Showing posts with label 6G. Show all posts
Showing posts with label 6G. Show all posts

Friday, 17 January 2025

Lessons from ANRW ’24: AI and Cloud in 5G/6G Systems

The ACM, IRTF & ISOC Applied Networking Research Workshops (ANRW) offer a vibrant forum for researchers, vendors, network operators, and the Internet standards community to exchange emerging results in applied networking research. To foster collaboration across these diverse groups, ANRW events are co-located with IETF standards meetings, typically held annually in July. These workshops prioritise interactive discussions and engagement, complementing traditional paper presentations.

ANRW '24, held on 23 July 2024 at the Hyatt Regency Vancouver, brought together industry leaders and academics to share insights on advancing networking technologies. Among the standout sessions was a keynote presentation by Sharad Agarwal, Senior Principal Researcher at Microsoft. His keynote titled, "Lessons I Learned in Leveraging AI+ML for 5G/6G Systems", highlighted pivotal themes influencing telecom and networking.

Sharad distilled his experiences into three key lessons, each underscored by examples of research and systems developed to address specific challenges in the telecom industry:

  1. Leverage Cloud Scale to Overcome Limitations of Deployed Protocols: He emphasised that the scale of cloud computing is critical to managing the massive demands of modern telecom networks. For instance, systems like TIPSY (Traffic Ingress Prediction SYstem) demonstrate how AI and ML can predict traffic ingress points across thousands of peering links, helping to avoid bottlenecks and ensure optimal traffic distribution.
  2. Custom Learning Algorithms vs. Off-the-Shelf Solutions: While bespoke algorithms offer higher precision for niche applications, their complexity and deployment challenges often outweigh their benefits. Sharad argued for balancing innovation with practicality, advocating for leveraging pre-built AI and ML models wherever possible to streamline integration.
  3. Mitigate Risks of AI Hallucinations through Careful System Design: Acknowledging the risks posed by unreliable AI outputs, he stressed the importance of robust system design. Using LLexus, an AI-driven incident management system, as an example, Sharad highlighted techniques like iterative plan generation, validation rules, and human auditing as essential safeguards against AI errors.

The talk also delved into broader trends shaping the telecom landscape:

  • Cloudification of Telecom Infrastructure: The shift from hardware-based to software-based network functions, underpinned by cloud-native principles, has revolutionised telco infrastructure. This transformation facilitates rapid upgrades, reduces costs, and introduces new opportunities for AI-driven analytics.
  • Challenges in Performance and Reliability: Ensuring high throughput, low latency, and carrier-grade reliability in cloudified networks remains a significant hurdle. Innovations like PAINTER and LLexus demonstrate how AI and ML are being applied to optimise these aspects.
  • Emerging Business Models and Private Deployments: The integration of new radio technologies and virtualised network functions is driving novel revenue streams, such as private 5G/6G networks for mission-critical applications like factory automation.
Finally, Sharad’s keynote underscored how AI, ML, and cloud computing are reshaping the telecom industry, particularly in the era of 5G and the forthcoming 6G. By leveraging the scale of cloud infrastructure, balancing algorithmic complexity, and designing systems with resilience against AI pitfalls, the industry is poised to meet its ambitious goals of high bandwidth, low latency, and unparalleled reliability.

The video of his talk is embedded below and the slides are available here:

Related Posts:

Tuesday, 10 December 2024

Tutorial Session on Non-Terrestrial Networks (NTNs) and 3GPP Standards from 5G to 6G

Over five years ago, we introduced the concept of Non-Terrestrial Networks (NTN) in our NTN tutorial and wrote IEEE ComSoc article, "The Role of Non-Terrestrial Networks (NTN) in Future 5G Networks." Since then, the landscape has seen remarkable transformations with advancements in standards, innovations in satellite connectivity, and progress in real-world applications.

The 2024 Global Forum on Connecting the World from the Skies, held on November 25–26, served as a pivotal platform for stakeholders across the spectrum; policymakers, industry leaders, and technical experts. Jointly organized by the International Telecommunication Union (ITU) and Saudi Arabia’s Communications, Space & Technology Commission (CST), the event underscored NTNs' growing importance in advancing global connectivity.

A key highlight of the forum was Tutorial Session 2, delivered by Gino Masini, Principal Researcher, Standardization at Ericsson. The session, titled "Non-Terrestrial Networks and 3GPP Standards from 5G to 6G," provided an in-depth look at the evolution of NTNs and their integration into mobile networks.

