Showing posts with label M2M. Show all posts
Showing posts with label M2M. Show all posts

Tuesday 17 November 2020

5G Non IP Data Delivery and Lightweight M2M (LwM2M) over NIDD

Earlier this year, MediaTek had announced that its MT2625 NB-IoT chip has been validated for LwM2M over NIDD on SoftBank Corp.’s cellular network across Japan. This achievement marks the first global commercial readiness of LwM2M over NIDD; a secure, ultra-efficient IoT communications technique that is being adopted by operators worldwide. The benefits of LwM2M over NIDD include security improvements, cost-efficient scalability and reduced power consumption.

LwM2M over NIDD is a combination of the communication technology "NIDD (Non-IP Data Delivery)" that does not use an IP address in LTE communication NB-IoT for IoT and the device management protocol "LwM2M (Lightweight M2M)" advocated by the Open Mobile Alliance. It's been a while since I wrote about Open Mobile Alliance on this blog. OMA SpecWorks is the successor brand to the Open Mobile Alliance. You can read all about it here.


OMA SpecWorks’ LightweightM2M is a device management protocol designed for sensor networks and the demands of a machine-to-machine (M2M) environment. With LwM2M, OMA  SpecWorks has responded to demand in the market for a common standard for managing lightweight and low power devices on a variety of networks necessary to realize the potential of IoT. The LwM2M protocol, designed for remote management of M2M devices and related service enablement, features a modern architectural design based on REST, defines an extensible resource and data model and builds on an efficient secure data transfer standard called the Constrained Application Protocol (CoAP). LwM2M has been specified by a group of industry experts at the OMA SpecWorks Device Management Working Group and is based on protocol and security standards from the IETF.

You can get all the LwM2M resources here and the basic specs of 'Lightweight M2M 1.1: Managing Non-IP Devices in Cellular IoT Networks' here.
The 5G Americas whitepaper 'Wireless Technology Evolution Towards 5G: 3GPP Release 13 to Release 15 and Beyond' details how Current Architecture for 3GPP Systems for IOT Service Provision and Connectivity to External Application Servers. It also talks about Rel-13 Cellular IoT EPS Optimizations which provide improved support of small data transfer over control plane and user plane. Control Plane CIoT EPS Optimization transports user data (measurements, ID, status, etc.) via MME by encapsulating user data in NAS PDUs and reduces the total number of control plane messages when handling a short data transaction. Control Plane CIoT EPS optimization, designed for small infrequent data packets, can also be used for larger data bursts depending in UE Radio capability.

User data transported using the Control Plane CIoT EPS Optimization, has special characteristics, as different mobility anchor and termination nodes.

Therefore, the Preferred Network Behavior signaling must include information on:
  • Whether Control Plane CIoT EPS optimization is supported
  • Whether User Plane CIoT EPS optimization is supported
  • Whether Control Plane CIoT EPS optimization is preferred or whether User Plane CIoT EPS optimization is preferred
These optimizations have enabled:
  • Non-IP Data Delivery (NIDD) for both: mobile originated and mobile terminated communications, by using SCEF (Service Capability Exposure Function) or SGi tunneling. However, it has to be taken into account that Non-IP PDUs may be lost and its sequence is not guaranteed
  • For IP data, the UE and MME may perform header compression based on Robust Header Compression (ROHC) framework
  • NB-IoT UE can attach but not activate any PDN connection
  • High latency communication handled by the buffering of downlink data (in the Serving GW or the MME)
  • SMS transfer
  • EPS Attach, TA Update and EPS Detach procedures for NB-IoT only UEs, with SMS service request
  • Procedures for connection suspend and resume are added
  • Support for transfer of user plane data without the need for using the Service Request procedure to establish Access Stratum context in the serving eNodeB and UE
When selecting an MME for a UE that is using the NB-IoT RAT, and/or for a UE that signals support for CIoT EPS Optimizations in RRC signaling, the eNodeB’s MME selection algorithm shall select an MME taking into account its Release 13 NAS signaling protocol.

Mpirical has a nice short video explaining 5G Non IP Data Delivery. It is embedded below.

IoT has not taken off as expected and prophesised for years. While the OMASpecWorks is doing some fantastic work by defining simplified approach for IoT deployment, its current member list doesn't have enough operators to drive the uptake required for its spec adoption. They would argue that it doesn't matter how many members there are as the NIDD approach is completely optional and over-the-top. Let's wait and see how it progresses.

