Showing posts with label Infrastructure Vendor. Show all posts
Showing posts with label Infrastructure Vendor. Show all posts

Monday 15 July 2024

Disaggregation of 5G Core (5GC) Network

When talking about mobile networks, we generally talk about disaggregation and virtualization of the RAN rather than the core. The 5G Core Network was also designed with disaggregation in mind, supporting service-based architecture (SBA) where Network Functions (NFs) are modular and can be deployed as microservices.

The 5G Core (5GC) is the foundation for Standalone 5G (5G SA) networks where the end users can experience the power of 'real' 5G. A newly published forecast report by Dell’Oro Group pointed out that the Mobile Core Network (MCN) market 5-year cumulative revenue forecast is expected to decline 10 percent (2024-2028). The reduction in the forecast is caused by severe economic headwinds, primarily the high inflation rates, and the slow adoption of 5G SA networks by Mobile Network Operators (MNOs).

While most people think of 5G Core Network as a single entity, in reality it contains many different network functions that can be supplied by different vendors. One way to select the vendors is based on grouping of NFs based on functionality as shown in the picture above. Here we have categorised them into User Plane & Mobility, Subscriber Data Management, Routing & Selection, and Policy & Charging. 

An example of of this disaggregation can be seen in the image above where Telenor worked with partners to build a truly multi-vendor, 5G core environment running on a vendor-neutral platform. According to their announcement

“The main component of 5G-SA is the 5G mobile core, the ‘brain’ of the 5G system. Unfortunately, most 5G core deployments are still single vendor dependent, with strong dependencies on that vendor’s underlying proprietary architecture. This single-vendor dependency can be a killer for innovation. It restricts open collaboration from the broader 5G ecosystem of companies developing new technology, use cases, and services that the market expects,” explains Patrick Waldemar, Vice President and Head of Technology in Telenor Research.

As an industry first, Telenor, along with partners, have established to build a truly multi-vendor, 5G core environment running on a vendor-neutral platform. The multi-vendor environment consists of best of breed Network Functions from Oracle, Casa-Systems, Enea and Kaloom, all running on Red Hat Openshift, the industry’s leading enterprise Kubernetes platform.

“To protect the 5G infrastructure from cyber threats, we deployed Palo Alto Networks Prisma Cloud Compute, and their Next Generation Firewall is also securing Internet connectivity for mobile devices. Red Hat Ansible Automation Platform is being used as a scalable automation system, while Emblasoft is providing automated network testing capabilities. The 5G New Radio (NR) is from Huawei,” says Waldemar.

In their whitepaper on "How to build the best 5G core", Oracle does a very similar grouping of the NFs like the way I have shown at the top and highlights what they supply and which partner NFs they use.

When the mobile operator Orange announced the selection of suppliers for their 5G SA networks in Europe, the press release said the following:

Orange has chosen the following industrial partners:

  • Ericsson’s 5G SA core network for Belgium, Spain, Luxembourg and Poland
  • Nokia’s 5G SA core network for France and Slovakia 
  • Nokia’s Subscriber Data Management for all countries
  • Oracle Communications for 5G core signaling and routing in all countries

I was unable to find out exactly which NFs would be supplied by which vendor but you get an idea.

Finally, I have depicted four scenarios for deployment and which Cloud Native Environment (CNE) would be used. In a single vendor core, the CNE, even though from a third party, could belong to either the vendor themselves (scenario 1) or may be suggested by the operator (scenario 2). 

In case of a multi-vendor deployment, it is very likely that each vendor would use their own CNE (scenario 4) rather than one suggested by the operator or belonging to the lead vendor (scenario 3).

If you have been involved in trial/test/deployment of a multi-vendor 5G Core, would love to hear your feedback on that as well as this post.

Related Posts

Thursday 6 April 2023

ETSI's Summit on Sustainability: ICT Standards for a Greener World

The ETSI Summit on Sustainability - How ICT developments and standards can enable sustainability and have a positive impact on society, took place on 30 March 2023 and focused on the key role of the ICT industry and related standardization activities to support Green initiatives. The event brought a large and global audience of over 220 stakeholders including operators, solution providers, policy makers and standards bodies or fora working on the topic.

A multitude of presentations including two interactive panel sessions, rhythmed the day and succeeded to make it a highly interactive Summit, pointing out challenges and how ICT can be both the problem and the solution.

The opening session examined the sustainability challenges and global green initiatives from numerous global standards bodies and fora. One of the suggested actions was to adopt ESG (Environmental Social Governance) goals as an integral part of the company’s objectives. Another highlight from the session was the need for standards work on the measuring and reporting of “avoided emissions,” that is being covered by ongoing work in ETSI. Feedback from the audience pointed out that it would be beneficial to further investigate the balance of ICT deployments vs real needs. Do we really need to endlessly deploy new technologies, when exiting ones serve the need?