Key Takeaways from the Session included:

  • 3GPP Standardization Milestones:
    • Release 17: NTN integration began, paving the way for seamless 5G coverage.
    • Release 18: Enhanced features and capabilities, focusing on improved satellite-terrestrial convergence.
    • Release 19 (Ongoing): Lays the foundation for natively integrated NTN frameworks in 6G.
  • Unified Networks in 6G: A focus on radio access network architecture demonstrated how NTN can evolve from a supporting role to becoming an intrinsic component of future 6G systems.
  • Industry Impact: The session highlighted how convergence between satellite and terrestrial networks is no longer aspirational but a tangible reality, fostering a truly unified global connectivity ecosystem.

With NTNs now integral to 3GPP's vision, the groundwork has been laid for scalable satellite connectivity that complements terrestrial networks. The insights shared at the forum emphasize the importance of collaboration across industry and standards organizations to unlock the full potential of NTNs in both 5G and 6G.

For those interested, the full tutorial slides and session video are embedded below.

Gino has kindly shared the slides that can be downloaded from here.

Related Posts

Monday, 6 May 2024

6G and Other 3GPP Logos

The Project Coordination Group (PCG) of 3GPP recently approved a new logo for use on specifications for 6G, during their 52nd PCG meeting, hosted by ATIS in Reston, Virginia. As with previous logos, surely people in general will use them not just for 3GPP 6G compliant products, but for all kinds of things.

Over the years many people have reached out to me to ask for 3GPP logos, even though they are available publicly. All 3GPP logos, from 3G to 6G is available in the Marcoms directory here. In addition to the logo, each directory also lists guidance for use of the logos. For example, 3GPP does not allow the use of the logo as shown on the left in the image on top of the post while the one on the right is okay.

Surely there isn't an issue for general use but for anyone wishing to use the logos for their products, equipment, documentation or books, they will have to strictly comply with the rules.

Related Posts

Friday, 22 March 2024

Research Challenges for the Advancement of Vehicular Networking

It's been a while since we covered V2X as a topic on this blog. If you are not well versed with CAVs and V2X, we recommend you to watch our tutorials on the 3G4G page here.

The networking channel hosted a seminar on 'Vehicular networking' last month. Quoting from the webinar preview:

Looking back at the last decade, one can observe enormous progress in the domain of vehicular networking. Many ongoing activities focus on the design of cooperative perception, distributed computing, and novel safety solutions. Many projects have been initiated to validate the theoretic work in field tests and protocols are being standardized. We are now entering an era that might change the game in road traffic management. Many car makers already supply their recent brands with cellular and Wi-Fi modems, also adding C-V2X and ITS-G5 technologies. We now intend to shift the focus from basic networking principles to open challenges in cooperative computing support and even on how to integrate so-called vulnerable road users into the picture. Edge computing is currently becoming one of the core building blocks of cellular networks, including 5G, and it is necessary to study how to integrate ICT components of moving systems. The panellists will discuss from an industrial perspective the main research challenges for the advancement of vehicular networking and the novelties that we can expect to see coming in the short term. Panellists with extensive experience in Internet measurements, networks related to sustainable development goals, and highly-localized earth observation networks will discuss these topics and participate in a Q&A session with the audience.

The presentations were not shared but the video of the panel discussion is as follows:

The following speakers presented the following talks:

  • Vehicular Networking? by Onur Altintas, Toyota North America R&D (0:04:55)
  • Collaborative Perception Sharing for Connected Autonomous Vehicles by Fan Bai, General Motors Global R&D (0:15:00)
  • The future of vehicular networking by Frank Hofmann, Robert Bosch GmbH (0:23:25)
  • The future of vehicular networks and path to 6G by Dr.-Ing. Volker Ziegler, Nokia (0:35:15)
  • Panel Discussion with all speakers and  (0:44:30)

Related Posts

Friday, 8 December 2023

6G Global - Videos & Presentations from Mobile Korea 2023

5G Forum, South Korea organises Mobile Korea conference every year. Mobile Korea 2023 had two conferences within it, '6G Global', looking at 'Beyond Connectivity and New Possibilities', and '5G Vertical Summit', looking at 'Leading to Sustainable Society with 5G'.