Related Posts:

Sunday 27 September 2020

ATIS Webinar on '5G Standards Developments in 3GPP Release 16 and Beyond'

3GPP Organizational Partner, ATIS (Alliance for Telecommunications Industry Solutions), recently delivered a webinar (video & slides below) titled "5G Standards Developments in 3GPP Release 16 and Beyond". 

3GPP News details:

An expert panel brings you up-to-speed on the current state of 5G standardization. The webinar delivers a broad overview of 3GPP's work and introduces some of the key technology elements. It is suitable for people in technical roles and technical executives who want to understand the current state of 5G standardization.

In Release 16, 3GPP delivered important updates to 5G specifications to broaden their range of commercial applications and improve the efficiency of networks. 3GPP is now further enhancing 5G in Release 17 and starting to plan Release 18. This webinar provides an up-to-date view of the completed 3GPP Release 16 work with a particular focus on how the work is expanding capabilities of 5G and enhancing the technical performance of the mobile system. It also looks ahead to future 3GPP deliverables and their use cases.


The webinar features, Iain Sharp, Principal Technologist at ATIS (Moderator), Greg Schumacher, Global Standards at T-Mobile USA and 3GPP SA and SA1 Vice Chairman, Puneet Jain, Director of Technical Standards at Intel and 3GPP SA2 Chairman and Wanshi Chen, Senior Director, Technology at Qualcomm and 3GPP RAN1 Chairman


Many interesting topics have been covered including the updates on mMTC and URLLC. 


There is also details about new features coming in 3GPP Release-17 and an early look at what 3GPP Release-18 might include, as can be seen in the picture above.

Tuesday 2 June 2020

Embedded SIM (eSIM) and Integrated SIM (iSIM)

It's been a while since I wrote detailed posts explaining UICC and SIM cards. Since then the SIM cards have evolved from Mini SIM to Micro SIM and Nano SIM. They are evolving even further, especially for M2M / IoT devices as embedded SIM (eSIM or eUICC) and integrated SIM (iSIM).


Embedded SIMs (eSIMs) or embedded Universal Integrated Circuit Cards (eUICCs) are physical SIMs that are soldered into the device and enable storage and remote management of multiple network operator profiles (remote SIM provisioning). The form factor of eSIM is known as MFF2.

The integrated SIMs (iSIMs) moves the SIM from a separate chip into a secure enclave alongside the application processor and cellular radio on a purpose-built system on a chip (SoC).

We made a short tutorial explaining UICC & SIM and then looking at eSIM, iSIM and how remote SIM provisioning works. The video and slides are embedded below. The slides contain a lot of useful links for further reading.







Related Posts:

Thursday 27 February 2020

5G and Industry 4.0


Telefónica published an infographic on 'Benefits of 5G in Industry 4.0' last week. You can download it on their website here. This reminded me that we have now completed the third video in our series of IoT.

  1. The beginners guide to M2M, MTC & IoT is discussed here and video is available here.
  2. Industrial IoT (IIoT) vs IoT is discussed here.
  3. This blog post with with embedded video / slide looks at Industrie 4.0 (a.k.a. I4.0 or I4)



Slides and Video is embedded below, let us know what you think.






Related Posts and Links:

Tuesday 13 March 2018

LoRa is quietly marching on...


During the mobile world congress, I was pleasantly surprised to see how LoRa ecosystem keeps getting larger. There was also an upbeat mood within the LoRa vendor community as it keeps winning one battle after another. Here is my short take on the technology with an unbiased lens.


To start with, lets look at this short report by Tom Rebbeck from Analysys Mason. The PDF can be downloaded after registering from here.

As can be seen, all major IoT technologies (LoRa, NB-IoT, Sigfox & LTE-M) gained ground in 2017. Most of the LoRa and all of Sigfox networks are actually not deployed by the mobile operators. From the article:

These points lead to a final observation about network deployments – many operators are launching multiple technologies. Of the 26 operators with publicly-announced interest in LTE-M networks, 20 also have plans for other networks;
• 14 will combine it with NB-IoT
• four will offer LTE-M and LoRa and
• two, Softbank and Swisscom, are working with LoRa, LTE-M and NB-IoT.

We are not aware of operators also owning Sigfox networks, though some, such as Telefónica, are selling connectivity provided by a Sigfox network operator.

The incremental cost of upgrading from NB-IoT or LTE-M to both technologies is relatively small. Most estimates put the additional cost at less than an additional 20% – and sometimes considerably less. For many operators, the question will be which technology to prioritise, and when to launch, rather than which to choose.