The following are presentations from the welcome address and session 1:

The second session focused on the role of ICT in sustainability and was animated by two panels. The first one addressed the operators’ objectives and their plans for sustainability. The second one dealt with various initiatives being taken by solutions providers to meet the needs expressed by the operators and society as a whole. Suggested actions emerging from the debate included putting sustainability criteria in the procurement phase towards the vendors and enhance collaboration between operators, to share their common requirements and provide them to the supply chain ecosystem. In an animated exchange between the Panellists and the audience it was highlighted that there is an urgent need to reduce energy consumption, extend the lifecycles of ICT equipment and systematically recycle and repurpose in order to reduce ICT waste.

The following are presentations from session 2:

  • Session 02 - The Role of ICT in Sustainability: The session comprises two interactive panel sessions examining 1) Operators objectives and plans for Sustainability and 2) several initiatives being taken by solutions providers to meet those objectives. Session Chaired by David Boswarthick, ETSI
    • Operators Panel Moderated by Anita Dohler, NGMN Alliance e.V.: The purpose of this panel is to examine what are the sustainability plans, challenges & priorities for Operators
      • Saima Ansari, Deutsche Telekom
      • P. Balaji, Vodafone Idea
      • Marc Grant, AT&T
      • Luca Pesando, TIM
    • Solution Providers Panel Moderated by Joe Barrett, GSA, Global Mobile Suppliers Association - The purpose is to examine what the current solutions and remaining challenges on Sustainability are.

The afternoon opened with an  overview of ETSI, 3GPP and oneM2M activities supporting technologies for sustainability. One of the presentations highlighted that ICT should initially focus its own environmental impacts and consider digital sobriety as it is recognized that the cleanest energy is the one that is not consumed.

The following are presentations from session 3:

The summit concluded with a dynamic exchange around what more telecoms can do to move forward in the right direction. ICT and specifically data centres create a significant carbon footprint, and there was a call to use the ISO Net Zero guidelines in order to develop sustainable strategies. The industry should adopt an eco-design (sustainability by design) approach and seek to have products that are energy efficient, with longer life cycles, recyclable and repairable.

The following are presentations from session 4:

As a conclusion it was agreed that ICT is part of the sustainability problem and must seek to reduce its own emissions, whilst at the same time ICT is certainly part of the solution and should be applied to other domains in order to help them reach their own sustainability goals. As a first step, making ICT more sustainable should be the #01 priority for the industry today and ETSI groups TC EE (environmental engineering), TC ATTM (access, terminal and multiplexing) and ISG OEU (operational energy efficiency for users) are currently providing the standards to enable this transition to greener digital technologies.

Event Wrap-Up / Conclusions is available here.

Should you wish to learn more about the summit, all of the presentations including the conclusion slides are available here.

Related Posts

Thursday 10 August 2017

Mobile can help with United Nations SDGs, only if prices go down

I came across this interesting article in WSJ, courtesy of the Benedict Evans newsletter, which discusses how Indians are using their smartphones even more and consuming far more data than they previously did. Due to low incomes, spending money on mobile top-up is to the detriment of other sectors. To quote the article:
“There was a time when kids would come here and blow their pocket money on chips and chocolate,” said Anup Kapoor, who runs a mom-and-pop grocery shop in New Delhi. These days, “they spend every last rupee on a data recharge instead.”

United Nations have created 17 very ambitious Sustainable Development Goals (SDGs) that universally apply to all, countries will mobilize efforts to end all forms of poverty, fight inequalities and tackle climate change, while ensuring that no one is left behind.
The SDGs, also known as Global Goals, build on the success of the Millennium Development Goals (MDGs) and aim to go further to end all forms of poverty. The new Goals are unique in that they call for action by all countries, poor, rich and middle-income to promote prosperity while protecting the planet. They recognize that ending poverty must go hand-in-hand with strategies that build economic growth and addresses a range of social needs including education, health, social protection, and job opportunities, while tackling climate change and environmental protection.
I have talked about Rural connectivity on this blog and a lot more on small cells blog. In fact the heart touching end user story from Rural England was shared multiple times on different platforms. GSMA has done a good amount of work with the rural communities with their mobile for development team and have some interesting videos showing positive impacts of bringing connectivity to rural communities in Tanzania (see here and here).

While you will always hear about the challenges in bringing connectivity to these rural communities, all technological challenges can be solved. There are many highly ambitious projects using balloons, drones, creating droneways, Helikites, Satellite backhaul, drone based backhaul, mmWave backhaul, etc. The real problem to solve here are the costs (spectrum, infrastructure, etc.) and the end-user pricing.

Coming back to the first story of this post about India, when given an option about selecting mobile data or shampoo, people will probably choose mobile data. What about mobile data vs food? While there are some innovative young companies that can help bring the costs down, there is still a big hurdle to leap in terms of convincing the operators mindsets, bureaucracy, etc.

To help explain my point lets look at an excerpt from this article in Wired:
It’s the kind of problem that Vanu Bose, the founder of the small cell network provider CoverageCo, has been trying to solve with a new, ultra-energy-efficient mobile technology. Bose chose two places to pilot this tech: Vermont and Rwanda. “We picked these two locations because we knew they would be challenging in terrain and population density,” he says. “What we didn’t expect was that many of the problems were the same in Rwanda and Vermont—and in fact the rollout has been much easier in Africa.
The good news is that things are changing. Parallel Wireless (see disclosure at the bottom) is one such company trying to simplify network deployment and at the same time bring the costs down. In a recent deployment with Ice Wireless in Canada, this was one of the benefit to the operator. To quote from MobileSyrup:
A radio access network is one of the key components in the architecture of any wireless network. RANs sit between consumer-facing devices like smartphones and computers and the core network, helping connect those devices to the larger network.  
Essentially where the likes of Nokia and Huawei ask clients to buy an expensive hardware component for their RAN needs, Parallel Wireless offers allows companies like Ice Wireless to use off-the-shelf computer and server components to emulate a RAN. The company also sells wireless base stations like the two pictured above that are smaller than the average cell tower one sees in cities and less remote parts of the country.  
Besides reducing the overall price of a network deployment, Parallel’s components present several other advantages for a company like Ice Wireless.  
For instance, small base stations make it easier for the company to build redundancies into its network, something that’s especially important when a single arctic snowstorm can knock out wireless service for thousands of people.
These kind of benefits allow operators to pass on the cost reduction thereby allowing the price reduction for end users. In case of Ice Wireless, they have already got rid of roaming charges and have started offering unlimited data plans for the communities in Canada's North.

Finally, to quote David Nabarro, Special Adviser of the United Nations Secretary-General on the 2030 Agenda for Sustainable Development from the GSMA 2016 Mobile Industry Impact Report: Sustainable Development Goals:
Achieving the SDGs demands new technologies, innovations, and data collection that can integrate and complement traditional statistics. A driving force behind this data revolution is mobile technology. 
Mobile phone technology has already transformed societies around the globe, even the poorest countries and communities. It is helping to empower women, create jobs, spur financial independence, improve education, boost agriculture production, and promote better health. Mobile phones have enabled communities to monitor elections, hold governments accountable, and save lives in natural disasters. 
As we focus on implementing the Sustainable Development Goals, the mobile industry has a critical role in working with governments and the international community to expand connectivity, to lower barriers to access, and to ensure that tools and applications are developed with vulnerable communities in mind. 

With 5G just round the corner, I hope that the operators and vendors will be able to get their costs down, resulting in lower end-user prices. That would be a win-win for everyone.

*Full Disclosure: I work for Parallel Wireless as a Senior Director, Strategic Marketing. This blog is maintained in my personal capacity and expresses my own views, not the views of my employer or anyone else. Anyone who knows me well would know this.

Wednesday 12 September 2012

UK: Spectrum, Operators, Vendors and LTE

So LTE (or '4G') is about to be launched in the UK as announced yesterday. Its going to be branded as 4GEE.

Here is a summary of the Spectrum in the UK that will be used for LTE and would be auctioned by Ofcom.


Here is the current allocation of Spectrum in the UK

The above pics are from a presentation by Ofcom in LTE World Summit 2012 in Barcelona, available here.



The last table is from an Ofcom document here. Its very interesting read. For example I didnt know that The L-band was the first major part of Ofcom spectrum awards programme relevant to mobile services. It consists of 40MHz between 1452MHz and 1492MHz. The auction took place in May 2008, in which Qualcomm won the entirety of the available spectrum.

Here is the summary of the operators working on LTE:


Everything Everywhere (EE = Orange + T-Mobile) - They are calling their '4G' service as EE, covering up to 70% of the UK by the end of 2013. Network kit provided by Huawei.

Three - Samsung will provide the Radio Access Network, and the core infrastructure, for Three's LTE (4G) network. That includes the base stations, and radio core. 3 UK has agreed to purchase 2 x 15 MHz of 1800 MHz spectrum from Everything everywhere, and plans commercial launch of LTE service in 2013.

Telefonica (O2) trial network - Equipment supplied by Nokia Siemens Networks (NSN) for both the Radio and Core network elements. Backhaul for the 4G trial network has been provided using Microwave Radio Equipment from Cambridge Broadband Networks Limited, NEC and Nokia Siemens Networks.

Updated 13/09/12 - 11:25

UK Broadband rolled out the first commercial TD-LTE network in London back in February (available to customers since May 2012). The equipment is provided by Huawei. They have 40MHz in Band 42 (3.5GHz) and 84MHz in band 43 (3.6GHz).

Vodafone - No news.


Anything else I missed?

Wednesday 14 December 2011

ETSI INT IMS/EPC Interoperability Standardisation: Motivation, Roadmap & First Results

INT = IMS Network Testing. ETSI INT website here. More details below the presentation:

This was presented by Giulio Maggiore, Telecom Italia, ETSI TC INT Chairman in the 2nd FOKUS FUSECO Forum 2011, Berlin 17-18 Nov. 2011

From the ETSI leaflet (note that this is quite old information but still on the ETSI website here):

IMS interoperability is a key issue for boosting IMS (IP Multimedia Subsystem) roll-out and more specifically network interconnection between operators. Only through thorough testing in practical scenarios can operators ensure operational excellence in a multi-vendor and multi-provider environment.


IMS comprises a set of specifications designed to enable network operators to implement IP-based networks that can carry services for both fixed and mobile customers simultaneously.


IMS was developed originally in the mobile world (specifically in the specifications created by the 3rd Generation Partnership Project, 3GPP), and was adopted for fixed networks by ETSI’s TISPAN Technical Committee (Telecoms & Internet Converged Services & Protocols for Advanced Networks).


However this promise of advanced communications over the next generation network will only be delivered if those same networks can interconnect.


ETSI’s Technical Committee INT: IMS Network Testing


ETSI is bridging the existing gap between 3GPP IMS Core Network standards and the initial industry IMS implementations through the organization of IMS interoperability events in connection with ETSI’s Centre for Testing & Interoperability (CTI) and Plugtests™ interoperability testing service.


Our Technical Committee for IMS Network Testing (TC INT) is actively establishing close contact with a number of industry fora and organizations dealing with IMS interoperability, including 3GPP, GSMA, MSF (Multi Service Forum), IMS Forum and the ITU-T. TC INT develops IMS test specification according to conformance, network integration and interoperability testing methodologies. Other ongoing work includes development of tests for Supplementary Services based on regulatory requirements and IMS tests with legacy networks (e.g. SIP-I).


ETSI has already held two IMS interoperability events. The first examined interconnection aspects of 3GPP IMS Release 6, including such issues as basic call on the Mw interface. The second event had a wider scope that included the testing of 3GPP IMS Release 7 interworking, roaming, border control, and integration of application servers executing selected Multimedia Telephony supplementary services.


Future ETSI activities and events will go even deeper towards bridging 3GPP IMS standards and industry implementations. These will include the organization of further IMS interoperability events designed to boost the roll-out and take-off of IMS services and operators’ network interconnections.

Tuesday 5 October 2010

3GPP Green activities / Energy Saving initiatives


3GPP has been working on Energy saving initiatives for Release-10 and Release-11. Here is a very quick summary of some of these items.

Telecommunication management; Study on Energy Savings Management (ESM)

Most mobile network operators aim at reducing their greenhouse emissions, by several means such as limiting their networks' energy consumption.

In new generation Radio Access Networks such as LTE, Energy Savings Management function takes place especially when mobile network operators want e.g. to reduce Tx power, switch off/on cell, etc. based on measurements made in the network having shown that there is no need to maintain active the full set of NE capabilities.

By initiating this Work Item about Energy Savings Management, 3GPP hopes to contribute to the protection of our environment and the environment of future generations.

The objective of this technical work is to study automated energy savings management features. Usage of existing IRPs is expected as much as possible, e.g. Configuration Management IRP, etc. However, this technical work may identify the need for defining a new IRP.

The following operations may be considered in this study item (but not necessarily limited to):
• Retrieval of energy consumption measurements
• Retrieval of traffic load measurements
• Adjust Network Resources capabilities


OAM aspects of Energy Saving in Radio Networks

There are strong requirements from operators on the management and monitoring of energy saving functions and the evaluation of its impact on the network and service quality. Therefore an efficient and standardized Management of Energy Saving functionality is needed. Coordination with other functionalities like load balancing and optimization functions is also required.

The objectives of this work item are:
• Define Energy Savings Management OAM requirements and solutions for the following use cases,
• eNodeB Overlaid
• Carrier restricted
• Capacity Limited Network
• Define OAM requirements and solutions for coordination of ESM with other functions like
• Self-Optimization
• Self Healing
• Traditional configuration management
• Fault Management
• Select existing measurements which can be used for assessing the impact and effect of Energy Saving actions corresponding to above Energy Saving use cases.
• Define new measurements which are required for assessing the impact and effect of Energy Saving actions, including measurements of the energy consumption corresponding to above Energy Saving use cases.


Study on impacts on UE-Core Network signalling from Energy Saving

Energy Saving (ES) mechanisms are becoming an integral part of radio networks, and consequently, of mobile networks. Strong requirements from operators (for reasons of cost and environmental image) and indirectly from authorities (for the sake of meeting overall international and national targets) have been formulated. With the expected masses of mobile network radio equipment as commodities, in the form of Home NB/eNBs, this aspect becomes even more crucial.

It is necessary to ensure that ES does not lead to service degradation or inefficiencies in the network. In particular:
• the activation status of radio stations (on/off) introduces a new scale of dynamicity for the UE and network;
• mass effects in signalling potentially endanger the network stability and need to be handled properly.

It is unclear whether and how currently defined procedures are able to cope with, and eventually can be optimized for, ES conditions; thus a systematic study is needed.

The study aims, within the defined CT1 work areas, at:
• analysing UE idle mode procedures and UE-Core Network signalling resulting from frequent switch on/off of radio equipment in all 3GPP accesses, including home cell deployment and I-WLAN;
• performing a corresponding analysis for connected mode UEs;
• analysing similar impacts from activation status of non-3GPP access networks;
• documenting limitations, weaknesses and inefficiencies in these procedures, with emphasis on mass effects in the UE-Core Network signalling;
• studying potential optimizations and enhancements to these procedures;

The study shall also evaluate and give recommendations on potential enhancements to 3GPP specifications (whether and where they are seen necessary).


Study on Solutions for Energy Saving within UTRA Node B

Due to the need to reduce energy consumption within operators’ networks, and considering the large amount of UMTS network equipment deployed in the field around the world, the standardisation of methods to save energy in UMTS Node Bs is seen as an important area of study for 3GPP.There has not been a large amount of focus on energy-saving in UMTS networks so far in 3GPP, although some solutions have been agreed in Release 9. Therefore it is proposed to start an initial study phase to identify solutions and perform any initial evaluation, such that a subset of these proposals can be used as the basis for further investigation of their feasibility.

The objective is to do an initial study to identify potential solutions to enable energy saving within UMTS Node-Bs, and do light initial evaluation of the proposed solutions, with the aim that a subset of them can be taken forward for further investigation as part of a more focused study in 3GPP.

The solutions identified in this study item should consider the following aspects:
• Impacts on the time for legacy and new UEs to gain access to service from the Node B
• Impacts on legacy and new terminals (e.g. power consumption, mobility)

Some initial indication of these aspects in relation to the proposed solutions should be provided.


Study on Network Energy Saving for E-UTRAN

The power efficiency in the infrastructure and terminal should be an essential part of the cost-related requirements in LTE-A. There is a strong need to investigate possible network energy saving mechanisms to reduce CO2 emission and OPEX of operators.

Although some solutions have been proposed and part of them have been agreed in Release-9, there has not been a large amount of attention on energy saving for E-UTRAN so far. Many potential solutions are not fully shown and discussed yet. Therefore, it is proposed to start an initial study phase to identify solutions, evaluate their gains and impacts on specifications.

The following use cases will be considered in this study item:
• Intra-eNB energy saving
• Inter-eNB energy saving
• Inter-RAT energy saving

Intra-eNB energy saving, in EUTRAN network, a single cell can operate in energy saving mode when the resource utilization is sufficiently low. In this case, the reduction of energy consumption will be mainly based on traffic monitoring with regard to QoS and coverage assurance.

A lot of work on Inter-eNB energy saving has already been done for both LTE and UTRA in Rel-9. This Study Item will investigate additional aspects (if any) on top of what was already agreed for R9.

Inter-RAT energy saving, in this use case, legacy networks, i.e. GERAN and UTRAN, provide radio coverage together with E-UTRAN. For example E-UTRAN Cell A is totally covered by UTRAN Cell B. Cell B is deployed to provide basic coverage of the voice or medium/low-speed data services in the area, while Cell A enhances the capability of the area to support high-speed data services. Then the energy saving procedure can be enabled based on the interaction of E-UTRAN and UTRAN system.

The objective of this study item is to identify potential solutions for energy saving in E-UTRAN and perform initial evaluation of the proposed solutions, so that a subset of them can be used as the basis for further investigation and standardization.

Energy saving solutions identified in this study item should be justified by valid scenario(s), and based on cell/network load situation. Impacts on legacy and new terminals when introducing an energy saving solution should be carefully considered. The scope of the study item shall be as follows:
• User accessibility should be guaranteed when a cell transfers to energy saving mode
• Backward compatibility shall be ensured and the ability to provide energy saving for Rel-10 network deployment that serves a number of legacy UEs should be considered
• Solutions shall not impact the Uu physical layer
• The solutions should not impact negatively the UE power consumption

RAN2 will focus on the Intra-eNB energy saving, while RAN3 will work on Inter-RAT energy saving and potential additional Inter-eNB energy saving technology.


Study on Solutions for GSM/EDGE BTS Energy Saving

There has not been a large amount of focus on energy-saving in GSM/EDGE networks so far in 3GPP, although some solutions have been agreed in previous Releases, notably MCBTS. Therefore it is proposed to start an initial study phase to identify solutions and perform any initial evaluation, such that a subset of these proposals can be used as the basis for further investigation of their feasibility.

The objective is to study potential solutions to enable energy saving within the BTS (including MCBTS and MSR), and evaluate each proposed solutions in detail. These potential solutions shall focus on the following specific aspects
• Reduction of Power on the BCCH carrier (potentially enabling dynamic adjustment of BCCH power)
• Reduction of power on DL common control channels
• Reduction of power on DL channels in dedicated mode, DTM and packet transfer mode
• Deactivation of cells (e.g. Cell Power Down and Cell DTX like concepts as discussed in RAN)
• Deactivation of other RATs in areas with multi-RAT deployments, for example, where the mobile station could assist the network to suspend/minimise specific in-use RATs at specific times of day
• And any other radio interface impacted power reduction solutions.

The solutions identified in this study item shall also consider the following aspects:
• Impacts on the time for legacy and new mobile stations to gain access to service from the BTS
• Impacts on legacy and new mobile stations to keep the ongoing service (without increasing drop rate)
• Impacts on legacy and new mobile stations implementation and power consumption, e.g. due to reduction in DL power, cell (re-)selection performance, handover performance, etc.
• Impacts on UL/DL coverage balance, especially to CS voice

Solutions shall be considered for both BTS energy saving non-supporting and supporting mobile stations (i.e. solutions that are non-backwards compatible towards legacy mobile stations shall be out of the scope of this study).

Wednesday 2 June 2010

ZTE shows off its green credentials

ZTE has long been focussing on green(er) network and recycling. They launched their new generation 'green base stations back in 2006. They have also been recently cited for their energy saving technology. They also have a solar powered phone which is unfortunately not available in UK. Their Omni-RAN network can help reduce the OPEX by two thirds. Their focus has not only been on Mobile phones and networks but on the fixed lines as well.

So it was not at all surprising to hear Xiaodong Zhu, CTO of ZTE European marketing in the LTE World Summit talking about the end to end green networks. Green technology is not only helpful to for the 'green credentials' but it can also help reduce Opex which can help recover any additional investments (if any).

More manufacturers will hopefully follow the lead.

Thursday 6 May 2010

Avren's Next Generation Networks & Basestations Conference Summary


Interesting summary on Next Generation Networks & Base stations conference is available on Think Femtocell and Avren's website. Here are some interesting bits:

  • Operating a mobile network contributes around 30% to the annual costs of each operator, and there are many different ways to save money. Where before, coverage was a real differentiator between networks, today it’s much more about service.
  • There are enormous savings to be made by sharing cellsites between operators – T-mobile and 3 in the UK have combined their cellsites and reduced the total number from 55,000 to 31,000 in the last two years. The number is now slowly expanding again to fill in coverage holes and add capacity. The recently announced merger between Orange UK and T-Mobile means a further round of site consolidation over the coming years. Meanwhile, their UK competitors O2 Telefonica and Vodafone have also made a site sharing agreement, meaning that there will be just two competing sets of cellsites across the country.
  • Some speakers questioned the sense of offering unlimited flat rate data plans – the industry sentiment is that these can’t last. The highest traffic users are consuming disproportionate amounts of network resources – several examples were given of 2 or 3% of users taking up over 40% of available capacity.
  • Kenny Graham, Vodafone R&D Group, has been a keen champion of femtocells in public areas for some time – coining the term metro-femto. He believes that the most difficult challenges for femtocell deployment have already been overcome. He classified femtocells into four groups and clearly believes all have a place in network deployment:
    • Domestic
    • Enterprise
    • Public service areas (indoor hotspots)
    • Metro Femto (Outdoor hotspot )
  • Installing more antenna and equipment at existing cellsites, such as required for LTE or MIMO technologies, is constrained by physical and planning limits of cellsites. Metro femto can be deployed unobstrusively in the urban areas with peak traffic demand, providing high levels of capacity.

Friday 19 March 2010

IPv6 transition in cellular networks gaining momentum


IPv6 is good and we all know that. I has been talked for years but practically it hasnt found much success. Verizon made some noise last year but I am not sure of the conclusion.

Just to recap, IPv4 was introduced back in 1982 and IPv6 work started since 1995. IPV4 uses 32 bit (4 bytes) addresses while IPV6 uses 128 bit (16 bytes) addresses. Theoretically we would now have 2^96 times more addresses than in case of IPv4.

Most of network infrastructure manufacturers have their equipment ready for IPv6 as some of the handset manufacturers. The main driver being that someday soon IPv4 addresses would be exhausted (Internet Assigned Numbers Authority will run out of IPv4 addresses in September of 2011, based on current projections) and their equipment would be ready to provide IPv6 addresses without any problems.

Recently, IETF-3GPP Workshop on IPv6 in cellular networks was held in San Francisco, USA on 1 - 2 March, 2010. There are lots of interesting presentations available here for people who want to dig a bit deeper. The concluding report that summarises the presentations and discussions are available here. Here is a brief summary from one of the reports (with links at the end):

Summary
  • Scenarios for IPv6 migration were discussed based on 3GPP Technical Report 23.975
    • The discussion focused on validating the scenarios
  • General IPv6 transition and deployment guidelines were outlined based on input from IETF
  • Solutions for migration and v4-v6 co-existence were presented
    • Solutions included existing RFCs and working group items but also proposals in Internet Drafts
    • Gap analysis wrt transition scenarios was discussed

Conclusions on scenarios
  • Scenarios 1 and 3 based on dual-stack and IPv6-only deployments were generally recognized as valid
  • Scenario 2 was also recognized as valid, addressing two separate problems related to insufficient RFC1918 space and subscriber identification
  • Scenario 4 did not receive wide support from the workshop, largely because it was felt that it addressed a problem already solved by other scenarios
  • Variants of some of these scenarios were brought up during the discussions, conclusions were not reached on these
    • These may need further discussion

Conclusions on solutions
  • It was recognized that necessary support in the network and devices is already available to “switch on” IPv6 in 3GPP networks
    • Some networks reported running dual stack
    • Some networks reported running IPv6-only now
  • Solutions enhancing existing mechanisms for dual stack deployments and new solutions for IPv6-only deployments drew wide support
    • Gateway-initiated Dual Stack Lite
    • Stateful IPv4/IPv6 translation
Next steps: 3GPP
  • IETF and 3GPP are expected to focus further work based on the conclusions of the workshop
    • Note that the workshop itself does not have the mandate to make formal decisions
  • 3GPP is expected to identify possible normative specification impacts, if any, of the preferred solutions
  • A need was identified to provide more operational guidelines about IPv6 deployment to 3GPP operators
    • The best location for these guidelines is FFS (e.g. 3GPP TR 23.975, GSMA, etc)
Next steps: IETF
  • IETF and 3GPP are expected to focus further work based on the conclusions of the workshop
    • Note that the workshop itself does not have the mandate to make formal decisions
  • IETF is encouraged to continue working on stateless and stateful IPv4/IPv6 translation mechanisms
    • These mechanisms are being worked on in IETF BEHAVE group
  • IETF is also encouraged to consider new solutions that are not yet working group items
    • Gateway Initiated DS Lite
    • Per-interface NAT44 bindings addressing IPv4 address shortage
  • Note that the workshop has not set any timelines

Further reading:

Friday 6 November 2009

'One Voice Initiative': IMS Based approach adopted


AT&T*, Orange, Telefonica, TeliaSonera, Verizon, Vodafone, Alcatel-Lucent, Ericsson, Nokia Siemens Networks, Nokia, Samsung Electronics Co. Ltd., and Sony Ericsson have defined the preferred way to ensure the smooth introduction and delivery of voice and SMS services on Long Term Evolution (LTE) networks worldwide.

The above telecommunications industry leaders have jointly developed a technical profile for LTE voice and SMS services, also known as the One Voice initiative. The profile defines an optimal set of existing 3GPP-specified functionalities that all industry stakeholders, including network vendors, service providers and handset manufacturers, can use to offer compatible LTE voice solutions.

Open collaborative discussions have concluded that the IP Multimedia Subsystem (IMS) based solution, as defined by 3GPP, is the most applicable approach to meeting the consumers’ expectations for service quality, reliability and availability when moving from existing circuit switched telephony services to IP-based LTE services. This approach will also open the path to service convergence, as IMS is able to simultaneously serve broadband wireline and LTE wireless networks.

By following the jointly defined technical profile, the industry can help guarantee international roaming and interoperability for LTE voice and SMS services, ensuring subscribers continuity of these vital services – all while offering service providers a smooth and well-defined path to LTE.

The objective of the initiative is to ensure the widest possible ecosystem for LTE and to avoid fragmentation of technical solutions. LTE will, with this initiative, not only serve as a broadband access for increasing data traffic, but also for continuing voice and SMS services. Network operators will be able to more quickly develop their customized LTE ecosystem in collaboration with both network equipment vendors and device manufacturers. In addition, the reassurance of global interoperability in an LTE voice landscape and the ability to offer both broadband access and telephony services over LTE will create strong foundations for future business.

The profile for the initial solution has been finalized and is available through the companies associated with this press release. The objective is to hand over the profile and continuing work to existing industry forums.

To view the technical profile, please visit http://news.vzw.com/OneVoiceProfile.pdf.

From Rethink Wireless:

One of the trickiest issues for early LTE deployers is uncertainty over how voice and SMS services - still the key cash cows for most operators - can be supported. Eventually, all these services will be carried over IP, using the IMS (IP Multimedia Subsystem) standard, but only a few carriers, like Verizon Wireless, are looking to deploy all-IP from day one. However, there is pressure to accelerate the process and reduce the cost and risk of LTE/IMS for carriers, and this is the objective of the new One Voice initiative.

Some operators believe they will initially deploy LTE as a data-only network, but most want to support voice and, even more importantly, SMS (which underpins many cellco processes and customer communications). Faced with the risk that large players might delay their plans until they have a strong route to voice, One Voice has defined a profile based on existing 3GPP standards for IMS-enabled voice.

The work has initially emerged from Nokia Siemens, which was previously trying to get wide industry support for its own interim voice over LTE solution, VoLTE (which only worked with its own softswitches). The company's convergent core marketing manager, Sandro Tavares, said One Voice should ease fears over how voice will be deployed by resolving roaming and interworking issues at an early stage. It is not creating a new standard, but aims to ensure compatibility between networks and devices by creating a common profile, which defines an optimal set of existing 3GPP functionalities for use by vendors and operators. "There is no new standard," added Tavares. "It's just using what is there already."

NSN is already producing LTE equipment that complies with the new profile, and so has a headstart in offering an important feature to early triallists - which could boost its so-far low profile in LTE tests, dominated by Ericsson and Huawei. However, the vendor will now hand its work to the 3GPP and GSM Association so that other companies can work on and adopt the profile. So far, it has signed support from most of the key operators that tend to wield influence over cellular standards, apart from DoCoMo and China Mobile - AT&T, Orange, Telefonica, TeliaSonera, Verizon Wireless and Vodafone are there, plus a strong line-up of vendors. These are Alcatel-Lucent and Ericsson on the infrastructure side and Nokia, Samsung and Sony Ericsson for devices. The group needs to get the Chinese vendors on board to complete the set, as well as Motorola.

The supporters of the initiative say this is their "preferred path" for voice over LTE, though for carriers that do not want to move to IMS at an early stage, there are other options available - namely open web-based voice; the stopgap solution of Circuit Switch Fallback (also enshrined in 3GPP standards), where the handset is forced off the LTE network onto 2G or 3G for voice calls; and variations on the theme of using circuit switch over packet techniques. There are two main approaches to this - MSC Voice, which is tied to a switch, with NSN's VoLTE the most prominent example; and VoLGA, which is architecture independent, and uses the UMA/GAN (Unlicensed Mobile Access/Generic Access Network) protocol. This Kineto originated technology was originally adopted for Wi-Fi/3G fixed-mobile convergence and as such did find its way into the 3GPP. VoLGA does not require modifications in the LTE RAN or core, or the MSC, but uses a separate gateway controller.

Some of the One Voice supporters are already involved in VoLGA (though its major carrier T-Mobile has not yet joined the new group). Steve Shaw, who heads up corporate marketing for Kineto and VoLGA, believes that IMS is the way that, ultimately, voice will be handled, but it has a long way to go before it is usable, and so there will still be a role for several years for approaches like VoLGA.

T-Mobile will I assume soon have to follow suit and fall in line otherwise they may have limited devices that are available and there will also be inter-operability issues.

Last week I attended a presentation by IET Berkshire on Voice Services over LTE, presented by Iain Sharp from Nortel. Even though this announcement came yesterday, Iain did say that IMS is the way forward for Voice over LTE. If interested you can see the presentation here.


Sunday 1 February 2009

Mobile Backhaul Networks and their Load

These are self explanatory slides on Mobile Network Backhaul presented by Professor Steve Ferguson, Head of Market Strategy, Product Area Broadband Networks, Ericsson in the LTE World Summit last year.



Tuesday 23 December 2008

Nokia may be entering laptop market

With the telecoms market so tight every company especially the giants like Nokia are looking at the alternatives for their revenues to go further north. Some time ago there was a rumour that the Nokia might enter into the laptop market and hence widen its area of business. Although at that time this was categorically denied by Nokia, rumours the Finnish mobile giant may be planning to enter the laptop computer market have resurfaced. On this occasion it was through the medium of a research note from a Union Bank of Switzerland (UBS) analyst. For a report that could just be speculative it contained a remarkable amount of detail suggesting as it did that the Nokia device would be a 9 to 10 inch notebook/tablet computer with touchpad, NFC and Linux OS.

In its early days Nokia did produce computers but by the mid-1980s it had exited the business, merging its PC division with Ericsson Information Systems.

In the past of couple of years we have seen that companies like HP and Apple have moved into the smartphone business and hence taken a small share of the market. This has really affected likes of Nokia, Ericsson, Samsung and other vendors. Taking a leaf out of computer manufacturers such as HP and Apple who has moved into smartphone business, Nokia thinks that perhaps it is its time now to mount a counterattack.

Sunday 14 December 2008

Still something to cheer up for wireless sector


In the last year as everybody knows because of the lack of money in the market situation has turned towards grimness. In these difficult times everybody tend to take measures whether right or wrong we can’t say for sure. One thing though which is sure is that everybody tries to cut cost in these difficult circumstances and hence results in the some unpopular decisions. Telecomm companies are no different than others and hence quite rightly taken stern steps towards cutting costs. There is some nervousness especially among the investors which gives an impression that spending in the wireless sector will be hot has as well.

Although the certain trends and strategic vibes coming out of the major companies doesn’t suggest so for the time being. Infact I must say wireless infrastructure spending has overtaken wired in the majority of large enterprises.

I can see the main reason behind this increased spending is that companies are well aware that majority of us like to have wireless these days. Majority of the companies, no doubt also expect all their networked equipment to be wireless enabled. This obviously presents a strategic view in front of the companies and investors as a need for mobility and hence the need to upgrade or replace an existing wired LAN.

As everyday passes by in these hard economic times the budget is getting reduced and hence there is a sense of urgency to be more efficient. I might not be very wrong is say that at the moment wireless/mobility sector seems to be achieving that efficiency by taking certain calculated steps.

Companies are trying every possible bit to get the maximum out of the existing or newly planned wireless infrastructure and the technology as such.

Once such company which everybody thought will say goodbye to Wireless is Alcatel-Lucent.
In the highly anticipated strategic announcement by the newly appointed CEO of Alcatel-Lucent, Ben Verwaayen, has announced and hence strongly countered that it is committed to being a major supplier of mobile infrastructure.

I guess Ben Verwaayen see that there is a huge potential in the wireless market and hence despite being pressured by some of its major investors he still wants to go ahead with the spending on the wireless infrastructure major being the LTE.



In the last year whenever I spoke to my friends in different companies I got the view that everybody wants to cut the cost so that they can continue or maintain their R&D section. In my view this is the right thing to do specially for the giants of telecoms. It’s quite simple that R&D projects will enable to develop new and exciting products and hence the revenues.

Based on the above information which gained by talking to different people at the top of the industry I’m 100% confident that companies like Ericsson, Nokia Siemens Network, Alcatel-Lucent etc will maintain its R&D resources and will be ready with LTE products when the market demands. It is very much obvious companies will focus in a more targeted way than in the past and thus may be putting LTE at the very centre of their efforts. The whole ideas to regain the market share and become a leading supplier within 18 months.