I often complain about how organisations working in 6G often lack social networks skills, in this case, even the website is not very user friendly and doesn't contain a lot of details. Full marks for uploading the videos on YouTube though.

Anyway, here are the videos and presentations that were shared from the summit:

  • Opening + Keynote Session - Moderator : LEE, HyeonWoo, DanKook University
    • Standardization and Technical Trend for 6G, SungHyun CHOI, Samsung Research (video, presentation)
  • Session 1 : 6G Global Trend - Moderator : JaeHoon CHUNG, LG Electronics Inc.
    • Thoughts on standardization and Industry priorities to ensure timely market readiness for 6G, Sari NIELSEN, Nokia (video, presentation)
    • On the convergence route for 6G, Wen TONG, Huawei (video, presentation)
    • The Path from 5G to 6G: Vision and Technology, Edward G. TIEDMANN, Qualcomm Technologies  (video, presentation)
    • Shaping 6G – Technology and Services, Bo HAGERMAN, Ericsson (video, presentation)
  • Government Session
    • Keynote : Korea's 6G R&D Promotion Strategy, KyeongRae CHO, Ministry of Science and ICT (video, presentation)
  • Session 2 : 6G Global Collaboration - Moderator : Juho LEE, Samsung Electronics
  • 6G R&D and promotion in Japan, Kotaro KUWAZU, B5GPC (video, presentation)
    • Technology evolution toward beyond 5G and 6G, Charlie ZHANG, Samsung Research (video, presentation)
    • AI-Native RAN and Air Interface : Promises and Challenges, Balaji Raghothaman, Keysight (video, presentation)
    • Enabling 6G Research through Rapid Prototyping and Test LEE, SeYong, (NI) (video, presentation)
    • Global Collaborative R&D Activities for Advanced Radio Technologies, JaeHoon CHUNG, LG Electronics (video, presentation)
    • International research collaboration – key to a sustainable 6G road, Thomas HAUSTEIN, Fraunhofer Heinrich Hertz Institute (video, presentation)
    • 6G as Cellular Network 2.0: A Networked Computing Perspective, KyungHan LEE, Seoul National University (video, presentation)
    • Towards a Sustainable 6G, Marcos KATZ, University of Oulu (video, presentation)
  • Pannel Discussion : Roles of Public Domain in 6G R&D - Moderator : HyeonWoo LEE, DanKook University
  • Session 3 : 6G Global Mega Project - Moderator: YoungJo KO, ETRI
    • Sub-THz band wireless transmission and access technology for 6G Tbps data rate, JuYong LEE, KAIST (video, presentation)
    • The post Shannon Era: Towards Semantic, Goal-Oriented and Reconfigurable Intelligent Environments aided 6G communications, Emilio CALVANESE STRINATI, CEA Leti (video, presentation)
    • Demonstration of 1.4 Tbits wireless transmission using OAM multiplexing technology in the sub-THz band, DooHwan LEE, NTT Corporation (video, presentation)
    • Latest 6G research progress in China, Zhiqin WANG, CAICT (video, presentation)

If there are no links in video/presentation than it hasn't been shared.

Related Posts

Wednesday, 29 November 2023

AI/ML and Other ICT Industry Trends in the coming decades

At the Brooklyn 6G Summit (B6GS) 2023, top tier economist Dr. Jeff Shen from BlackRock, presented a talk from the industry perspective of AI (Artificial Intelligence) and investment. Jeff Shen, PhD, Managing Director, is Co-CIO and Co-Head of Systematic Active Equity (SAE) at BlackRock. He is a member of the BlackRock Global Operating Committee, BlackRock Systematic (BSYS) Management Committee and the BlackRock Asian Middle Eastern & Allies Network (AMP) Executive Committee.

In his talk he covered the history of how and where AI has been traditionally used and how the thinking around AI has changed over the last few decades. He then presented his view on if AI is just a fad or it's more than that. To illustrate the fact, he provided an example of how Generative AI market is expected to grow from $40 Billion in 2022 to $1.3 Trillion in 2032. 

There are many challenges that AI faces that one should be aware of; namely regulation, cyber threats and ethical concerns. In the US, AI touches the entire economy, from legal to healthcare. In their quarterly reporting, firms are now discussing AI and the larger tech companies are not afraid to grow inorganically in order to get more exposure to the trend. 

You can watch the whole of his talk embedded below, courtesy of IEEE Tv.

Related Posts

Wednesday, 8 November 2023

Presentations from ETSI Security Conference 2023

It's been a while since I wrote about the ETSI Security Conference, which was known as ETSI Security week once upon a time. This year, ETSI’s annual flagship event on Cyber Security took place face-to-face from 16 to 19 October 2023, in ETSI, Sophia Antipolis, France and gathered more than 200 people. 

The event this year focused on Security Research and Global Security Standards in action The event also considered wider aspects such as Attracting the next generation of Cyber Security standardization professionals and supporting SMEs.

The following topics were covered

  • Day 1:
    • Session 1: Global Cyber Security
    • Session 2: Global Cyber Security
    • Session 3: Regulation State of the Nation
    • Session 4: Regulation, Data Protection and Privacy, Technical Aspects
  • Day 2:
    • Session 1: Zero Trust, Supply Chain & Open Source
    • Session 2: IoT & Certification
    • Session 3: Zero Trust, Supply Chain & Open Source
    • Session 4: Quantum Safe Cryptography Session
  • Day 3:
    • Session 1: Experiences of Attracting Next Generation of Engineers and Investing in Future
    • Session 2: IoT and Certification Session
    • Session 3: IoT & Mobile Certification
    • Session 4: 5G in the Wild - Part 1
  • Day 4:
    • Session 1: 5G in the Wild - Part 2
    • Session 2: 6G Futures
    • Session 3: Augmented Reality and AI

You can see the detailed agenda here. The presentations from the conference are available here.

The CyberSecurity Magazine interviewed Helen L. And Jane Wright discussing diversity and careers in Cybersecurity. Helen, from the National Cyber Security Centre, has worked in Security for over 20 years and is a mentor at the CyberFirst programme. CyberFirst intends to inspire and encourage students from all backgrounds to consider a career in cybersecurity. Jane Wright is a Cyber Security Engineer at QinetiQ and has been participating in the CyberFirst. The interview, along with a video, is available here.

Related Posts

Wednesday, 25 October 2023

Mobile Network Architecture: How did we get here & where should we go?

Lorenzo Casaccia, Vice President of Technical Standards, IP Qualcomm Europe, Inc. has been with Qualcomm since 2000. During that time he's had a variety of roles related to wireless communication, including research and system design, regulatory aspects, product management, and technical standardization. He currently leads a team of engineers across three continents driving Qualcomm’s activities in 3GPP, the standards body designing technologies for 4G and 5G.

Couple of his well known articles on Qualcomm OnQ Blog on 'Counting 3GPP contributions' and 'ETSI SEP database manipulations' are available here and here respectively.

At the recent NIST/IEEE Future Networks 6G Core Networks Workshop he was able to bring in his experience to deliver a fantastic talk looking at how the mobile network architecture has diverged from the Data Networks (Internet) architecture and how this has limited innovation in the mobile networks.

He concludes by providing a solution on how to fix this network architecture in 6G by limiting any new services going in the control plane as well as ensuring over the time all services move to the user plane. The control plane will then stop being 'G' specific which will benefit the network innovation in the long term. 

There is no provision to embed the video so please look at the top of the page here. Lorenzo's talk starts at 03:03:50. The Q&A session for the panel starts at 03:53:20 for anyone interested.

Related Posts

Wednesday, 4 October 2023

Presentations from 2nd IEEE Open RAN Summit

The second IEEE SA (Standards Association) Open RAN summit, hosted by the Johns Hopkins University Applied Physics Lab, took place on 9-10 Aug 2023. It covered the topics related to the standardization of Open RAN including O-RAN Alliance, 3GPP, IEEE, various deployment scenarios, testing and integration, Open RAN security, RAN slicing, and RAN optimization among others. 

The videos of the presentations can be viewed on the summit page here or though the video playlist here.

The talk from Dr. Chih-Lin I, O-RAN Alliance TSC Co-Chair and CMCC Chief Scientist, Wireless Technologies on 'AI/ML impact, from 5.5G to 6G' is embedded below:

Related Posts

Thursday, 24 August 2023

Prof. Ted Rappaport Keynote at EuCNC & 6G Summit 2023 on 'Looking Towards the 6G Era - What we may expect, and why'

Prof. Ted Rappaport has featured a few times in our blog posts (see here and here). Today we look at his recent keynote at the EuCNC & 6G Summit 2023 on the topic 'Looking Towards the 6G Era - What we may expect, and why'. The abstract of the talk says:

Recent work has shown that the fundamentals of the radio propagation channel will enable mobile communications all the way to 900 GHz, offering bandwidths of tens of GHz. An amazing fact that is all but disregarded is that the three fundamental technological breakthroughs of 5G, namely millimeter wave technology, small cell densification, and massive multiple-input multiple-output (massive-MIMO) antenna systems, are paving the way for the next several decades of the wireless industry. This talk demonstrates how the 5G era will futureproof wireless networks as we enter the 6G era and beyond — an era of wireless cognition and human-style computing. In fewer than 20 years, wireless networks will carry information at the computation speed of the human brain. Yet, how will engineers ensure that we build these networks with sustainability and power efficiency in mind? This talk offers some solutions and promising areas of exploration to ensure the future 6G era is lightning fast yet kind to planet earth.

Recently I had a discussion about mmWave, sub-THz, THz, etc. This chart in the Tweet above is handy with deciphering the 5G/6G spectrum terminology.

Prof. Rappaport covered quite a few topics on spectrum above 100 GHz and made a strong case for mmWave and Terahertz. The mmWave adoption for 5G hasn't yet taken off so we will have to see how enthusiastic the industry is for even higher frequencies. The other keynotes from the conference (see references below) argued for cmWave as the mid-band for 6G. We will have to wait and see where all this discussion goes.

The talk is embedded below:

Related Posts

Tuesday, 22 November 2022

Preparing for Metaverse-Ready Networks

Metaverse means different things for different people. If you explain Metaverse with an example, many people understand but they are generally looking at things from a different point of view. A bit like blind men and an elephant. Similarly when we talk about Metaverse-ready networks, it can mean different things to different people, depending on their background.

Back in Oct 2021, Facebook changed its name to Meta with a vision to bring the metaverse to life and help people connect, find communities and grow businesses. This was followed by a blog post by Dan Rabinovitsj, Vice President, Meta Connectivity, highlighting the high-level requirements for these metaverse-ready networks. 

At Fyuz 2022, the Telecom Infra Project (TIP) announced the launch of Metaverse-Ready Networks Project Group primary whose objective is to accelerate the development of solutions and architectures that enhance network readiness to support metaverse experiences. Meta Platforms, Microsoft, Sparkle, T-Mobile and Telefónica are the initial co-chairs of this Project Group.

Cambridge Wireless' CWIC 2022 discussed 'The Hyperconnected Human'. One of the sessions focussed on 'Living in the Metaverse' which I think was just brilliant. The slides are available from the event page and the video is embedded below:

Coming back to metaverse-ready networks, the final day of Fyuz 2022 conference featured 'The Meta Connectivity Summit' produced by Meta. 

The main stage featured a lot of interesting panel sessions looking at metaverse use cases and applications, technology ecosystem, operator perspectives as well as a talk by CIO of Softbank. The sessions are embedded below. The breakout sessions were not shared. 

Metaverse is also being used as a catch-all for use cases and applications in 6G. While many of the requirements of Metaverse will be met by 5G and beyond applications, 6G will bring in even more extreme requirements which would justify the investments in the Metaverse-Ready Networks.

Related Posts

Monday, 25 July 2022

Demystifying and Defining the Metaverse

There is no shortage of Metaverse papers and articles as it is the latest trend in the long list of technologies promising to change the world. Couple of months back I wrote a post about it in the 6G blog here.

IEEE hosted a Metaverse Congress with the Kickoff Session 'Demystifying and Defining the Metaverse' this month as can be seen in the Tweet above. The video embedded below covers the following talks:

  • 0:01:24 - Opening Remarks by Eva Kaili (Vice President, European Parliament)
  • 0:09:51 - Keynote - Metaverse Landscape and Outlook by Yu Yuan (President-Elect, IEEE Standards Association)
  • 0:29:30 - Keynote - Through the Store Window by Thomas Furness (“Grandfather of Virtual Reality”)
  • 0:52:30 - Keynote - XR: The origin of the Metaverse as Water-Human-Computer Interaction (WaterHCI) by Steve Mann (“Father of Wearable Computing”)
  • 1:22:17 - Keynote - A Vision of the Metaverse: AI Infused, Physically Accurate Virtual Worlds by Rev Lebaredian (VP of Omniverse & Simulation Technology, NVIDIA)

Some fantastic definitions, explanations, use cases and vision on Metaverse. The final speaker nicely summarised Metaverse as shown in this slide below.