The reasons for launching multiple networks appear to be tactical as much as strategic. Some operators firmly believe that the different technologies will match different use cases – for example, LoRa may be better suited to stationary, low bandwidth devices like smart meters, while LTE-M, could meet the needs of devices that need mobility, higher bandwidth and support for voice, for example a personal health monitor with an emergency call button.

But, a fundamental motive for offering multiple networks is to hedge investments. While they may not admit it publicly, operators do not know which technology will gain the most traction. They do not want to lose significant, lucrative contracts because they have backed the wrong technology. Deploying both LTE-M and NB-IoT – or LoRa – adds little cost and yet provides a hedge against this risk. For operators launching LoRa, there has been the added benefit of being early to market and gaining experience of what developers want and need from LPWA networks. This experience should help them when other technologies are deployed at scale.

The following is from MWC 2018 summary by ABI Research:

LPWA network technologies continue to gather momentum with adoption from a growing ecosystem of communications service providers (CSPs), original equipment manufacturers (OEMs) and IoT solution providers. LPWA networks are central to the connectivity offerings from telcos with support for NB-IoT, LTE-M, LoRaWAN, and SIGFOX. Telefonica highlighted SIGFOX as an important network technology along with NB-IoT and Cat M in its IoT connectivity platform. Similarly, Orange and SK Telecom emphasized on their continued support for LoRaWAN along with Cat M in France and South Korea. On the other hand, Vodafone and Deutsche Telekom, while aggressively pursuing deployment of NB-IoT networks, currently have mostly large scale POCs on their networks. 

...
Smart meters — Utilities are demanding that meter OEMs and technology solution providers deliver product design life of at least 15 years for battery operated smart water and gas meters. LPWA technologies, such as NB-IoT, LoRaWAN, SIGFOX and wireless M-bus, that are optimized for very low-power consumption and available at low cost are clearly emerging as the most favored LPWA solutions.

The following picture is from Ovum post MWC-2018 Webinar:

Here is a short video from MWC by yours truly looking at LoRa Gateways


There are also few announcements / news from LoRa world just to highlight how the ecosystem is thriving:


Source: SenRa

So someone recently asked me is LoRa is the new WiMax? The answer is obviously a big NO. Just look at the LoRa alliance members in the picture above. Its a whole ecosystem with different players having different interests, working on a different part of the ecosystem.

NB-IoT & LTE-M will gain ground in the coming years but there will always be a place for other LPWA technologies like LoRa.

Finally, here is a slide deck (embedded below) that I really like. The picture above very nicely illustrates that LoRaWAN and Cellular complement each other well. Maybe that is the reason that Orange is a big supporter of LoRa.



So for operators who are just starting their IoT journey or smaller operators who are unsure of the IoT potential, may want to start their journey with LoRa to play around and understand the business cases, etc. In the meantime LTE-M and NB-IoT ecosystem will mature with prices coming down further and battery time improving. That may be the right time to decide on the way forward.


Further Reading:

Friday 22 December 2017

The small detail about 5G you may have missed...


While going through the latest issue of CW Journal, I came across this article from Moray Rumney, Lead Technologist, Keysight. It highlights an interesting point that I missed out earlier that 5G also includes all LTE specifications from Release 15 onwards.

I reached out to our CW resident 3GPP standards expert Sylvia Lu to clarify and received more details.
There is a whole lot of detail available in RP-172789.zip. Here RIT stands for Radio Interface Technology and SRIT for Set of RIT.

In fact at Sylvia clarified, NB-IoT and Cat-M will also be part of the initial IMT-2020 submissions early next year. Thanks Sylvia.


There is also this nice presentation by Huawei in ITU (here) that describes Requirements, Evaluation Criteria and Submission Templates for the development of IMT-2020. It is very helpful in understanding the process.

Coming back to the question I have often asked (see here for example),
1. What features are needed for operator to say they have deployed 5G, and
2. How many sites / coverage area needed to claim 5G rollout

With LTE Release-15 being part of 5G, I think it has just become easy for operators to claim they have 5G.

What do you think?

Monday 1 May 2017

Variety of 3GPP IoT technologies and Market Status - May 2017



I have seen many people wondering if so many different types of IoT technologies are needed, 3GPP or otherwise. The story behind that is that for many years 3GPP did not focus too much on creating an IoT variant of the standards. Their hope was that users will make use of LTE Cat 1 for IoT and then later on they created LTE Cat 0 (see here and here).

The problem with this approach was that the market was ripe for a solution to a different types of IoT technologies that 3GPP could not satisfy. The table below is just an indication of the different types of technologies, but there are many others not listed in here.


The most popular IoT (or M2M) technology to date is the humble 2G GSM/GPRS. Couple of weeks back Vodafone announced that it has reached a milestone of 50 million IoT connections worldwide. They are also adding roughly 1 million new connections every month. The majority of these are GSM/GPRS.

Different operators have been assessing their strategy for IoT devices. Some operators have either switched off or are planning to switch off they 2G networks. Others have a long term plan for 2G networks and would rather switch off their 3G networks to refarm the spectrum to more efficient 4G. A small chunk of 2G on the other hand would be a good option for voice & existing IoT devices with small amount of data transfer.

In fact this is one of the reasons that in Release-13 GSM is being enhanced for IoT. This new version is known as Extended Coverage – GSM – Internet of Things (EC-GSM-IoT ). According to GSMA, "It is based on eGPRS and designed as a high capacity, long range, low energy and low complexity cellular system for IoT communications. The optimisations made in EC-GSM-IoT that need to be made to existing GSM networks can be made as a software upgrade, ensuring coverage and accelerated time to-market. Battery life of up to 10 years can be supported for a wide range use cases."

The most popular of the non-3GPP IoT technologies are Sigfox and LoRa. Both these technologies have gained significant ground and many backers in the market. This, along with the gap in the market and the need for low power IoT technologies that transfer just a little amount of data and has a long battery life motivated 3GPP to create new IoT technologies that were standardised as part of Rel-13 and are being further enhanced in Rel-14. A summary of these technologies can be seen below


If you look at the first picture on the top (modified from Qualcomm's original here), you will see that these different IoT technologies, 3GPP or otherwise address different needs. No wonder many operators are using the unlicensed LPWA IoT technologies as a starting point, hoping to complement them by 3GPP technologies when ready.

Finally, looks like there is a difference in understanding of standards between Ericsson and Huawei and as a result their implementation is incompatible. Hopefully this will be sorted out soon.


Market Status:

Telefonica has publicly said that Sigfox is the best way forward for the time being. No news about any 3GPP IoT technologies.

Orange has rolled out LoRa network but has said that when NB-IoT is ready, they will switch the customers on to that.

KPN deployed LoRa throughout the Netherlands thereby making it the first country across the world with complete coverage. Haven't ruled out NB-IoT when available.

SK Telecom completed nationwide LoRa IoT network deployment in South Korea last year. It sees LTE-M and LoRa as Its 'Two Main IoT Pillars'.

Deutsche Telekom has rolled out NarrowBand-IoT (NB-IoT) Network across eight countries in Europe (Germany, the Netherlands, Greece, Poland, Hungary, Austria, Slovakia, Croatia)

Vodafone is fully committed to NB-IoT. Their network is already operational in Spain and will be launching in Ireland and Netherlands later on this year.

Telecom Italia is in process of launching NB-IoT. Water meters in Turin are already sending their readings using NB-IoT.

China Telecom, in conjunction with Shenzhen Water and Huawei launched 'World's First' Commercial NB-IoT-based Smart Water Project on World Water Day.

SoftBank is deploying LTE-M (Cat-M1) and NB-IoT networks nationwide, powered by Ericsson.

Orange Belgium plans to roll-out nationwide NB-IoT & LTE-M IoT Networks in 2017

China Mobile is committed to 3GPP based IoT technologies. It has conducted outdoor trials of NB-IoT with Huawei and ZTE and is also trialing LTE-M with Ericsson and Qualcomm.

Verizon has launched Industry’s first LTE-M Nationwide IoT Network.

AT&T will be launching LTE-M network later on this year in US as well as Mexico.

Sprint said it plans to deploy LTE Cat 1 technology in support of the Internet of Things (IoT) across its network by the end of July.

Further reading:

Sunday 5 February 2017

An Introduction to IoT: Connectivity & Case Studies


I did an introductory presentation on IoT yesterday at at the University of Northampton, Internet of Things event. Below if my presentation in full. Can be downloaded from slideshare.



xoxoxoxoxoxo Added 18/02/2017 oxoxoxoxoxoxox

Below is video of the presentation above and post presentation interview:

Saturday 29 October 2016

M2M vs IoT

This post is for mainly for my engineering colleagues. Over the years I have had many discussions to explain the difference between Machine-to-Machine (M2M) or Machine Type Communication (MTC) as 3GPP refers to them and the Internet of Things (IoT). Even after explaining the differences, I am often told that this is not correct. Hence I am putting this out here. Please feel free to express your views in the comments section.


Lets take an example of an office with 3 floors. Lets assume that each floor has a coffee machine like the one in this picture or something similar. Lets assume different scenarios:

Scenario 1: No connectivity
In this case a facilities person has to manually go to each of the floor and check if there are enough coffee beans, chocolate powder, milk powder, etc. He/She may have to do this say 3-4 times a day.

Scenario 2: Basic connectivity (M2M)
Lets say the coffee machine has basic sensors so it can send some kind of notification (on your phone or email or message, etc.) whenever the coffee beans, chocolate powder, milk powder, etc., falls below a certain level. In some cases you may also be able to check the levels using some kind of a app on your phone or computer. This is an example of M2M

Scenario 3: Advanced connectivity (IoT)
Lets say that the coffee machine is connected to the office system and database. It knows which employees come when and what is their coffee/drinks consumption pattern. This way the machine can optimize when it needs to be topped up. If there is a large meeting/event going on, the coffee machine can even check before the breaks and indicate in advance that it needs topping up with beans/chocolate/milk/etc.

Scenario 4: Intelligent Devices (Advanced IoT)
If we take the coffee machine from scenario 3 and add intelligence to it, it can even know about the inventory. How much of coffee beans, chocolate powder, milk powder, etc is in stock and when would they need ordering again. It can have an employee UI (User Interface) that can be used by employees to give feedback on which coffee beans are more/less popular or what drinks are popular. This info can be used by the machines to order the supplies, taking into account the price, availability, etc.

In many cases, API's would be available for people to build services on top of the basic available services to make life easier. Someone for example can build a service that if a cup is already at the dispenser and has been there for at least 2 minutes (so you know its not being used by someone else) then the person can choose/order their favourite drink from their seat so he/she doesn't have to wait for 30 seconds at the machine.

If you think about this further you will notice that in this scenario the only requirement for the human is to clean the coffee machine, top it up, etc. In future these can be automated with robots carrying out these kinds of jobs. There would be no need for humans to do these menial tasks.


I really like this slide from InterDigital as it captures the difference between M2M and IoT very well, especially in the light of the discussion above.

With the current M2M, we have:

  • Connectivity: connection for machines;
  • Content: massive raw data from things;

IoT is Communication to/from things which offer new services via cloud / context / collaboration / cognition technologies.

With evolution to IoT, we have:
  • Cloud: cloud service and XaaS (Everything as a Service) for IoT;
  • Context: context-aware design;
  • Collaboration: collaborative services;
  • Cognition: semantics and autonomous system adjustment
Let me know if you agree. 

Sunday 16 October 2016

Inside 3GPP Release-13 - Whitepaper by 5G Americas


The following is from the 5G Americas press release:

The summary offers insight to the future of wireless broadband and how new requirements and technological goals will be achieved. The report updates Release 13 (Rel-13) features that are now completed at 3GPP and were not available at the time of the publication of a detailed 5G Americas report, Mobile Broadband Evolution Towards 5G: 3GPP Release 12 & Release 13 and Beyond in June 2015.
The 3GPP standards have many innovations remaining for LTE to create a foundation for 5G.  Rel-12, which was finalized in December 2014, contains a vast array of features for both LTE and HSPA+ that bring greater efficiency for networks and devices, as well as enable new applications and services. Many of the Rel-12 features were extended into Rel-13.  Rel-13, functionally frozen in December 2015 and completed in March 2016, continues to build on these technical capabilities while adding many robust new features.
Jim Seymour, Principal Engineer, Mobility CTO Group, Cisco and co-leader of the 5G Americas report explained, “3GPP Release 13 is just a peek behind the curtain for the unveiling of future innovations for LTE that will parallel the technical work at 3GPP on 5G. Both LTE and 5G will work together to form our connected future.”
The numerous features in the Rel-13 standards include the following for LTE-Advanced:
  • Active Antenna Systems (AAS), including beamforming, Multi-Input Multi-Output (MIMO) and Self-Organizing Network (SON) aspects
  • Enhanced signaling to support inter-site Coordinated Multi-Point Transmission and Reception (CoMP)
  • Carrier Aggregation (CA) enhancements to support up to 32 component carriers
  • Dual Connectivity (DC) enhancements to better support multi-vendor deployments with improved traffic steering
  • Improvements in Radio Access Network (RAN) sharing
  • Enhancements to Machine Type Communication (MTC)
  • Enhanced Proximity Services (ProSe)
Some of the standards work in Rel-13 related to spectrum efficiency include:                                                                                                                       
  • Licensed Assisted Access for LTE (LAA) in which LTE can be deployed in unlicensed spectrum
  • LTE Wireless Local Area Network (WLAN) Aggregation (LWA) where Wi-Fi can now be supported by a radio bearer and aggregated with an LTE radio bearer
  • Narrowband IoT (NB-IoT) where lower power wider coverage LTE carriers have been designed to support IoT applications
  • Downlink (DL) Multi-User Superposition Transmission (MUST) which is a new concept for transmitting more than one data layer to multiple users without time, frequency or spatial separation
“The vision for 5G is being clarified in each step of the 3GPP standards. To understand those steps, 5G Americas provides reports on the developments in this succinct, understandable format,” said Vicki Livingston, Head of Communications for the association.

The whitepaper as follows:



Related posts:

Wednesday 18 November 2015

Cellular IoT (CIoT) or LoRa?

Back in September, 3GPP reached a decision to standardise NarrowBand IOT (NB-IOT). Now people familiar with the evolution of LTE-A UE categories may be a bit surprised with this. Upto Release-11, the lowest data rate device was UE Cat-1, which could do 10Mbps in DL and 5Mbps in UL. This was power hungry and not really that useful for low data rate sensor devices. Then we got Cat-0 as part of Release-12 which simplified the design and have 1Mbps in DL & UL.

Things start to become a bit complex in Release-13. The above picture from Qualcomm explains the evolution and use cases very well. However, to put more details to the above picture, here is some details from the 4G Americas whitepaper (embedded below)


In support of IoT, 3GPP has been working on all several related solutions and generating an abundance of LTE-based and GSM-based proposals. As a consequence, 3GPP has been developing three different cellular IoT standard- solutions in Release-13:
  • LTE-M, based on LTE evolution
  • EC-GSM, a narrowband solution based on GSM evolution, and
  • NB-LTE, a narrowband cellular IoT solution, also known as Clean Slate technologies
However, in October 2015, the 3GPP RAN body mutually agreed to study the combination of the two different narrowband IoT technical solutions, EC-GSM and NB-LTE, for standardization as a single NB-IoT technology until the December 2015 timeframe. This is in consideration of the need to support different operation modes and avoid divided industry support for two different technical solutions. It has been agreed that NB-IoT would support three modes of operation as follows:
  • ‘Stand-alone operation’ utilizing, for example, the spectrum currently being used by GERAN systems as a replacement of one or more GSM carriers,
  • ‘Guard band operation’ utilizing the unused resource blocks within a LTE carrier’s guard-band, and
  • ‘In-band operation’ utilizing resource blocks within a normal LTE carrier.

Following is a brief description of the various standard solutions being developed at 3GPP by October 2015:

LTE-M: 3GPP RAN is developing LTE-Machine-to-Machine (LTE-M) specifications for supporting LTE-based low cost CIoT in Rel-12 (Low-Cost MTC) with further enhancements planned for Rel-13 (LTE eMTC). LTE-M supports data rates of up to 1 Mbps with lower device cost and power consumption and enhanced coverage and capacity on the existing LTE carrier.

EC-GSM: In the 3GPP GERAN #62 study item “Cellular System Support for Ultra Low Complexity and Low Throughput Internet of Things”, narrowband (200 kHz) CIoT solutions for migration of existing GSM carriers sought to enhance coverage by 20 dB compared to legacy GPRS, and achieve a ten year battery life for devices that were also cost efficient. Performance objectives included improved indoor coverage, support for massive numbers of low-throughput devices, reduced device complexity, improved power efficiency and latency. Extended Coverage GSM (EC-GSM) was fully compliant with all five performance objectives according to the August 2015 TSG GERAN #67 meeting report. GERAN will continue with EC-GSM as a work item within GERAN with the expectation that standards will be frozen by March 2016. This solution necessarily requires a GSM network.

NB-LTE: In August 2015, work began in 3GPP RAN Rel-13 on a new narrowband radio access solution also termed as Clean Slate CIoT. The Clean Slate approach covers the Narrowband Cellular IoT (NB-CIoT), which was the only one of six proposed Clean Slate technologies compliant against a set of performance objectives (as noted previously) in the TSG GERAN #67 meeting report and will be part of Rel-13 to be frozen in March 2016. Also contending in the standards is Narrowband LTE Evolution (NB-LTE) which has the advantage of easy deployment across existing LTE networks.

Rel-12 introduces important improvements for M2M like lower device cost and longer battery life. Further improvements for M2M are envisioned in Rel-13 such as enhanced coverage, lower device cost and longer battery life. The narrowband CIoT solutions also aim to provide lower cost and device power consumption and better coverage; however, they will also have reduced data rates. NB CleanSlate CIoT is expected to support data rates of 160bps with extended coverage.

Table 7.1 provides some comparison of the three options to be standardized, as well as the 5G option, and shows when each release is expected to be finalized.

Another IoT technology that has been giving the cellular IoT industry run for money is the LoRa alliance. I blogged about LoRa in May and it has been a very popular post. A extract from a recent article from Rethink Research as follows:

In the past few weeks, the announcements have been ramping up. Semtech (the creator of the LoRa protocol itself, and the key IP owner) has been most active, announcing that The Lace Company, a wireless operator, has deployed LoRa network architecture in over a dozen Russian cities, claiming to cover 30m people over 9,000km2. Lace is currently aiming at building out Russian coverage, but will be able to communicate to other LoRa devices over the LoRa cloud, as the messages are managed on cloud servers once they have been transmitted from end-device to base unit via LoRaWAN.

“Our network allows the user to connect to an unlimited number of smart sensors,” said Igor Shirokov, CEO of Lace Ltd. “We are providing connectivity to any device that supports the open LoRaWAN standard. Any third party company can create new businesses and services in IoT and M2M market based on our network and the LoRaWAN protocol.”

Elsewhere, Saudi Arabian telco Du has launched a test LoRa network in Dubai, as part of a smart city test project. “This is a defining moment in the UAE’s smart city transformation,” said Carlos Domingo, senior executive officer at Du. “We need a new breed of sensor friendly network to establish the smart city ecosystem. Thanks to Du, this capability now exists in the UAE Today we’ve shown how our network capabilities and digital know-how can deliver the smart city ecosystem Dubai needs. We will not stop in Dubai; our deployment will continue country-wide throughout the UAE.”

But the biggest recent LoRa news is that Orange has committed itself to a national French network rollout, following an investment in key LoRa player Actility. Orange has previously trialed a LoRa network in Grenoble, and has said that it opted for LoRa over Sigfox thanks to its more open ecosystem – although it’s worth clarifying here that Semtech still gets a royalty on every LoRa chip that’s made, and will continue to do so until it chooses not to or instead donates the IP to the non-profit LoRa Alliance itself.

It would be interesting to see if this LoRa vs CIoT ends up the same way as WiMAX vs LTE or not.

Embedded below is the 4G Americas whitepaper as well as a LoRa presentation from Semtech:






Further reading:


Tuesday 4 August 2015

The Importance of License Exempt Frequency Bands


Some of you may be aware that I am also a Technical Programme Manager with the UK Spectrum Policy Forum. Recently we published a whitepaper that we had commissioned to Plum consulting on "Future use of Licence Exempt Radio Spectrum". It is an interested read not only for spectrum experts but also for people trying to understand the complex world of spectrum.

The report is very well written. Here are a few extracts in purple:

Licence exempt frequency bands are those that can be used by certain applications without the need for prior authorisation or an individual right of use. This does not mean that they are not subject to regulation – use must still comply with pre-defined technical rules to minimise the risk of interference. Most licence exempt bands are harmonised throughout Europe and are shared with other services or applications, such as radars or industrial, scientific and medical (ISM) equipment. Wi-Fi and Bluetooth are probably the most familiar examples of mass-market licence exempt wireless applications, but the bands support many other consumer devices, such as cordless phones, doorbells, car key fobs, central heating controllers, baby monitors and intruder alarms. Looking to the future, licence exempt bands are likely to be a key enabler of wireless machine to machine (M2M) communication applications.

Key benefits of licence exempt bands include:
  • For end-users:
    • Greater convenience and flexibility by avoiding the need for lengthy runs of cable in home and work environments
    • Ability to connect mobile devices to a fixed broadband network, reducing dependence on the mobile network and potentially saving costs both for the service provider and the end-user
    • Enhanced convenience, safety and security, e.g. through installation of low cost wireless alarm systems or ability to unlock vehicles remotely rather than fumbling with keys
  • For equipment vendors and operators:
    • Facilitating market entry – there is no need to acquire a licence to deploy a service
    • Enabling niche applications or services to be addressed quickly and cheaply using existing technology and spectrum – this has been particularly effective in serving new machine to machine (M2M) applications in areas such as health, transport and home automation.
    • Providing certainty about spectrum access – there is no need to compete or pay for spectrum access (though the collective nature of spectrum use means quality of service cannot be guaranteed)
    • The ability to extend the reach of fixed communication networks, by providing wireless local area connectivity in homes, businesses and at public traffic hotspots.
The two most notable drawbacks are the inability to guarantee quality of service and the more limited geographic range that is typically available (reflecting the lower power limits that apply to these bands). Licence exempt wireless applications cannot claim protection from interference arising from other users or radio services. They operate in shared frequency bands and must not themselves cause harmful interference to other radio services.

From a regulator’s perspective, licence exempt bands can be more problematic than licensed bands in terms of refarming spectrum, since it is difficult to prevent the continued deployment of legacy equipment in the bands or to monitor effectively their utilisation. There is also generally no control over numbers and / or location of devices, which can make sharing difficult and limits the amount of spectrum that can be used in this way.

In Europe, regulation of licence exempt bands is primarily dealt with at an international level by European institutions. Most bands are fully harmonised, whereby free circulation of devices that comply with the relevant standards is effectively mandated throughout the EU. However some bands are subject to “soft” harmonisation, where the frequency limits and technical characteristics are harmonised but adoption of the band is left to national administrations to decide.

A key recommendation, which I think would be very interesting and useful would be: Promote further international harmonisation of licence exempt bands, in particular the recently identified 870 – 876 MHz and 915 – 921 MHz band that are likely to be critical for supporting future M2M demand growth in Europe.

Note that a similar sub-1GHz band has been recommended for 5G for M2M/IoT. The advantage for low frequencies is that the coverage area is very large, suitable for devices with low date rates. Depending on how the final 5G would be positioned, it may well use the license exempt bands, similar to the LAA/LTE-U kind of approach maybe.

The whitepaper is embedded below and is available to download from here:




Sunday 28 June 2015

LTE-M a.k.a. Rel-13 Cellular IoT

Some months back I wrote about the LTE Category-0 devices here. While Rel-12 LTE Cat 0 devices are a first step in the right direction, they are not enough for small sensor type of devices where long battery life is extremely important. As can be seen in the picture above, this will represent a huge market in 2025.


To cater for this requirement of extremely long battery life, it is proposed that Rel-13 does certain modifications for these low throughput sensor type devices. The main modification would be that the devices will work in 1.4MHz bandwidth only, regardless of the bandwidth of the cell. The UE transmit power will be max of 20dB and the throughput would be further reduced to a maximum of 200kbps.

The presentation, from Cambridge Wireless Future of Wireless International Conference is embedded below:



See also:

Sunday 7 June 2015

Nuggets from Ericsson Mobility Report


Ericsson mobility report 2015 was released last week. Its interesting to see quite a few of these stats on devices, traffic, usage, etc. is getting released around this time. All of these reports are full of useful information and in the old days when I used to work as an analyst, I would spend hours trying to dig into them to find gold. Anyway, some interesting things as follows and report at the end.

The above chart, as expected, data will keep growing but voice will get flatter and maybe go down, if people start moving to VoIP

Application volume shares, based on the data plan. This is interesting. If you are a heavy user, you may be watching a lot of videos and if you are a light user then you are watching just a few of them.

How about device sizes, does our behaviour change based on the screen size?

What about the 50 Billion connected devices, was it too much? Is the real figure more like 28 billion?

Anyway, the report is embedded below.



Sunday 10 May 2015

LTE-Broadcast making a push while Terrestrial broadcast still popular as ever



"TV isn't dying, it's having babies." This quote made my day. I have argued a few times in the past that terrestrial broadcasting will continue working and will be probably the most popular approach for a long time to come. The way things work with it may change. Multi-screen is one possible approach but you may have more interactions like 'red button functionality', etc.
Anyway, in Europe 800MHz spectrum has been cleared for use by Mobile Broadband technologies (LTE mainly). 700MHz is planned to be cleared as well by 2020, as per the suggestion in Lamy report. The other UHF band from 470MHz to 694MHz would be left as it is until 2030, with a review planned in 2025.

This has forced even big players like BBC to start looking at other mechanisms to deliver TV. While BBC3 was moved to online only, BBC is also exploring how to use LTE-Multicast to deliver content. It has been working to have its very popular iPlayer work with eMBMS.

Embedded below is a presentation from Cambridge Wireless CWTEC 2015 conference.




eMBMS is gaining popularity with its presence in lot more chipsets and even more trials. GSA report has shown that there are quite a few trials going on worldwide but the question remains about the business models. Most operators would not like to become content providers and compete with the incumbents in their markets. Having someone like BBC in the UK is helpful but not sure how many such options are available worldwide. Embedded below is the GSA presentation




There were some nice pictures from MWC as can be seen above. Ericsson has a video as well (below) on how the app works.



D-Link is also working on M2M modules that could be used in billboards to dynamically update the ads at very regular intervals. There is a video here that explains this further.

Finally here is a Video from Visteon/Verizon that explains how LTE-Multicast can be used to deliver software updates in the connected car:



Finally, here are couple of presentations that may interest you too: