Friday 7 October 2016

Whats up with VoLTE Roaming?

I have been covering the LTE Voice Summit for last couple of years (see here: 2015 & 2014) but this year I wont be around unfortunately. Anyway, I am sure there will be many interesting discussions. From my point of view, the 2 topics that have been widely discussed is roaming and VoWiFi.

One of the criticisms of VoWiFi is that it does not the QoS aspect is missing, which makes VoLTE special. In a recent post, I looked at the QoS in VoWiFi issue. If you haven't seen it, see here.

Coming back to VoLTE roaming, I came across this recent presentation by Orange.
This suggests that S8HR is a bad idea, the focus should be on LBO. For anyone who is not aware of the details of S8HR & LBO, please see my earlier blog post here. What this presentation suggests is to use LBO with no MTR (Mobile Termination Rates) but instead use TAP (Transferred Account Procedures). The presentation is embedded below:



Another approach that is not discussed too much but seems to be the norm at the moment is the use of IP eXchange (IPX). I also came across this other panel discussion on the topic


IPX is already in use for data roaming today and acts as a hub between different operators helping to solve inter-operability issues and mediating between roaming models. It can work out based on the calling and callee party what kind of quality and approach to use.

Here is the summary of the panel discussion:



Hopefully the LTE Voice Summit next week will provide some more insights. I look forward to hearing them.

Blog posts on related topics:

Friday 30 September 2016

Quantum Technology and Future Telecommunications

Last year I posted an excerpt from an article in FT which implied that Quantum technology will play a big role in post-5G world. Earlier this month CW held their annual Technology & Engineering Conference (CW TEC). The topic was "The Quantum Revolution is coming". I have to admit that I knew next to nothing before the conference, however now I hope I know just enough to dabble in quantum technology related discussions.

The main question that I had before the conference was 'when will quantum technology be here?'. While there were different answers, depending on what you think Quantum is, I think the answer I feel comfortable is more like 2030 (just in time for 6G?)


There are already some great write-ups of the conference by others, please see links at the bottom of the post. Here are the presentations from the event:




Related Articles:

Monday 26 September 2016

QoS in VoWiFi

Came across this presentation by Eir from last year's LTE Voice Summit.



As the summary of the above presentation says:
  • Turning on WMM (or WME) at access point provides significant protection for voice traffic against competing wireless data traffic
  • Turning on WMM at the client makes only a small difference where there are a small number of clients on the wireless LAN. This plus the “TCP Unfairness” problem means that it can be omitted.
  • All Home gateways support WMM but their firmware may need to be altered to prioritise on DSCP rather than layer two

As this Wikipedia entry explains:

Wireless Multimedia Extensions (WME), also known as Wi-Fi Multimedia (WMM), is a Wi-Fi Alliance interoperability certification, based on the IEEE 802.11e standard. It provides basic Quality of service (QoS) features to IEEE 802.11 networks. WMM prioritizes traffic according to four Access Categories (AC): voice (AC_VO), video (AC_VI), best effort (AC_BE), and background (AC_BK). However, it does not provide guaranteed throughput. It is suitable for well-defined applications that require QoS, such as Voice over IP (VoIP) on Wi-Fi phones (VoWLAN).

WMM replaces the Wi-Fi DCF distributed coordination function for CSMA/CA wireless frame transmission with Enhanced Distributed Coordination Function (EDCF). EDCF, according to version 1.1 of the WMM specifications by the Wi-Fi Alliance, defines Access Categories labels AC_VO, AC_VI, AC_BE, and AC_BK for the Enhanced Distributed Channel Access (EDCA) parameters that are used by a WMM-enabled station to control how long it sets its Transmission Opportunity (TXOP), according to the information transmitted by the access point to the station. It is implemented for wireless QoS between RF media.

This blog post describes how the QoS works in case of WMM.



Finally, this slide from Cisco shows how it will all fit together.

Further reading:

Friday 23 September 2016

5G New Radio (NR), Architecture options and migration from LTE


You have probably read about the demanding requirements for 5G in many of my blog posts. To meet these demanding requirements a 'next-generation radio' or 'new radio' (NR) will be introduced in time for 5G. We dont know as of yet what air interface, modulation technology, number of antennas, etc. for this NR but this slide above from Qualcomm gives an idea of what technologies will be required for this 5G NR.
The slide above gives a list of design innovations that will be required across diverse services as envisioned by 5G proponents.

It should be mentioned that Rel-10/11/12 version of LTE is referred to as LTE-Advanced and Rel-13/14 is being referred to as LTE-A Pro. Rel-15 will probably have a new name but in various discussions its being referred to as eLTE.

When first phase of 5G arrives in Rel-15, eLTE would be used for access network and EPC will still be used for core network. 5G will use NR and eventually get a new core network, probably in time for phase 2. This is often referred to as next generation core network (NGCN).

The slides below from Deutsche Telekom show their vision of how operators should migrate from eLTE to 5G.



The slides below from AT&T show their vision of LTE to 5G migration.



Eiko Seidel posted the following in 3GPP 5G standards group (i recommend you join if you want to follow technical discussions)


Summary RAN1#86 on New Radio (5G) Gothenburg, Sweden

At this meeting RAN1 delegates presented and discussed numerous evaluation results mainly in the areas of waveforms and channel coding.

Nonetheless RAN1 was not yet prepared to take many technical decisions. Most agreements are still rather general. 

First NR terminology has been defined. For describing time structures mini-slots have been introduced: a mini-slot is the smallest possible scheduling unit and smaller than a slot or a subframe.

Discussions on waveforms favored filtered and windowed OFDM. Channel coding discussions were in favor of LDPC and Turbo codes. But no decisions have been made yet.

Not having taken many decisions at this meeting, RAN1 now is behind its schedule for New Radio.
Hopefully the lag can be made up at two additional NR specific ad hoc meetings that have been scheduled for January and June 2017.

(thanks to my colleague and friend Dr. Frank Kowalewski for writing this short summary!)

Yet another post from Eiko on 3GPP RAN 3 on related topic.

The RAN3 schedule is that in February 2017 recommendations can be made for a protocol architecture.  In the meeting arguments came up by some parties that the work plan is mainly addressing U-Plane architecture and that split of C- and U-plane is not considered sufficiently. The background is that the first step will be dual connectivity with LTE using LTE RRC as control plane and some companies would like to concentrate on this initially. It looks like that a prioritization of features might happen in November timeframe. Beside UP and CP split, also the functional split between the central RAN node and the distributed RAN node is taking place for the cloud RAN fronthaul interface. Besides this, also discussion on the fronthaul interface takes place and it will be interesting to see if RAN3 will take the initiative to standardize a CPRI like interface for 5G. Basically on each of the three interfaces controversial discussion is ongoing.

Yet another basic question is, what is actually considered as a “New 5G RAN”? Is this term limited to a 5G eNB connected to the NG core? Or can it also be also an eLTE eNB with Dual Connectivity to 5G? Must this eLTE eNB be connected to the 5G core or is it already a 5G RAN when connected to the EPC? 

Finally, a slide from Qualcomm on 5G NR standardization & launch.


Sunday 18 September 2016

5G Fronthaul: Crosshaul & XHaul

I have written about Fronthaul as part of C-RAN in this blog as well as in the Small Cells blog. I am also critical of the C-RAN concept now that the Baseband Units (BBU) have become small enough to go on the cell cite. I have expressed this view openly as can be seen in my tweet below.



While I am critical of the C-RAN approach, there are many vendors and engineers & architects within these vendors who are for or against this technology. I am going to leave the benefits and drawbacks of C-RAN in light of new developments (think Moore's law) for some other day.

The above picture from my earlier post explains the concept of Fronthaul and Backhaul for anyone who may not be aware. As data speeds keep on increasing with 4G, 4.5G, 4.9G, 5G, etc. it makes much more sense to use Fiber for Fronthaul. Dark fiber would be a far better choice than a lit one.

One thing that concerned me was what happens in case of MIMO or massive MIMO in 5G. Would we need multiple Fronthaul/Fibre or just a single one would do. After having some discussions with industry colleagues, looks like a single fiber is enough.

This picture above from an NTT presentation illustrates how WDM (Wavelength Division Multiplexing) can be used to send different light wavelengths over a single fiber thereby avoiding the need to have multiple of these fibers in the fronthaul.


There are 2 different projects ongoing to define 5G Fronthaul & Backhaul.

The first of these is 5G Crosshaul. Their website says:

The 5G-Crosshaul project aims at developing a 5G integrated backhaul and fronthaul transport network enabling a flexible and software-defined reconfiguration of all networking elements in a multi-tenant and service-oriented unified management environment. The 5G-Crosshaul transport network envisioned will consist of high-capacity switches and heterogeneous transmission links (e.g., fibre or wireless optics, high-capacity copper, mmWave) interconnecting Remote Radio Heads, 5GPoAs (e.g., macro and small cells), cloud-processing units (mini data centres), and points-of-presence of the core networks of one or multiple service providers. This transport network will flexibly interconnect distributed 5G radio access and core network functions, hosted on in-network cloud nodes, through the implementation of: (i) a control infrastructure using a unified, abstract network model for control plane integration (Crosshaul Control Infrastructure, XCI); (ii) a unified data plane encompassing innovative high-capacity transmission technologies and novel deterministic-latency switch architectures (Crosshaul Packet Forwarding Element, XFE).

The second is 5G XHaul. Their website says:

5G-XHaul proposes a converged optical and wireless network solution able to flexibly connect Small Cells to the core network. Exploiting user mobility, our solution allows the dynamic allocation of network resources to predicted and actual hotspots. To support these novel concepts, we will develop:
  • Dynamically programmable, high capacity, low latency, point-to-multipoint mm-Wave transceivers, cooperating with Sub-6 GHz systems;
  • A Time Shared Optical Network offering elastic and fine granular bandwidth allocation, cooperating with advanced passive optical networks;
  • A software-defined cognitive control plane, able to forecast traffic demand in time and space, and the ability to reconfigure network components.
The well balanced 5G-XHaul consortium of industrial and research partners with unique expertise and skills across the constituent domains of communication systems and networks will create impact through:
  • Developing novel converged optical/wireless architectures and network management algorithms for mobile scenarios;
  • Introduce advanced mm-Wave and optical transceivers and control functions;
  • Support the development of international standards through technical and technoeconomic contributions.
The differences are summarised in the document below:



It remains to be seen if C-RAN will play a big role in 5G. If yes how much of Crosshaul and XHaul will help.

Further reading:



Sunday 11 September 2016

How much spectrum would 5G need?


The above picture is a summary of the spectrum that was agreed to be studied for IMT-2020 (5G). You can read more about that here. I have often seen discussions around how much spectrum would be needed by each operator in total. While its a complex question, we cannot be sure unless 5G is defined completely. There have been some discussions about the requirements which I am listing below. More informed readers please feel free to add your views as comments.


Real Wireless has done some demand analysis on how much spectrum is required for 5G. A report by them for European Commission is due to be published sometime soon. As can be seen in the slide above, one of the use cases is about multi gigabit motorway. If the operators deploy 5G the way they have deployed 4G then 56 GHz of spectrum would be required. If they move to a 100% shared approach where all operators act as MVNO and there is another entity that deploys all infrastcture, including spectrum then the spectrum requirement will go down to 14 GHz.

This is in addition to all the other spectrum for 2G, 3G & 4G that the operator already holds. I have embedded the presentation below and it can be downloaded from here:



The UK Spectrum Policy Forum (UKSPF) recently held a workshop on Frequency bands for 5G, the presentations for which are available to download on the link I provided.


Its going to be a huge challenge to estimate what applications will require how much amount of spectrum and what would be the priority as compared to other applications. mmMagic is one such group looking at spectrum requirements, use cases, new concepts, etc. They have estimated that around 3.1GHz would be required by each operator for 99% reliability. This seems more reasonable. It would be interesting to see how much would operators be willing to spend for such a quantity of spectrum.



Related posts:



Friday 2 September 2016

Some more thoughts on 5G

5G is often seen as a panacea for everything that is imperfect in mobile technology. Any issues with coverage, capacity, connectivity and speed are all expected to be solved with the arrival of 5G. While I don’t think we will be able to solve all the issues on the table, 5G will hopefully resolve quite a few of them.

Back in June I did an interview with the organizers of 5G World Series where I expressed my views for the questions that were posed to me. You can see this interview below.


Now that I have had time to think about the questions, here are a bit more detailed thoughts. As always, feedback, comments & suggestions welcome


Q: What will network architecture look like in the 5G era?

I have long argued that 5G will not be a single technology but a combination of multiple old and new technologies. You will often find various terms like Multi-stream Aggregation (MSA), Opportunistic Aggregation and Multi-connectivity being used to explain this. Not only will 2G, 3G and 4G have a role to play, Wi-Fi and other unlicensed technologies would be a part of 5G too.

I have had many discussions on this topic with respected analysts and many of them agree.
One of the approaches being proposed for the initial version of 5G is the non-standalone version of 5G which will use LTE as the control plane anchor and new 5G radio for user plane. Not only will this be easier to deploy along with the existing LTE network, it would be faster and hopefully less costly.

Q: To what extent is 5G dependent on virtualization?

Networks and Network Functions are progressively being virtualized, independently of 5G. Having said that, virtualization will play a big role in achieving the 5G architecture. Mobile operators can’t be expected to keep paying for proprietary hardware; virtualization would help with cost reduction and quick deployments.

Network slicing for instance will help partition the network for different requirements, on the fly depending on what is going on at any particular time.

Related post: 5G, NFV and Network Slicing


Q: What is your view on the interplay between standards and open-source developments?

Standards enable cost reduction by achieving economy of scale whereas open-source development enable innovation and quick deployment. They are both needed and they will willingly or unwillingly co-exist.


Q: What do you see as the 3 greatest technical uncertainties or challenges on route to 5G?

While there are many known and unknown challenges with 5G, some obvious ones that we can see are:

  • Spectrum identification and harmonization.
  • Getting to the right architecture which is backward compatible and future proof, without making it too complex
  • SON – Once you have everything in place you have to make many different parts of the network work together with different kinds of loads and traffic. SON will play a crucial role here.


Q: What would 5G actually mean for consumers, business and IoT? / What will 5G allow me to do that I can’t right now with 4G?

There are a lot of interesting use cases being discussed like remote operations and remote controlled cars but most of them do not represent the general consumers and some of them are just gimmicks.

NGMN - 5G Use case families and related examples

I really like the NGMN whitepaper that laid out some simple use cases.

If done properly, 5G will allow:

  • Simplification of the network resulting in low latency – this means that your content will load faster and the delay between requests and responses are small. 
  • Reasonable speed broadband everywhere - This will also depend on the operators’ rollouts plan but different technologies in 5G network would (should) enable a good speed reliable broadband not just in the middle of the cell but also on the edges. In fact, the concept of edges should be looked at in 5G and a solution to avoid data rates falling off should be found.
  • Connectivity on the move – Whether we are talking about connectivity in trains/buses or from public safety point of view, it is important to define group connectivity, direct communications, etc.


Q: What will set companies apart in the development of 5G?

The days of vendor lock-ins are over. What will set companies apart is their willingness to be open to working with other companies by having open API’s and interfaces. Operator networks will include solutions from many different vendors. For them to be quick to bring innovative solutions to the market, they need vendors to work together rather than against each other.


Q: There is a lot of talk about the vision for 2020. What do you think the world will look like in terms of connectivity in 2030?

It would be fair to say that by 2030, connectivity would have reached a completely new dimension. One of the big areas of development that is being ignored by mainstream mobile community is the development of satellite communications. There are many low earth orbit (LEO) constellations and high-throughput satellites (HTS) being developed. These LEO and HTS combination can provide high speed connectivity with 4G like latency and high throughputs for planes/ships which cannot be served by ground based mobile technology. Broadband access everywhere will only become a reality with satellite technology complementing mobile technology.

Related Post: The role of satellites in 5G world

Disclaimer: This blog is maintained in my personal capacity and this post expresses my own personal views, not the views of my employer or anyone else. 

Saturday 27 August 2016

Dedicated Core Networks (DCN) for different traffic types

Looking at a paper (embedded below) from NTT Docomo technical journal where they talk about Dedicated Core Network (DCN) for handling different traffic type (M2M/IoT for example). Note that this approach is different from NFV based network sliced architecture. For the latter, the network functions should have been virtualized.


There will be some signalling overhead in the core network to handle the new core and reroute the traffic according destined for the new dedicated core. I would still hope that this would be minuscule in the grand scheme of things. Anyway, let me know what you think about the paper below.



Wednesday 24 August 2016

Connected and Autonomous vehicles: Beyond Infotainment and Telematics

An interesting presentation from the recent Cambridge Wireless Future of Wireless International Conference 2016, delivered by David Wong of SMMT. The presentation and video of this talk is embedded below.





You can view many presentations from #FWIC16 at Cambridge Wireless page here and videos here.

Sunday 14 August 2016

3GPP Release-14 & Release-15 update

3GPP is on track for 5G as per a news item on the 3GPP website. In 5G World in London in June, Erik Guttman, 3GPP TSG SA Chairman, and Consultant for Samsung Electronics spoke about progress on Release-14 and Release-15. Here is his presentation.



According to 3GPP:

The latest plenary meeting of the 3GPP Technical Specifications Groups (TSG#72) has agreed on a detailed workplan for Release-15, the first release of 5G specifications.
The plan includes a set of intermediate tasks and check-points (see graphic below) to guide the ongoing studies in the Working Groups. These will get 3GPP in a position to make the next major round of workplan decisions when transitioning from the ongoing studies to the normative phase of the work in December 2016:- the start of SA2 normative work on Next Generation (NexGen) architecture and in March 2017:- the beginning of the RAN Working Group’s specification of the 5G New Radio (NR).
3GPP TSG RAN further agreed that the target NR scope for Release 15 includes support of the following:
  • ■ Standalone and Non-Standalone NR operation (with work for both starting in conjunction and running together)
    • ■ Non-standalone NR in this context implies using LTE as control plane anchor. Standalone NR implies full control plane capability for NR.
    • ■ Some potential architecture configuration options are shown in RP-161266 for information and will be analyzed further during the study
  • ■ Target usecases: Enhanced Mobile Broadband (eMBB), as well as Low Latency and High Reliability to enable some Ultra-Reliable and Low Latency Communications (URLCC) usecases
  • ■ Frequency ranges below 6GHz and above 6GHz
During the discussion at TSG#72 the importance of forward compatibility - in both radio and protocol design - was stressed, as this will be key for phasing-in the necessary features, enabling all identified usecases, in subsequent releases of the 5G specification.


Telecom TV has posted a video interview with Erik Guttman which is embedded below:



Related posts:



Wednesday 10 August 2016

New whitepaper on Narrowband Internet of Things

Rohde & Schwarz has just published a new whitepaper on Narrowband Internet of Things (NB-IoT).

NB-IoT has been introduced as part of 3GPP Rel-13 where 3GPP has specified a new radio interface. NBIoT is optimized for machine type traffic and is kept as simple as possible in order to reduce device costs and to minimize battery consumption. In addition, it is also adapted to work in difficult radio conditions, which is a frequent operational area for certain machine type communication devices. Although NB-IoT is an independent radio interface, it is tightly connected with LTE, which also shows up in its integration in the current LTE specifications.
The paper contains the necessary technical details including the new channels, new frame and slot structure, new signalling messages including the system information messages, etc. It's a good read.

Its embedded below and can be downloaded from here:



Related posts:

Monday 1 August 2016

Antenna evolution: From 4G to 5G


I came across this simple Introduction to Antenna Design videos that many will find useful (including myself) for the basics of Antenna. Its embedded below:


In the recently concluded 5G World 2016, Maximilian Göttl, Senior Director, Research & Development, Mobile Communication Systems, Kathrein gave an interesting presentation on Antenna Evolution, from 4G to 5G. The presentation is embedded below.

Please share your thoughts in this area in the comments section below.



Thursday 21 July 2016

Next Generation SON for 5G

There were quite a few interesting presentations in the recently concluded 5G World conference. One that caught my attention was this presentation by Huawei. SON is often something that is overlooked and is expected to be a part of deployment. The problem is that it is often vendor proprietary and does not work as expected when there is equipment from multiple vendors.

While the 4G SON in theory solves the issues that network face today, 5G SON will have to go much further and work with SDN/NFV and the sliced networks. Its going to be a big challenge and will take many years to get it right.

Here is the Huawei presentation from 5G World:



You may also be interested in:
Feel free to let me know your thoughts as comments.

Sunday 17 July 2016

Two VoLTE Deployment Case Studies

Back in 2011, I was right in predicting that we will not see VoLTE as early as everyone had predicted. Looking through my twitter archive, I would say I was about right.



The big issue with VoLTE has always been the complexity. In a post last year I provided a quote from China Mobile group vice-president Mr.Liu Aili, "VoLTE network deployment is the one of the most difficult project ever, the implementation complexity and workload is unparalleled in history".



From a recent information published by IHS, there will only be 310 million subscribers by end of 2016 and 2020 is when 1 billion subscribers can make use of VoLTE. I think the number will probably be much higher as we will have VoLTE by stealth.


Below are couple of case studies, one from SK Telecom, presented by Chloe(Go-Eun) Lee and other from Henry Wong, CTO Mobile Engineering, Hong Kong Telecom (HKT). Hope you find them informative and useful.






Wednesday 13 July 2016

Feasibility Study on New Services and Markets Technology Enablers for 5G

3GPP SA1 (see tutorial about 3GPP if you dont know) recently released four new Technical Reports outlining the New Services and Markets Technology Enablers (SMARTER) for next generation mobile telecommunications.

3GPP TR 22.891 has already identified over 70 different which are into different groups as can be seen in the picture above. These groups are massive Internet of Things (MTC), Critical Communications, enhanced Mobile Broadband, Network Operation and Enhancement of Vehicle-to-Everything (eV2X).

The first 4 items have their own technical reports (see below) but work on the last item has only recently started and does not yet have a TR to show to the outside world. It is foreseen that when there are results from the eV2X study these will be taken on board in the Smarter work. (thanks to Toon Norp for this info)

The four Technical Reports (TR) are:
  • TR 22.861, FS_SMARTER – massive Internet of Things (MTC): Massive Internet of Things focuses on use cases with massive number of devices (e.g., sensors and wearables). This group of use cases is particularly relevant to the new vertical services, such as smart home and city, smart utilities, e-Health, and smart wearables.
  • TR 22.862, FS_SMARTER – Critical Communications: The main areas where improvements are needed for Critical Communications are latency, reliability, and availability to enable, for example, industrial control applications and tactile Internet. These requirements can be met with an improved radio interface, optimized architecture, and dedicated core and radio resources.
  • TR 22.863, FS_SMARTER – enhanced Mobile Broadband: Enhanced Mobile Broadband includes a number of different use case families related to higher data rates, higher density, deployment and coverage, higher user mobility, devices with highly variable user data rates, fixed mobile convergence, and small-cell deployments.
  • TR 22.864, FS_SMARTER – Network Operation: The use case group Network Operation addresses the functional system requirements, including aspects such as: flexible functions and capabilities, new value creation, migration and interworking, optimizations and enhancements, and security.
Embedded below is 3GPP TR 22.891 which has a lot of interesting use cases and makes a useful reading.




Friday 1 July 2016

EE's vision of Ultra-Reliable Emergency Network


Many of my readers would be aware that UK is probably the first country to have decided to move its emergency services network from an existing TETRA network to a commercial LTE network operated by EE.

While some people have hailed this as a very bold move in the right direction, there is no shortage of critics. Around 300,000 emergency services users will share the same infrastructure used by over 30 million general users.

The following is from an article in Wireless Magazine:

Steve Whatson, deputy director Delivery, Emergency Services Mobile Communications Programme (ESMCP) – the organisation within the UK Home Office procuring ESN – assured delegates that ESN will match the existing dedicated Airwave emergency services communication network in terms of coverage for roads, outdoor hand portable devices and marine coverage. Air to ground (A2G) will extend its reach from 6,000ft to 12,000ft.

Whatson also pointed out that coverage is not one single piece, but will comprise a number of different elements, which all need to mesh into one seamless network run by the ESN Lot 3 Mobile Services (main 4G network) provider – EE.

This includes: EE’s main commercial 4G network; Extended Area Services (hard-to-reach areas of the UK where new passive sites are to be built under a separate contract and then equipped with EE base stations); air-to-ground; London Underground; Crossrail; marine coverage (to 12 nautical miles); and special coverage solutions.

EE is currently rolling out new 4G sites – it will eventually have some 19,500 sites – and is upgrading others with 800MHz spectrum, which propagates over longer distances and is better at penetrating buildings than its other 4G spectrum holdings. Crucially for ESN, it is also switching on a Voice over LTE (VoLTE) capability, starting with the UK’s main cities.
...
Mission critical networks must be always available and have levels of resilience far in excess of commercial networks. Speaking exclusively to Wireless in early May, Tom Bennett, group director Technology Services, Architecture & Devices at EE, said: ‘We already achieve a very high availability level, but what the Home Office was asking for effectively was about a 0.3% increase against our existing commercial availability levels.

‘Now for every 0.1% increase in availability there is a significant investment because you are at the extreme top end of the curve where it is harder and harder to make a noticeable difference.’

There are very specific requirements for coverage and availability of the ESN network for the UK road system. Bennett says: ‘Mobile is based on a probability of service. No more than 1% of any constabulary’s roads are allowed to be below 75% availability, and on major roads it is 96% availability. A coverage gap in this context is no more than 1km.’

The current Airwave network has approximately 4,000 sites, many with back-up generators on site with fuel for seven days of autonomous running if the main power is cut, along with a range of resilient backhaul solutions.

Bennett says that out of EE’s 18,500 sites it has about the same number of unique coverage sites (ie. no overlapping coverage) – around 4,000. ‘As part of our investment programme, those unique coverage sites will need a significant investment in the causes of unavailability – ie. resilient backhaul and back-up batteries.’

He explains that EE has undertaken a lot of analysis of what causes outages on its network, and it has combined that data with the Home Office’s data on where the natural disasters in the UK have occurred over the past 10 years.

From this, EE is able to make a reasonable assessment of which sites are likely to be out of action due to flooding or other disasters for more than three or four days. ‘For those sites – and it is less than 4,000 – you need generators too, because you may not be able to physically access the sites for some days,’ says Bennett.

For obvious reasons, the unique coverage sites are mostly in rural areas. But as Bennett points out, the majority of cases where the emergency services are involved is where people are – suburban and urban areas.

‘In these areas EE has overlapping coverage from multiple sites to meet the capacity requirements, so if a site goes down, in the majority of cases we have compensation coverage. A device can often see up to five tower sites in London, for example,’ he says.

Having adequate backhaul capacity – and resilient backhaul at that – is vital in any network. Bennett says EE is installing extra backhaul, largely microwave and fibre, but other solutions will also be used including satellite and LTE relay from base station to base station – daisy chaining. On 9 May 2016, EE announced a deal with satellite provider Avanti to provide satellite backhaul in some areas of the UK.

Additional coverage and resilience will be offered by RRVs (rapid response vehicles), which EE already has in its commercial network today, for example, to provide extra capacity in Ascot during the racing season.

‘We would use similar, although not exactly the same technology for disaster recovery and site/service recovery, but with all the backhaul solutions,’ says Bennett. ‘Let’s say we planned some maintenance or upgrade work that involved taking the base station out for a while.

‘We’d talk to the chief inspector before the work commences. If he says, there’s no chance of doing that tonight, we can put the RRV there, and provided we maintain coverage, we can carry out the work. RRVs are a very good tool for doing a lot of things.’

At the British APCO event, Mansoor Hanif, director of Radio Access Networks at EE said it was looking at the possibility of using ‘airmasts’ to provide additional coverage. Meshed small cells, network in a box and repeater solutions are becoming available for these ‘airmasts’, which will provide coverage from balloons, or UAVs – tethered drones with power cables and optical fibre connected to them.

Mansoor Hanif, Director of RAN at EE gave a presentation on this at Critical Communications World 2016 and has also given an interview. Both are embedded below.






Feel free to let me know if you believe this will work or not and why.

Sunday 26 June 2016

Three Presentations on 5G Security


Here are three presentations from the 5G Huddle in April, looking at 5G security aspects. As I have repeatedly mentioned, 5G is in process of being defined so these presentations are just presenting the view from what we know about 5G today.



Friday 17 June 2016

History: 30 years of the mobile phone in the UK


In January 1985 the UK launched its first mobile networks. Now, thirty years on, many people and companies in the UK have been celebrating this enormous achievements and advances that have been made since then and which have seen the mobile evolve from a humble telephone into the multimedia pocket computer which has become such an essential part of modern life. It was simply not possible in 1985 to envisage a country that would be able to boast more active mobile phones than people or to have along the way clocked up several world firsts, and be now leading on the deployment of 4G and shaping the future 5G technologies.

Below is a series of talks in an event organised by University of Salford,



The following talks are part of playlist:

1. Launch of Vodafone – Nigel Linge, on behalf of Vodafone
2. Launch of Cellnet - Mike Short, O2
3. The emergence of GSM - Stephen Temple, 5GIC
4. The launch of Mercury one2one and Orange - Graham Fisher, Bathcube Telecoms
5. From voice to data - Stuart Newstead, Ellare
6. Telepoint - Professor Nigel Linge, University of Salford
7. 3G - Erol Hepsaydir, 3 UK
8. Handset evolution and usage patterns - Julian Divett, EE
9. 4G and onwards to 5G – Professor Andy Sutton, EE  and University of Salford.

For anyone interested in reading about the history of mobile phones in UK, read this book below with more facts and figures


If you have any facts to share, please feel free to add in the comments below.

Sunday 12 June 2016

AT&T's 5G Trials


There was a news recently that "AT&T 5G trials expand, break 10 Gbps throughput". The article said:

Austin, Texas, where RCR Wireless News and Industrial IoT 5G Insights is headquartered, is where AT&T worked with the Federal Communications Commission to get an experimental license to conduct 5G technology trials using spectrum in the 3.4-3.6 GHz, 3.7-4.2 GHz, 14.5-15.35 GHz and 27.5-28.5 GHz bands. The carrier said the testing would be used for “experimental equipment” in support of “potential (5G) multi-gigabyte per second applications for fixed and mobile wireless communication networks at higher transmission rates and lower latency than is currently available,” and supporting voice, video and data.
...
“We’ve seen great results in our 5G lab trials, including reaching speeds above 10 gigabits per second in early tests with Ericsson,” said Tom Keathley, SVP of wireless network architecture and design at AT&T. “Nokia is joining to help us test millimeter wave, which we expect to play a key role in 5G development and deployment. The work coming out of AT&T Labs will pave the way toward future international 5G standards and allow us to deliver these fast 5G speeds and network performance across the U.S.”

While I have seen speed records being set, this will not be of much help in the final standards. Some of you may remember my earlier post where Huawei achieved over 100Gbps in their labs. See here.

A video from recent AT&T mmWave trials is below:

Saturday 4 June 2016

5G and Future Technologies from Johannesberg Summit

Johannesberg Summit is an annual forum to discuss how Wireless ICT is transforming business and society.  Interesting talks from industry leaders and leading academics are mixed with panel discussions with a broad perspective on technologies, services, business and policy models that may have an impact in the long-range evolution of society and various industries. Topics have over the years included future user behavior and requirements, novel services and applications, new business models as well as policy and regulation. These more general topics have been matched with visions on how wireless technologies and architectures can handle these needs.

The 2016 summit had 4 key topic areas:

  • The transformation of the transport industry
  • The transformation of the manufacturing industry (“Industry 4.0”)
  • Future key technologies
  • Update on 5G year


The best things is that they make all the presentations available online. Initially in the video form and later on the PDF's as well. I am embedding playlist of all video talks below but have a look at the program here.




You can also look at the 2015 program here that includes videos and PDFs of the presentations from last year.

Sunday 29 May 2016

5G & 802.11ax


Samsung is one of the 5G pioneers who has been active in this area for quite a while, working in different technology areas but also making results and details available for others to appreciate and get an idea on what 5G is all about. 

I published a post back in 2014 from their trials going on then. Since then they have been improving on these results. They recently also published the 5G vision paper which is available here and here.



In the recent 5G Huddle, Raj Gawera from Samsung gave an excellent presentation (below) on the topic of "The future connected world". 



What we really liked is how closely 5G and 802.11ax can be considered aligned, not only in terms of requirements but also the roadmap.

Anyway, here is the presentation embedded below. Let me know what you think in the comments below.