Worth highlighting point 6 that the Metaverse is device independent. I argued about something similar when we try and link everything to 6G (like we linked everything to 5G before). We are just in the beginning phase, a lot of updates and clarifications will come in the next few years before Metaverse starts taking a final shape.

Related Posts

Tuesday, 9 February 2021

Free 6G Training

Last year we announced the launch of Free 5G Training. It was successful beyond our imagination. While we have just over 1,300 Twitter followers, on LinkedIn, we have over 30,000. The 5G for Absolute Beginners Udemy course already has over 6,000 students. This was a good enough motivation for us to launch a 6G equivalent with world's first 6G training course.

Back in November, we soft-launched the Free 6G Training website/blog along with Twitter and LinkedIn. The initial engagement and following are already very encouraging. 

We also created 'An Introduction to 6G Training Course' here. 6G Candidate technologies, that require most details and is the main area of focus for 6G will be added as and when I find time and have enough material.

There is also a new 6G Wireless R&D LinkedIn group that has been started to share information and discuss doubts, etc. I am hoping many people will be able to join.

If you are a 6G expert or researcher or have ideas on how I can do better or want to contribute with articles, presentations, videos, etc., please feel free to get in touch on LinkedIn.

One final thing, along with all this, the 3G4G page has a section on '6G and Beyond-5G Wireless Technology'. I add links to all publicly available whitepapers and other good material out there. 

It may also be useful to know that the 3G4G page has a search box on top that searches across all our channels and can be helpful in finding information on any mobile technology related topic.

Monday, 21 December 2020

Challenges and Future Perspectives of Industrial 5G

Andreas Mueller, Head of communication and network technology at Bosch Corporate Research and Chair of 5G ACIA recently spoke at 'What Next for Wireless Infrastructure Summit' by TelecomTV about Industrial 5G. The following is paraphrased from his presentation 'Industrial 5G: Remaining challenges and future perspectives' which is embedded below: 

5G has the potential to become the central nervous system of the factory of the future, enabling unprecedented levels of flexibility, efficiency, productivity and also ease of use.  At the same time it's also a very special application domain so in many cases there are very demanding QoS requirements. 

Industrial applications have multi-faceted requirements where one case may require very low latencies and high reliabilities for instance, while for others we may need very high data rates (for example HD cameras). There is no single use case with a single set of requirements but many different use cases with very diverse requirements which also have to be supported in many cases at the very same time. 

As we need only a local network with local connectivity, this performance is required only in a very controlled environment; inside a factory, inside a plant. This allows for specific optimizations and makes certain things easier but we also always have brownfields deployments in many cases that means we have to live what we have in place today so that's typically wired communication in some cases it's wi-fi and similar wireless solutions and we have to be able to smoothly integrate a 5G network into this existing infrastructure

The developments towards Industrial 5G started about three years ago i would say and in the meantime it really has become a hot topic everybody is talking about industrial 5G. It has become a focused topic in standardization in 3GPP and some key capabilities already have been standardized which have been briefly outlined in the presentation. 

Good progress has also been made in the ecosystem development so we've established the 5G Alliance for Connected Industries and Automation two and a half years ago which serves as a global forum for bringing all relevant stakeholders together and for driving industrial 5G and we have 76 members today which includes major players from the telco industry but also from the industrial domain and also of course some universities and so on. We have seen the advent of non-public networks (NPN) so for the first time it will be possible for a manufacturers to deploy and operate such non-public networks inside a factory which are to some extent decoupled from the public networks.

If we look at the standardization timeline this is what you get. The first version of 5G release 15 of 3GPP was approved mid last year and it still had a very strong focus on consumer application and enhanced mobile broadband. If you buy 5G today, this is what you get then. Release-16 has for the first time had a very strong focus on industrial applications this has been approved in June this year and it includes features like ultra reliable low latency communication, non-public networks, time-sensitive communication. It means support for time-sensitive networking 5G and also native layer 2 transport so that we don't necessarily need internet protocol but we can directly transmit ethernet frames over a 5G network which again is very important especially for the industrial domain.

