meeker was back in 2011 but the things have moved on and its amazing to see some of the things that have changed. I think the slide that summarises what I mean is as follows:

Nomophobia and FOMO are a big problem and I see this day in day out working in this industry.

The slide pack which was actually posted yesterday has already crossed 550K as I write this, in just 1 day. So you can understand how eagerly awaited event this has become every year.



To download the above, click on the Slideshare icon and then you can save from Slideshare site.

If you want to watch the video of her presentation, its available on All things digital website here.

Monday 16 August 2010

Nokia Siemens Networks demonstrate TD-LTE leadership

Since last few months, NSN have been showing that they are serious about TD-LTE as well. Back in June they made an announcement that they have integrated TD-LTE in their networks so that it can support concurrent use of TD-SCDMA and TD-LTE. They opened a TD-LTE lab in China as well earlier this year.

Motorola is another big player in the TD-LTE arena and I have blogged about them as well. With the purchase of Motorola Networks by NSN, it got additional experience and capability to be the next TD-LTE leader. With this renewed confidence, it ended the joint venture with Huawei which started back in 2005 with TD-SCDMA technology.

The following is press release from NSN couple of days back:

Nokia Siemens Networks has proven its leading role in advancing TD-LTE as it met the complete TD-LTE test specifications defined by China’s Ministry of Industry and Information Technology (MIIT). The successful completion of the trial in the 2.3GHz band at the MIIT lab in Beijing, China, marks an important milestone in the commercialization of TD-LTE. After the test, Nokia Siemens Networks also achieved the world’s first high-definition TD-LTE video call, including handover, with a Samsung TD-LTE device.

The high-definition video call demo showcased interoperability between Nokia Siemens Networks’ LTE infrastructure and Samsung’s TD-LTE USB dongle, and marks a definitive step toward ensuring early availability of a functioning TD-LTE ecosystem for commercial deployments.

“We’ve achieved excellent results from this test and are happy to partner with Nokia Siemens Networks in driving the TD-LTE ecosystem further,” said Mr. Tong Wang, president of Beijing Samsung Telecom R&D Center. “Commercial readiness of devices is a key indicator for the success of a new technology and the current test results show that we are now well prepared for TD-LTE.”

“Meeting TD-LTE test specifications defined by MIIT and achieving the first high-definition video call with handover, are key milestones in our list of achievements, added Paul Pan, head of Network Systems, Greater China Region, Nokia Siemens Networks. “We will continue to collaborate with partners to accelerate our progress toward a comprehensive deployment of TD-LTE.”

Nokia Siemens Networks is at the forefront of TD-LTE development and commercialization, actively working with telecom operators and device manufacturers. The company recently announced the first TD-LTE interoperability data call with a prototype TD-LTE USB dongle from Samsung and the first TD-LTE video call between Shanghai and Taipei.


Ericsson is now going to probably have tough competition from NSN.

Friday 16 July 2010

Mobile TV in China not as successful as initially thought


A wise consultant once told me that when the analysts were asking people if they would be interested in Mobile TV, nearly everyone said yes. What they didnt ask is what those people understood by Mobile TV. From a lot of users perspective, Mobile TV meant Youtube which is not what mobile community understands it to be.

Not long back we talked about Mobile and IP TV becoming popular in China. According to recent news in InformationWeek, it falling much short of expectations:

Commercial development of China's mobile TV service is falling far short of expectations. Of the 1.5 million users of China multimedia mobile broadcasting (CMMB), less than 3% are actually paying for the service, creating something of an embarrassment for China Mobile, the main backer of the standard.
CMMB was developed by the State Administration of Radio, Film, and Television (SARFT) based on Satellite and Terrestrial Interactive Multiservice Infrastructure (STiMi) developed by TiMiTech, a company belonging to the Chinese Academy of Broadcasting Science. The standard was announced in October 2006 and is similar to Europe's Digital Video Broadcast-Handheld (DVB-H) broadcasting standard. Since then CMMB has been rigorously promoted by China Mobile and is bundled with its 3G network.
Sources say that by the end of the second quarter, 2010 domestic sales of CMMB handsets were around 1.5 million, approximately 30% of total 3G mobile phone sales at China Mobile, and much lower than the 50% target set by the operators. The service has been operational for more than a year but formal fees have only recently been introduced, which range from $1 to $3 per month. The small take-up of the service since fees were introduced does not bode well for the future of mobile television in China.
China Mobile was hoping to attract more paying customers with its World Cup offering, but this may have been wishful thinking. Analysts believe that the company's broadcasting and mobile communications divisions are lacking in unified policy and have no clear development path.
With widespread proliferation of cheaper "shanzhai" -- or copycat -- handsets, it is difficult to reach all potential customers. The CMMB technology is expensive and can only be found in specific dedicated smartphones.

Furthermore, there are more attractive and diverse streaming packages available from third parties. A clear advantage needs to be provided in order to entice users to use CMMB. China Mobile insiders say that they need to be following the advertising model used by mobile broadcasters in other countries because people are unlikely to pay for content, especially if they can find that content for free from a regular TV or desktop computer.

Wednesday 23 June 2010

'Internet Kill' switch and IPv9

Slightly off topic today as I was going through the pile of information and I caught attention of this news article that for some reason has not been reported by major newspapers. The article says that the president of USA will have the 'Kill' switch to kill off internet (temporarily i guess) in case of a major emergency like war, etc. Joseph Liberman who proposed this idea has since then backed away saying that he meant that parts of Internet can be disconnected like they do in China.

This brought into attention the other article I was going through about IPv9. Yes thats correct, I did write IPv9. I first heard about IPv9 back in 2004-5 but then it was dismissed as nothing serious. Apparently Chinese government backed Ministry of Information Industry (MII) has been promoting this IPv9. According to an old TelecomAsia.net article:

Back in July 2004, reports of a Chinese IPv9 prompted a bewildered reaction from internet godfather Vint Cerf. 'What could this possibly be about‾ As far as I know, IANA [Internet Assigned Numbers Authority] has not allocated the IPv9 designation to anyone. IPv9 is not an Internet standard. Could you please explain what is intended here‾" he wrote in an email to China's internet leaders.

The idea was dismissed as a "rogue" project with no official backing. But it is back on the table led, now as then by Xie Jianping, the head of the Shanghai Universal Institute of Chemical Technology and more recently in charge of the decimal network standards team in the MII's science and technology department.

The project returned to prominence at a press conference at the unusual location of the Party Central School in Beijing two weeks ago, where Xie announced that the networking technology had been successfully tested by China Netcom and the Ministry of Commerce.

He asserted that the project is all about China wresting control of its own IP networks away from US dominance for which, he claimed, China was paying 500 billion yuan a year.

The system reportedly uses numerical addressing to make China "the only country able to unify domain names, IP addresses and MAC addresses" into a single, metric system, according to Xinhua. Without any explanation, Xinhua said it also made China the only country outside the US "to have root servers and IP address hardware connectivity servers and its own domain name, IP address and MAC address resources".

In an interview with a skeptical Sina reporter, Xie and denied the project was another Hanxin - a reference to a fraudulent state-backed chip project.

"Our IPv9 has gone through testing and assessment," he said adding that he could not give any more detail but would "make public some material at the necessary time."

But the system, or what little is known of it, has plenty of doubters at home. Sina said critics of the system complain that turning domain names and brand names into numerals is a "backwards step" for the net.

The fact that the decimal network appears to asset control over root servers is bound to alarm internet governance bodies around the world.

And whatever else might be said about it, the project is clearly backed by the MII. "IPv9" raises more questions than answers.

So it looks like the Chinese government may have been expecting some 'Kill Switch' in the future by the US government and is probably creating a backup based on a new approach so that the users within China remain connected to their Internet.

Any thoughts and opinions are more than welcome...

Sunday 13 June 2010

MBMS, Digital TV and IP Triple Play in China

Apparently according to this report by Xuefei (Michael) Peng, MBMS is alive and kicking in China with around 200,000 users already. I cant find more info so if anybody who can fill more info is more than welcome.

The government of mainland China has formulated a general plan to launch triple-play services, integrating telecom networks, broadcast and TV networks, and Internet together.

From 2010 to 2012, China will focus on the trial integration of broadcast and TV services and telecom services (including Internet services), dealing with any related policies. From 2013 to 2015, based on the trial experience, China will promote the integration nationwide.

In the coming five years, various sectors will prepare in different ways to meet the goals stated in the general plan. Telecom operators such as China Mobile, China Unicom, and China Telecom will invest more to promote IPTV services and accelerate FTTX deployment. Meanwhile, broadcast and TV operators will accelerate cable-TV network integration and interactive TV services development and will more actively develop value-added Internet services.

Broadcast and TV operators are currently strong in video content and wireless broadcast, while telecom operators own two-way fixed-line networks, mobile networks, and Internet services.

The differences between broadcast and TV operators across different regions and the uneven distribution of telecom fixed-line networks and mobile networks can offer cooperation opportunities.

Notably, almost all provinces of China already have launched IPTV services. The total number of IPTV service users in China has exceeded 5 million. However, problems with IPTV content must be solved, and the price for IPTV services also needs to be lowered to attract more users and compete with digital TV.

Meanwhile, the transformation of cable-TV networks from one way to two way has been sped up. Two-way cable-TV networks now cover over 24 million users. In the coming three years, broadcast and TV operators will invest over US$5 billion to continue to change 100 million one-way cable-TV links into two-way cable TV.

Eventually, through cable-TV networks, broadcast and TV operators hope to run Internet access services. This has been in trial use in some provinces. In order to run Internet access services, however, broadcast and TV operators need to rent bandwidth from telecom operators, greatly increasing the potential cost of service.

Another aspect of the triple play involves the conversion of mobile services to triple play. Mobile-phone TV is an emerging service in China. Up to now, mobile-phone TV services based on the China Multimedia Mobile Broadcasting (CMMB) standard have reached 1.5 million users. However, the current CMMB standard only supports one-way communication. So the users can only receive broadcast-TV programs via mobile.

On the other hand, mobile services based on the broadcast multicast Multimedia Broadcast Multicast Service (MBMS) standard serve about 200,000 users. The growing 3G user base will convert to the MBMS standard. Additionally, the government policy will affect the mobile-phone TV market too. So it is not clear yet which mobile-phone TV standard will dominate the industry in the future.

Wednesday 2 June 2010

ZTE shows off its green credentials

ZTE has long been focussing on green(er) network and recycling. They launched their new generation 'green base stations back in 2006. They have also been recently cited for their energy saving technology. They also have a solar powered phone which is unfortunately not available in UK. Their Omni-RAN network can help reduce the OPEX by two thirds. Their focus has not only been on Mobile phones and networks but on the fixed lines as well.

So it was not at all surprising to hear Xiaodong Zhu, CTO of ZTE European marketing in the LTE World Summit talking about the end to end green networks. Green technology is not only helpful to for the 'green credentials' but it can also help reduce Opex which can help recover any additional investments (if any).

More manufacturers will hopefully follow the lead.

Tuesday 27 April 2010

Softbank and Ericsson for TD-LTE as well

Last week I blogged about TD-LTE in India and China, today I found out that there is more interest in TD-LTE:

From Fierce Wireless:

Ericsson, the world's largest wireless infrastructure vendor, is looking to gain more expertise is the area, and this week signed an MoU to create a strategic cooperation with Datang Telecom in China to develop TDD solutions and likely gain a foothold in China Mobile's planned TD-LTE network.

As part of the deal, Ericsson will begin integrating Datang's TD-SCDMA radio access network equipment into its own 3G offering. TD-SCDMA is China's homegrown 3G standard that China Mobile and others are using. TD-LTE is seen as the next generation of TD-SCDMA.

From Telecom Asia:

Japanese cellco Softbank Mobile is considering deploying the Chinese-developed TD-LTE standard as a 4G network.

Senior executive vice president Ted Matsumoto told telecomasia.net the company could deploy it in the 2.5GHz spectrum it gained access to when it
bought a stake in failing PHS operator Willcom last month.

But he said
Willcom’s next-gen PHS technology, XGP, and mobile Wimax were also under consideration.

“We’re going to have 2.5GHz TDD spectrum, so we will seriously explore TD-LTE,” he said.

The XGP technology was “very much like TD, or at least is compatible with TD-LTE.”

Softbank is also focused on winning access to the key 700MHz or 900MHz frequencies, the “golden spectrum” with a much higher propagation range already that is used by both of its competitors.

“We’re fighting the handicap game [without those frequencies],” Matsumoto said. “There’s no 100% assurance, but we definitely will seek a 700/900MHz license.”

Japan’s Ministry of Internal Affairs & Communications plans to allocate 40MHz of spectrum in the 700/900MHz ranges for LTE and is now conducting a review.

For the time being, Softbank has put LTE plans on the backburner in favor of HSPA+.

It shut down its 2G network last month and is looking to reap the cost benefits of running a single 3G/3.5G network with up to 42Mbps download speeds.

Monday 19 April 2010

All eyes on TD-LTE in India and China


The TD-SCDMA and Long Term Evolution (TD-LTE) network will be massively deployed in China, the world's largest telecommunications country by number of telecoms users, in 2010, globally premier international market research and consulting firm Infonetics Research said in a forecast report.
More and more mobile carriers have started developing the LTE, including Verizon Communications Inc., China Mobile Ltd., and China Telecom Corporation Ltd., Infonetics noted. There will be no more than twenty LTE networks in the world at the end of 2010.

China Mobile Communications, the largest mobile telecom carrier in China, will establish three experimental TD-LTE (time division-long term evolution) networks separately in three coastal cities - Qingdao, Xiamen and Zhuhai - beginning the third quarter of 2010, according to the China-based China Business News Daily.

China's Ministry of Industry and Information Technology (MIIT), the carrier, handset and component makers, and handset solution suppliers in China in late 2008 began to cooperate for the development of TD-LTE in three phases, the report said.

The first-phase trial of technological concepts completed in June 2009, and the ongoing R&D and experiments in the second phase will be finished at the end of June 2010, the report indicated, adding the third phase will begin with China Mobile setting up three trial networks in the third quarter.

China Mobile Communications, the largest mobile telecom carrier in China, on April 15 inaugurated its first experimental TD-LTE network at the site of the 2010 Shanghai World Expo.

The trial network consists of 17 outdoor TD-LTE base stations made by Huawei Technologies completely covering the 5.28km square site and will be used to provide mobile high-definition multimedia services.

ZTE and Datang Mobile Communications Equipment as well as Motorola and Alcatel-Lucent have also set up TD-LTE access points inside a number of pavilions.

Motorola, Inc.'s Networks business has already announced in February that it has successfully deployed a TD-LTE network at the Expo Center for World Expo 2010 Shanghai China, and completed the first indoor over-the-air (OTA) TD-LTE data sessions at the site. These advancements demonstrate another milestone of collaborative industry efforts on TD-LTE commercialization, reaffirming Motorola's commitment to address the future needs of TDD spectrum operators in China and around the world.

These milestones follow the announcement by China Mobile Communications Corporation (CMCC) in 2009, that Motorola was selected as main equipment supplier to provide indoor TD-LTE coverage for pavilions at Shanghai Expo. During the Shanghai Expo, Motorola will provide an advanced end-to-end TD-LTE solution and the world's first TD-LTE USB dongles. Motorola will also leverage its orthogonal frequency division multiplexing (OFDM) expertise with professional services to deploy, maintain and optimize these leading-edge networks. Visitors will be able to experience applications such as high-definition video on demand, remote monitoring and high-speed Internet access services.

Motorola, Inc.'s Networks business announced on April 16th that it showcased an end-to-end TD-LTE demonstration via the world's first TD-LTE USB dongle at the Shanghai Expo site to support the "TD-LTE Showcase Network Opening Ceremony" hosted in Shanghai on April 15. Delegates at the ceremony experienced applications that run over a TD-LTE network via USB dongles, including high-definition video wall (simultaneous 24 video streams), remote monitoring and high-speed Internet browsing applications. This latest advancement demonstrates a major milestone of the collaborative industry efforts in building a healthy TD-LTE device ecosystem, reaffirming Motorola's commitment to TDD spectrum operators around the world.

Motorola, a leading provider of TD-LTE technology, and China Mobile share the same commitment to accelerating TD-LTE commercialization and globalization. "We are very excited to support China Mobile in bringing the world's first TD-LTE USB dongle demonstration enabled by our TD-LTE system," said Dr. Mohammad Akhtar, corporate vice president and general manager, Motorola Networks business in Asia Pacific. "A healthy devices ecosystem has always been critical to the development, commercialization and success of wireless network technologies. We are working closely with partners to drive this ecosystem as demonstrated by the advancement announced today. TD-LTE is now a commercial reality and we are very pleased to see that industry players are joining forces to accelerate TD-LTE globalization."

Interest in TD-LTE continues to grow because of several key factors: the low cost of TDD spectrum that is particularly attractive to emerging and developing markets; operators' continuing need for more capacity and spectrum; and the ability to hand-off between TD-LTE and LTE FDD networks. In effect, this ability to roam between LTE FDD and TD-LTE means operators can use TD-LTE networks to augment their FDD LTE network for more capacity or other applications such as video broadcasting, while operators choosing to use TD-LTE as their "main" network can still offer their subscribers the ability to roam to other operators' FDD LTE networks in different countries. Motorola is one of the few vendors in the industry that has expertise in, and is committed to investing in both FDD-LTE and TD-LTE, as well as WiMAX. By leveraging its orthogonal frequency division multiplexing (OFDM) expertise and WiMAX legacy, Motorola has built up its leadership position in TD-LTE with a number of industry-firsts.

Nokia Siemens Networks has inaugurated a TD-LTE Open Lab at its Chinese Hangzhou R&D facility. TD-LTE smartphone and terminal manufacturers will be able to use the lab to test the interoperability and functionality of their devices across TD-LTE networks.

"The development of terminals and devices has always been a bottleneck in the roll-out of new mobile technology," said Mr. Sha Yuejia, vice president of China Mobile. "We are thus more than happy to see that Nokia Siemens Networks has established a cutting-edge terminal testing environment, an initiative that we support wholeheartedly. After all, a healthy ecosystem needs efforts from all stakeholders."

Nokia Siemens Networks' Open Lab will provide an end-to-end testing environment for verifying the compatibility of terminals and devices with the company's TD-LTE network products and solutions. The lab will also provide consultancy and testing services to device manufacturers. Nokia Siemens Networks' TD-LTE R&D center in Hangzhou is fully integrated into the company's global network of LTE Centers of Competence.

Providing a live TD-LTE experience to operators in the region, Nokia Siemens Networks also recently kicked off a nationwide TD-LTE road show in China. Beginning in Beijing, the road show will cover more than ten provinces in three months, demonstrating the most advanced TD-LTE technology and applications.

In India, Even as the government hopes to raise around $9 billion from the 3G and BWA auctions, foreign telcos waiting in the wings are eager to unfurl a new technology — TD-LTE —which is akin to 4G technology.

US-based Qualcomm and Sweden's Ericcson aim to piggyback on TD-LTE, hoping that it will help them gain a toe-hold in India, the world's fastest growing mobile market. Qualcomm is to participate in the broadband wireless access (BWA) spectrum auction. If it does secure its bid in the auction, India could well become the first country after China to roll out TD-LTE.

TD-LTE, or Time Division Long Term Evolution, caters to peak download speeds of 100 Mbps on mobile phones, compared to the 20 Mbps for 3G and 40 Mbps for Wimax. LTE brings to the table additional spectrum, more capacity, lower cost, and is essential to take mobile broadband to the mass market.

The government has slotted the sale of two 2.3 GHz blocks of spectrum on April 11, providing 20 MHz spectrum in each of the country's 22 telecom circles. The base price has been set at $ 385 million. However, Qualcomm will need an Indian partner for its TD-LTE foray in the country since foreign direct investment is limited to 74%.

The US telco aims to use the 2.3 GHz spectrum band offered for TD-LTE-based BWA services. Sources in the know told TOI that the company would bid aggressively to corner one of the two BWA slots up for sale. There are 11 bidders for the BWA auction.

Asked to comment on the market dynamics, Sandeep Ladda, executive director, PricewaterhouseCoopers (PWC), said: "Though the Indian market is huge, it won't be smooth sailing post auction. We are adding 1 crore customers a month and in January, we added 1.9 crore customers, but the implementation of the new technology has its own cost. And India is a very cost conscious market."

Eager to play by the rules in India, Qualcomm has notified that it would enter into a joint venture with an Indian partner to launch its services and later exit from the joint venture after the network becomes operable.
Meanwhile, The WiMAX Forum has gone on the defensive during the WiMAX Forum Congress Asia in Taipei, Taiwan. The group is speeding up its time table to deliver the next generation of WiMAX--a reaction to heavy data use among WiMAX subscribers as well as the looming threat posed by Qualcomm and Ericsson's lobbying for TD-LTE in India.

Recently, the forum launched a global initiative to accelerate advanced WiMAX features that would double peak data rates and increase average and cell edge end user performance by 50 percent.

Mo Shakouri, vice president with the WiMAX Forum, said enhancements to the current generation of WiMAX weren't on the forum's roadmap, but were brought to the forefront at the urging of several WiMAX operators already facing capacity crunches. The forum reports that the average usage of data on WiMAX networks is close to 10 GB. Clearwire recently reported that mobile users average more than 7 GB of usage per month. In Russia, mobile WiMAX operator Yota sees more than 1 GB per month in data traffic from subscribers using its HTC smartphone. For laptops, it's 13 GB per month.

"Demand for data is moving so fast that we were pushed by many people to add this functionality," Shakouri said.

The WiMAX Forum has also been prodded to announce more detailed plans for 802.16m, and step up the timeline for its development via a new group called the WiMAX 2 Collaboration Initiative, which is made up of vendors Samsung, Alvarion, Motorola, ZTE, Sequans, Beceem, GCT Semiconductor and XRONet. The companies will work in tandem with the WiMAX Forum and WiMAX operators to accelerate the next-generation standard. WiMAX 2, the marketing name for the 802.16m standard, is expected to expand capacity to 300 Mbps peak rates via advances in antennas, channel stacking and frequency re-use.

The forum previously forecast 802.16m would hit in 2012 or 2013. But increasing demands for data--coupled with Qualcomm and Ericsson urging Indian mobile broadband license bidders to go with TD-LTE--motivated the forum to put some stakes in the ground and declare that WiMAX 2 equipment will meet certification by the end of 2011.

"There has been a lot of noise about TD-LTE, and the WiMAX Forum had not specifically given dates regarding timelines for 802.16m," Shakouri said. "Basically our announcement around 802.16m came about because of the noise in India."

The formation of the WiMAX 2 Collaboration Initiative is a marked change from the way the first generation of WiMAX was developed. Sprint Nextel was the entity driving the majority of the standards work as it was eager to get to market and begin building an ecosystem. Vendors are now taking the lead and driving equipment readiness before the 802.16m standard is finalized by the end of this year. Shakouri said the standard is 95 percent finished.

"Those companies are going to take a more active role inside the forum," Shakouri said. "They have all come together to speed up the process."

The group of vendors plans to collaborate on interoperability testing, performance benchmarking and application development before the WiMAX Forum establishes its certification program to narrow the gap between the finalized standard and commercial rollouts.
So how much of a threat is TD-LTE to WiMAX? Shakouri said the answer depends on spectrum decisions. "At this moment, the spectrum we are focusing on is separate, aside from what Qualcomm announced in India," Shakouri said. He also said that a TD-LTE ecosystem is at least two to three years behind WiMAX.

Many analysts speculate that TD-LTE will become the crossover technology that will prompt WiMAX operators to flip to LTE. Clearwire was part of a group of operators and vendors that last month asked the 3GPP standards body to begin working on specifications that would enable TD-LTE to be deployed in the 2.6 GHz band, which Clearwire uses for WiMAX. During the CTIA Wireless 2010 trade show last month, Clearwire CEO Bill Morrow reiterated the company's interest in deploying LTE when the technology catches up to WIMAX. He also called for one standard down the road.
Another initiative the forum is announcing this week is the launch of its Open Retail Initiative, a global program aimed at driving WiMAX into consumer devices sold directly or through retail channels that can be activated by the consumer over the air on the network. If you remember the evangelism of early WiMAX advocates like Barry West, this capability was supposed to be the Holy Grail of the technology.

Friday 29 January 2010

HSPA+ rollout updates, Jan 2010

It has been predicted that the growth of HSPA+ broadband across Europe is set to soar with the total number of subscribers set to nearly double across Europe in 2011.

A new report has predicted that by 2011 the growth of HSPA+ broadband across key European markets will soar, and could almost double compared to 2009. The number of subscribers is set to soar from twenty two million in 2009 to around forty three million in 2011. The report was released by CCS Insight.

According to the report HSPA+ broadband will be a major factor in seeing growth of one hundred percent in the to five major European markets. The report goes on to state that the European mobile broadband market will enjoy seeing both subscriber and revenue numbers double by 2011. Revenues are set to increase from around six billion Euros in 2009 to around eleven billion Euros in 2011.

Michael O’Hara, chief marketing officer at the GSMA, said: “It is clear from this report that with the right network investment, European mobile network operators will see significant growth in mobile broadband adoption in the next two years. HSPA technology will drive this rapid uptake across Europe as mobile operators and their customers continue to benefit from its expanding, vibrant and competitive ecosystem.”


HSPA+ was generally the most efficient way of upgrading use of bandwidth already in use and was likely to dominate in the short term at least, with an estimated 1.4 billion subscribers worldwide by 2013, around ten times the estimated take-up of LTE.

HSPA+ release 7, which became available last year, uses MIMO technology like that in 11n Wifi to help take the peak downlink throughput to 28Mbps, with 11Mbps on the uplink. Release 8, for which chipsets will become available this year, aggregates two carrier signals to bring peak data rates to 42Mbps on the downlink.

Release 9 will put two MIMO streams on each of two 5MHz carriers, aggregated to produce a 10MHz data pipe delivering 84Mbps on the downlink; the uplink uses simple aggregation to 23Mbps. A projected Release 10 would bring the peak downlink speed to 168Mbps, though this would require 20MHz carriers only available in the 2.5GHz and 2.6GHz bands.

Novatel Wireless, a developer of wireless data cards and other devices, said that it has added support for dual-carrier HSPA+ networks. The firm said it is using Qualcomm's MDM8220 chipset for the support, and will launch commercial devices in the second half of 2010 based on the chipset. Novatel said the new support will add more advanced data capability and other features to its offerings. Dual Carrier HSPA+ networks are expected to provide higher throughput to wireless data devices, and also helps address better service for cell phone users.

The new modem can receive data at up to 42M bps (bits per second) in compatible 3G networks. To increase the theoretical maximum download speed of the modem from 21M bps to 42M bps, Novatel uses two carrier frequencies instead of the usual one, a technique called dual-carrier. But it will only deliver the higher speed on networks that also support the technique.

Users can expect peak speeds at up to 30M bps, according to Hans Beijner, marketing manager for radio products at Ericsson.Leif-Olof Wallin, research vice president at Gartner, is a more pessimistic, saying increased traffic on the networks could negatively impact speeds. "I think it will be difficult to get above 20M bps," he said.

Sixty-six operators have said they plan to use HSPA Evolution, and so far 37 networks have been commercially launched, according to statistics from the Global Mobile Suppliers Association (GSA).

However, the version of HSPA Evolution that supports 42M bps is still very much in its infancy. Last week, mobile operator 3 Scandinavia announced plans to launch services when modems become available. In December, representatives from Vodafone and the Australian operator Telstra visited Ericsson to Stockholm to view a demonstration, but neither operator has so far announced plans to launch commercial services.

Ericsson and 3 Scandinavia have unveiled plans to roll-out a worlds-first 84Mbps HSPA+ wireless network. The initial rollout will cover Denmark and four Swedish cities. HSPA+ networks that currently operate in Canada, for example, offer speeds of up to 21Mbps depending on conditions. In the United States, T-Mobile recently announced a similar planned network.

Real-world tests of the 21Mbps networks show the services achieving around 7Mbps speed. If a similar performance could be applied to the new Ericsson/3 network, it could result in speeds of roughly 28Mbps at realistic distances and network load.

and 3 will also deploy 900MHz 3G networks in Sweden in a bid to boost coverage in remote areas, as existing higher frequency networks have left some users with poor performance.
The high-speed services will hit Denmark and areas of Sweden this winter if all goes to plan.

China Unicom is putting the finishing touch on the tests on its HSPA+ networks in Guangzhou, Shenzhen, and Zhuhai, which were kicked off in October 2009 by partnering with its three major suppliers Huawei Technologies, ZTE, and Ericsson.

HSPA+ is the next generation technology for China Unicom's WCDMA 3G service. HSPA+, also known as Evolved High-Speed Packet Access, is a wireless broadband standard defined in 3GPP release 7. The HSPA+ network claims with a transmission speed of 21Mbps, 1.5 times faster than its current 3G network.

The outdoor average speed of the networks built up by Ericsson and Huawei reach up to 16.5Mbps and 18.5Mbps on the downlink, 50% higher than that of the existing HSPA network. That means you can download a song within two or three seconds.

Cell C, South Africa, has signed a US$378m deal with the Chinese telecom equipment provider ZTE Corporation. Cell C would ever lead the industry as far as network infrastructure is concerned but it is a fact that Cell C will be the first South African operator to roll out HSPA+ technologies incorporating download speeds of up to 21Mbit/s – three times faster than anything currently available.

According to Cell C an important factor in the decision to appoint ZTE is its ability to offer 4G services using Cell C’s 900MHz frequency band which offers wider and deeper coverage than existing 2100 MHz networks, enabling cost effective deployment to rural as well as metropolitan areas.

Tuesday 19 January 2010

World Largest Operator helping transform China


Chinese operators have been spending Billions of Dollars building their 3G Infrastructure

China Mobile, the largest wireless carrier in the world with roughly 518 million customers, recently revealed that it has so far invested approximately RMB80 billion (US$11.7 billion) for 3G network construction. The carrier has completed the third phase of the 3G network (based on the home-grown TD-SCDMA standard) deployment in 2009 having covered approximately 70% of the Chinese cities.

The Chinese are becoming more and more mobile savvy.

In a news release Friday, China Internet Network Information Center (CNNIC) announced that China's mobile phone Internet users reached 233 million in December 2009, a growth of 120 million users from 2008. Among these users, 30.7 million accessed the Internet exclusively on their mobile phones.

China's online population reached 384 million as of December 2009, growing 28.9 percent from figures recorded in 2008, said CNNIC in the report.

The country surpassed the United States in 2008 to become home to the world's largest Internet user community.

There is a very interesting piece in The Guardian:


Until just over a year ago, Gong Kangshun spent much of his life trekking over the mountains around his remote village in south-west China. It isn't easy to make a living in Xiuxi, a tiny settlement of 58 families deep in Aba county, Sichuan. Gong grows crops on a small plot and sells rare fungi found on the steep slopes nearby. Many young people, including his brother, leave to find work in the factories and shops of China's east.
But a single purchase has shortened his working hours and sent his income soaring – by helping him to find buyers for his fungi. It has even improved his relationships with family and friends. "I'd panic without my mobile phone," the 35-year-old admits.
Across China, tens of millions have similar tales to tell. Many had never enjoyed phone access until recently. Now, for as little as £20, they can buy a handset, slot in a pre-paid sim card, start calling – and change their lives.
Most, like Gong, can thank one firm: China Mobile. With more than 70% of the domestic market it has 518 million subscribers; more than any other mobile carrier on the planet.
It is the world's largest phone operator by market value and the largest Chinese company listed overseas. Its work on 4G technology and its interest in foreign acquisitions suggest its international profile may soon grow.
Already the company's influence is rippling out across the world, almost unnoticed. The rapid spread of mobiles facilitated by the company's high-speed network roll-out, is both a product of China's aggressive development and a contributor to it – accelerating the pace of life and business, shrinking distances.
Some activists are enthusiastic about the potential for mobiles and the internet to expand the flow of information in a country with heavy censorship. They point to cases where camera phones have captured and shared images of unrest or official abuse.
The authorities certainly seem to be aware of the potential – Chinese social networking sites are strictly controlled and overseas services such as YouTube are blocked. In restive Xinjiang text messaging was turned off after vicious ethnic violence. The authorities also use mobiles for everything from political education to monitoring individuals.
The social and political effects of new technology are rarely straightforward, but for most people, mobiles are simply a part of their life. Whether a highly-paid Shanghai executive, or an independent farmer-cum-trader such as Gong, no one can afford to be without a phone – or a signal. China Mobile's 500,000 base stations now cover 98% of the population. You can call home from city subway trains, distant fields, or the peak of Mount Everest.
"If you have a requirement, we will have coverage," pledged the firm's chairman and chief executive Wang Jianzhou, who has more than three decades of experience in the sector.
"When we started this business we thought very few people would usemobile phones – only the rich," he said. Now he is dissatisfied with a penetration rate of 57%. "I think every adult should have at least one mobile … they are an extension of human ears, eyes and mouths."
Before the network reached Xiuxi, in late 2008, Gong used the phone perhaps twice a month. Each time he would walk for an hour to the nearest landline to call traders interested in buying the valuable "caterpillar" and "sheep stomach" fungi used in Chinese medicine.
"Now, on a busy day, I might make 20 calls," he said. "I can contact buyers in Chengdu and Shanghai. I can do business sitting at home and buyers can reach me, too."
His income has risen 50%, to 20,000 yuan (£1,820). And instead of walking seven hours a day to find the fungi collectors, he can call and ask them to deliver.
In his spare time, he chats to his younger brother, a chef in Zhejiang province who comes home at most once a year. Villagers hear a lot more news from the outside world these days – even Gong's 14-year-old son has his own phone. In 1997, there were just 10 million mobile users in China; by 2005, China Mobile had 240 million. Since then it has more than doubled.
The government pushes all carriers to serve the poorest. But since taking charge at China Mobile in 2004, Wang has shown sceptics that focusing on rural areas is a viable business strategy.
"Many analysts and investment bankers told me: never go to rural areas because they are low revenue. You will not make a profit," Wang said, in an interview at his spacious but low-key office in the company's headquarters on Beijing's Financial Street.
"I didn't believe that … with fixed lines, providing rural services is very, very difficult and expensive. [We have] low average revenue per user – but also low costs."
With a penetration rate of just 37%, there is plenty of room for growth among China's 700 million rural population. And there is plenty of demand. In Yangcun county, close to Beijing, Chen Fengmei anxiously scrolls through her latest text message: advice from officials on how the day's weather will affect her tomato crop. Another villager, Li Chunyu, checks the latest market prices for his pigs, no longer needing to trust middlemen or to give them a cut of his profits. "I never need to go anywhere. I can stay on the farm and find out everything," he said.
Continue reading the complete article here.

Monday 11 January 2010

Technologies and Standards for TD-SCDMA Evolutions to IMT-Advanced

Picture Source: http://www.itu.int/dms_pub/itu-t/oth/21/05/T21050000010003PDFE.pdf

This is a summary of a paper from IEEE Communications Magazine, Dec 2009 issue titled "Technologies and Standards for TD-SCDMA Evolutions to IMT-Advanced" by Mugen Peng and Wenbo Wang of Beijing University of Posts and Telecommunications with my own comments and understanding.

As I have blogged about in the past that China Mobile has launched TD-SCDMA network in China and the main focus to to iron out the basic problems before moving onto the evolved TD-SCDMA network. Couple of device manufacturers have already started working on the TD-HSPA devices. Couple of months back, 3G Americas published a whitepaper giving overview and emphasising the advantages of TDD flavour of LTE as compared to FDD. The next milestone is the IMT-Advanced that is under discussion at the moment and China has already proposed TD-LTE-Advanced which would be compatible with the TD-SCDMA technology.

For anyone who does not know the difference between TDD, FDD and TD-SCDMA please see this blog.

The TD-SCDMA technology has been standardised quite a while back but the rollout has been slow. The commercial TD-SCDMA network was rolled out in 2009 and more and more device manufacturers are getting interested in the technology. This could be due to the fact that China Mobile has a customer base of over 500 million subscribers. As of July 2009 over 100 device manufacturers were working on TD-SCDMA technology.

The big problem with TD-SCDMA (as in the case of R99 3G) is that the practical data rate is 350kbps max. This can definitely not provide a broadband experience. To increase the data rates there are two different approaches. First is the Short Term Evolution (STE) and the other is Long Term Evolution (LTE).

The first phase of evolution as can be seen in the picture above is the TD-STE. This consists of single carrier and multi-carrier TD-HSDPA/TD-HSUPA (TD-HSPA), TD-MBMS and TD-HSPA+.

The LTE part is known as TD-LTE. There is a definite evolution path specified from TD-SCDMA to TD-LTE and hence TD-LTE is widely supported by the TD-SCDMA technology device manufacturers and operators. The target of TD-LTE is to enhance the capabilities of coverage, service provision, and mobility support of TD-SCDMA. To save investment and make full use of the network infrastructure available, the design of TD-LTE takes into account the features of TD-SCDMA, and keeps TD-LTE backward compatible with TD-SCDMA and TD-STE systems to ensure smooth migration.

The final phase of evolution is the 4G technology or IMT-Advanced and the TD-SCDMA candidate for TD-LTE+ is TD-LTE-Advanced. Some mature techniques related to the TD-SCDMA characteristics, such as beamforming (BF), dynamic channel allocation, and uplink synchronization, will be creatively incorporated in the TD-LTE+ system.

Some academic proposals were also made like the one available here on the future evolution of TD-SCDMA but they lacked the industry requirements and are just useful for theoretical research.

The standards of TD-SCDMA and its evolution systems are supervised by 3GPP in Europe and by CCSA (Chinese Cellular Standards Association) in China. In March 2001 3GPP fulfilled TD-SCDMA low chip rate (LCR) standardization in Release 4 (R4). The improved R4 and Release 5 (R5) specifications have added some promising functions including HSDPA, synchronization procedures, terminal location (angle of arrival [AOA]-aided location), and so on.

When the industry standardizations supervised by CCSA are focusing on the integration of R4 and R5, the N-frequency TD-SCDMA and the extension of HSDPA from single- to multicarrier are presented. Meanwhile, some networking techniques, such as N-frequency, polarized smart antenna, and a new networking configuration with baseband unit plus remote radio unit (BBU+RRU), are present in the commercial application of TD-SCDMA.

TD-SCDMA STE

For the first evolution phase of TD-SCDMA, three alternative solutions are considered. The first one is compatible with WCDMA STE, which is based on HSDPA/HSUPA technology. The second is to provide MBMS service via the compatible multicast broadcast single-frequency network (MBSFN) technique or the new union time-slot network (UTN) technique. The last is HSPA+ to achieve similar performance as LTE.

On a single carrier, TD-HSDPA can reach a peak rate of 2.8 Mb/s for each carrier when the
ratio of upstream and downstream time slots is 1:5. The theoretical peak transmission rate of a three-carrier HSDPA system with 16-quadrature amplitude modulation (QAM) is up to 8.4 Mb/s.

Single-carrier TD-HSUPA can achieve different throughput rates if the configurations and parameters are varied, including the number of occupied time slots, the modulation, and the transport block size in bytes. Considering the complexity of a terminal with several carriers in TD-HSUPA, multicarrier is configured in the Node B, while only one carrier is employed in the terminal.

In Rel-7 based TD-HSPA+, In order to match the performance of orthogonal frequency-division multiple access (OFDMA)-based TD-LTE systems, some advanced techniques are utilized, such as multiple-input multiple-output (MIMO), polarized BF, higher modulation and coding schemes (64-QAM is available), adaptive fast scheduling, multicarrier techniques, and so on. Theoretically, 64-QAM can improve performance by a factor of 1.5 compared to the current 16-QAM; for single-carrier the peak rate reaches 4.2 Mb/s, and three-carrier up to 12.6 Mb/s.

For the MIMO technique, double transmit antenna array (D-TxAA), based on the pre-coding method at the transmitter, has been employed in frequency-division duplex (FDD)-HSPA+ systems, while selective per antenna rate control (S-PARC), motivated by the Shannon capacity limit for an open loop MIMO link, has been applied in TD-HSPA+ systems.

TD-SCDMA LTE

The TD-SCDMA LTE program was kicked off in November 2004, and the LTE demand report was approved in June 2005. The LTE specified for TD_SCDMA evolution is named TD-LTE.

LTE systems are supposed to work in both FDD and TDD modes. LTE TDD and FDD modes have been greatly harmonized in the sense that both modes share the same underlying framework, including radio access schemes OFDMA in downlink and SC-FDMA in uplink, basic subframe formats, configuration protocols, and so on.

TD-LTE trials have already started last year with some positive results.

TD-SCDMA LTE+

IMT-Advanced can be regarded as a B3G/4G standard, and the current TD-SCDMA standard migrating to IMT-Advanced can be regarded as a thorough revolution. TD-LTE advanced (TD-LTE+) is a good match with the TD-SCDMA revolution to IMT-Advanced.

It is predicted that the future TD-SCDMA revolution technology will support data rates up to approximately 100 Mb/s for high mobility and up to approximately 1 Gb/s for low mobility such as nomadic/local wireless access.

Recently, some advanced techniques have been presented for TD-LTE+ in China, ranging from the system architecture to the radio processing techniques, such as multi-user (MU)-BF, wireless relaying, and carrier aggregation (CA).

For MU-BF see the paper proposed by Huawei, CHina Mobile and CATT here (http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_55b/Docs/R1-090133.zip).

For Wireless Relaying see the ZTE paper here (http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_56b/Docs/R1-091423.zip).

To achieve higher performance and target peak data rates, LTE+ systems should support bandwidth greater than 20 MHz (e.g., up to 100 MHz). Consequently, the requirements for TD-LTE+ include support for larger transmission bandwidths than in TD-LTE. Moreover, there should be backward compatibility so that a TD-LTE user can work in TD-LTE+ networks. CA is a concept that can provide bandwidth scalability while maintaining backward compatibility with TD-LTE through any of the constituent carriers, where multiple component carriers are aggregated to the desired TD-LTE+ system bandwidth. A TD-LTE R8 terminal can receive one of these component carriers, while an TD-LTE+ terminal can simultaneously access multiple component carriers. Compared to other approaches, CA does not require extensive changes to the TD-LTE physical layer structure and simplifies reuse of existing implementations. For more on Carrier Aggregation see CATT, LGE and Motorola paper here (http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_56b/Docs/R1-091655.zip).

Finally, there are some interesting developments happening in the TD-SCDMA market with bigger players getting interested. Once a critical mass is reached in the number of subscribers as well as the manufacturers I wouldnt be surprised if this technology is exported beyond the Chinese borders. With clear and defined evolution path this could be a win-win situation for everyone.

Thursday 3 December 2009

MBMS and AMR-WB


Nokia publicly underlined its commitment to broadcast-mobile-TV standard DVB-H with the recent unveiling of the mobile TV edition of the Nokia 5330 and its pretax, presubsidy price tag of €155 (US$230), after some in the industry had questioned its enthusiasm for launching new DVB-H devices. Nokia also quelled any suggestions that it might start supporting the MBMS standard with its future device launches.

The price is a massive drop from the €550 price tag carried by Nokia’s last fully DVB-H-compatible handset, the N96, which launched in 3Q08. So the official line from Nokia is this: “All is well on the good ship DVB-H.”

Read more here.

Meanwhile, In China, China Unicom has launched 3G telecom services in 268 cities across the country, said Li Gang, another deputy general manger for Unicom Group, noting that the WCDMA network supports a 14Mbps download data transmission speed and a 7.2Mbps upload data transmission speed.

Notably, the carrier has adopted the most advanced R6 technology in its core WCDMA network to smooth a WCDMA-to-EPS migration in the future, according to Mr. Zhang.

The China Unicom network is expected to support MBMS and HSPA+64QAM technology in the first phase of a further evolution, shore up a HSPA+MIMO technology in the Phase II evolution, and prompt a LTE technology in the Phase III evolution, said Mr. Zhang, adding that the network will present a 100Mbps download speed and a 50Mbps upload speed after the Phase III evolution.

Read more here.
Back in September, Orange Moldova announced the launch of the world's first mobile telephone service offering high-definition (HD) sound. The service will provide customers with a significantly improved quality of service when making calls. Unlike for other mobile technologies such as multimedia capabilities, this is the first time since the 1990s that mobile voice technologies have been subject to a significant evolution.

This is the second step in Orange’s HD voice strategy, following on from the launch of a high-definition voice service for VoIP calls in 2006. Over 500,000 Livephone devices have already been sold in France and the range will be extended to other Orange countries over the coming months.

The first mobile handset integrating high-definition voice capability that will be launched by Orange Moldova is the Nokia 6720c. This innovative handset integrates the new WB-AMR technology, which is widely expected within the industry to become a new standard for mobile voice communications.

Thanks to the Adaptive Multi Rate-WideBand (AMR-WB) codec, double the frequency spectrum will be given over to voice telephony over traditional voice calling. Orange boasts that the result is "near hi-fi quality" and "FM-radio quality", which seems an odd comparison.