Release 17 is currently underway and it will come along with several enhancements of these features. It also has a stronger focus on positioning which is again very important in manufacturing because knowing where things are is a very valuable information and it will be in this new transmission mode called NR RedCap which is somewhere somewhere in between this high-end mobile broadband mode and also this low-end a massive machine type communication and this might be especially suitable for industrial sensors for example and then of course the journey will continue with Release 18 which is still being defined but with a high probability i would say it will more focus on massive iot applications that means tiny little sensors for example which have to be connected using very low energy and low costs and not just the natural next step.

So many things have been done already towards supporting these industrial applications but if you look at factories today there are only very few of them which already make use of 5g and that's because there are still some challenges to be overcome some of them are listed here first of all having the features in the standard is nice but they also have to be implemented in the chipsets and infrastructure components and that still say test takes some time especially if we consider that really 16 is the first release which really has many of the features that make a difference to the industrial domain

Here is a list of the features that can be prioritised for future 5G releases or even for 6G. As Release-17 has just been delayed slightly, quite possible that some of the features expected in 5G may get pushed on to Beyond 5G and even 6G.

Here is the embedded talk

An interview by Dr. Andreas Müller regarding Bosch 5G activities is available here (in German)

Related Posts:

Sunday, 26 January 2020

NTT Docomo's Vision on 5G Evolution and 6G


NTT Docomo released a whitepaper on 5G Evolution and 6G. In a press release they announced:

NTT DOCOMO has released a white paper on the topic of 6G, the sixth-generation mobile communications system that the company aims to launch on a commercial basis by 2030. It incorporates DOCOMO's views in the field of 5G evolution and 6G communications technology, areas that the company has been researching since 2018. The white paper summarizes the related technical concepts and the expected diverse use cases of evolving 5G and new 6G communication technologies, as well as the technology components and performance targets.

Mobile communication systems typically evolve into the next generation over a period of roughly ten years; DOCOMO commenced its research into the commercial launch of 5G in 2010. In 2018, the company conducted successful radio wave propagation experiments at frequencies of up to 150 GHz, levels which are expected to enable the much faster and larger-capacity communications that 6G will require.

DOCOMO will continue to enhance the ultra-high-speed, large-capacity, ultra-reliable, low-latency and massive device-connectivity capabilities of 5G technology. It will continue its research into and development of 5G evolution and 6G technology, aiming to realize technological advances including:

  • the achievement of a combination of advances in connectivity, including ultra-high speed, large capacity and low latency
  • the pioneering of new frequency bands, including terahertz frequencies
  • the expansion of communication coverage in the sky, at sea and in space
  • the provision of ultra-low-energy and ultra-low-cost communications
  • the ensuring of highly reliable communications
  • the capability of massive device-connectivity and sensing

Visitors to DOCOMO Open House 2020 will be able to view conceptual displays incorporating DOCOMO's vision of the evolution of 5G technologies into 6G. The event will take place in the Tokyo Big Sight exhibition complex in Tokyo on January 23 and 24. DOCOMO also plans to hold a panel session entitled "5G Evolution and 6G" on January 24.

Videos from Docomo Open House are embedded below, along with a previous talk by Takehiro Nakamura from 6G Summit.


6G has become a hot topic, especially after China announced back in November that they are working on 6G. We have some interesting tweets on 6G as well.

This one from Stefan Pongratz, Dell'Oro group shows the timeline for 5G, Pre-6G and 6G



This one provides a timeline all the way from Release 99 up till 21



Finally, here is a tweet highlighting the 6G research



Finally, the paper acknowledges the 5G challenges and focus areas for 5G evolution, before focusing on 6G.
The mmWave coverage and mobility needs improvement, while the downlink is able to provide very high data rates, the uplink is struggling to be better than 4G. Also, there are some very extreme requirements for industrial use cases, 5G has yet to prove that it can meet them.

Finally, here is another view from iDate Digiworld comparing 5G vs 6G in terms of performance, spectrum and network.



Related Posts:

Tuesday, 15 October 2019

Summary of #CWTEC 2019 Conference: 5G, Satellites & Magic MIMO

I was involved in helping organise yet another CW TEC conference this year. The topic was quite interesting and we had some brilliant speakers. Some of the excellent presentations were shared too, links below. Here is a very quick summary of the event, linking also to couple of excellent summaries below.

The topic was a bit unusual and it rhymed very well with the attendees which were from many different backgrounds, from 5G, communications, satellites, electronics, T&M companies, etc. Here is the opening video that will show you the motivations behind this



The day started with a breakfast briefing from Cambridge Consultants that looked at how Massive MIMO is the key to unlocking 5G User Experiences. Presentations available here.


Session 1 was titled "What has Massive MIMO ever done for us?". The narrative for the session was as follows:
Clearly the desire for more and more capacity in cellular networks has driven the industry to find more and more novel techniques. The work done over the years and boosted by Tom Marzetta’s article titled “Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas” has set high expectations for this emergent technology, so much so the term Magic MIMO has been coined. However, how significant is it into today’s early 5G rollout and what can we expect over the coming years? Are there still further enhancements we should expect to see?

There were 3 talks as follows:
  • Sync Architectures for 5G NR by Chris Farrow, Technical Manager, Chronos Technology (slides)
  • Three UK’s RAN transformation: Spectrum, RAN architecture strategy, Why? by Dr Erol Hepsaydir, Head of RAN and Devices Strategy and Architecture, Three UK (slides)
  • Active antenna systems in RAN: performance, challenges and evolution by Anvar Tukmanov, Wireless Research Manager, BT (slides)


Session 2 looked at "Non-Terrestrial & Hybrid Networks". The narrative for the session was as follows:
There are different initiatives underway to make satellite and other non-terrestrial networks as part of 5G. In addition, many different mobile operators have demonstrated compelling use-cases with drones, balloons and other aerostats. Other innovative approaches like European Aviation Network uses a hybrid-network using terrestrial network supported by a satellite connection as a backhaul for in-flight Wi-Fi. In addition to latency, what other challenges are stopping mass adoption of Non-terrestrial and Hybrid networks? What about advanced features like slicing, etc.?

There were 3 talks as follows:

  • Opportunities for blending terrestrial and satellite technologies by Dr Jaime Reed, Director, Consulting, Space, Defence and Intelligence, CGI (slides)
  • Non-terrestrial Networks: Standardization in 5G NR by Dr Yinan Qi, Senior 5G Researcher, Samsung R&D Institute UK (slides)
  • Satellites and 5G: A satellite operator’s perspective by Simon Watts, Principal Consultant, Avanti Communications (slides)


Session 3 looked at "5G: A Catalyst for Network Transformation". The narrative was as follows:
5G has set high expectations in the user as well as operator community. While eMBB can be supported with an upgrade of existing 4G infrastructure, URLLC and mMTC may require massive change in the network architecture. Operators have already started the transformation process with backhaul upgrades, new data centers, distributed core and cloud rollouts, etc. How are networks evolving to accommodate these deep changes? What other changes will be required in the network to support the growth until the next new generation arrives?
This session featured 3 talks as well
  • An Introduction to Open RAN Concept by Zahid Ghadialy, Senior Director, Strategic Marketing, Parallel Wireless UK & EMEA (slides)
  • Powering the successful deployment of 5G infrastructure by David George, Vice President of EMEA and APAC, Sitetracker (slides)
  • The 5G transformation: no sweet without sweat by Antonella Faniuolo, Head of Network Strategy, Planning, Digital & Optimisation, Vodafone (slides)


The final session topic was "Getting ready for Beyond-5G Era". The narrative was as follows:
Many technologies like Full duplex, etc. that were originally intended to be part of 5G were not able to make it into the standards. Along with these, what other revolutionary changes are needed to make Beyond-5G technologies not only fulfil the vision, ambition and use-cases that were originally envisaged for 5G but to take it a step further and make it a game changer.
This session featured 3 talks as well, as follows:
  • Thinking Beyond 5G: Projects and Initiatives by Alan Carlton, Vice President, InterDigital Europe (slides not available)
  • 5G Evolution: Progressive enhancement and new features for new markets by Matthew Baker, Head of Radio Physical Layer and Coexistence Standardization, Nokia (slides)
  • Why 6G’s design goals need far more than just radio & core innovation by Dean Bubley, Analyst & Futurist, Disruptive Analysis (slides not available)
And my personal highlight was that I launched World's first coloured 5G tie


Hopefully you found the presentations shared as useful. Please also read the summaries of CWTEC provided below.


Related Articles: