Showing posts with label Tutorials. Show all posts
Showing posts with label Tutorials. Show all posts

Wednesday, 7 July 2021

Different Types of RAN Architectures - Distributed, Centralized & Cloud


I come across a question relating to the different type of RAN architectures once per month on an average. Even though we have covered the topic as part of some or the other tutorial, we decided to do a dedicated tutorial on this.

The video and slides are embedded below

As always, feedback and comments welcome.

Related Posts:

Thursday, 24 June 2021

O-RAN Introduction for Beginners


Having been writing about Open RAN for a while, I thought it was important to make simple beginners tutorials for O-RAN. As my full time job* is with a company that is heavily involved in Open RAN and O-RAN, I had an insiders view for doing this project. 

I am making a series of videos for Parallel Wireless to help the industry become familiar with the technology and terminology. The playlist is embedded below:

Four of these are ready and more will be added as and when I get some time. Here is a summary of the videos available. Some of them also have a corresponding blog that I am linking below.

  1. Introduction to O-RAN Philosophy: This explains the basics of O-RAN and how O-RAN is transforming the mobile networks industry towards open, intelligent, virtualized and fully interoperable RAN.
  2. Introduction to O-RAN Timeline and Releases: This part looks at important timelines from the O-RAN Alliance, understand the O-RAN Software Community (OSC) and the role it plays in O-RAN, and finally, looks at the O-RAN Open-Source Software releases.
  3. Introduction to O-RAN Architecture: This part looks at how the basic OpenRAN architecture is evolving into the O-RAN Alliance based Intelligent, Virtualized and Fully Interoperable RAN. It starts with a high-level ORAN architecture and then delves into details of Service Management and Orchestration (SMO), Non-Real-Time (Non-RT) RAN Intelligent Controller (RIC), Near-RT RIC and O-Cloud.
  4. O-RAN Technical Steering Committee (TSC) & Workgroups: This part looks at O-RAN Technical Steering Committee (TSC) & Workgroups (WGs). The O-RAN TSC decides or gives guidance on O-RAN technical topics and approves O-RAN specifications prior to the Board approval and publication. The TSC consists of Member representatives and the technical workgroup co-chairs, representing both Members and Contributors. Within the TSC, there are 10 work groups, 4 focus groups, Open-Source Community and Minimum Viable Plan Committee. These have all been discussed within the video.
  5. O-RAN Workgroup1: Task Groups and Deliverables: This part looks at O-RAN Workgroup#1 (WG1), its task groups and sub-task groups and finally the deliverables produced by WG1.

I am hoping that I will be able to do a few more parts and add a lot more information to the basics so a handy resource is available for anyone interested. Feel free to add links, suggestions, etc. in the comments below. 

Related Posts:

*Full Disclosure: I work for Parallel Wireless as a Senior Director, Technology & Innovation Strategy. This blog is maintained in my personal capacity and expresses my own views, not the views of my employer or anyone else. Anyone who knows me well would know this.

Tuesday, 6 April 2021

A look at 5G Applications, Application Functions & Application Servers

We often get questions about 5G Service Based Architecture. Luckily, we have a tutorial that we can redirect people to. It's available here and the video just crossed 50K views. One of the questions that people often want to understand, is about the Application Function (AF) and how does it fit in the Applications Architecture.

To explain this, we made a tutorial. The slides and videos are embedded below. In that we have used the examples from our XR, V2X and Private Networks tutorials. All links are available at the bottom of this post.

Video:

Slides:

Related Posts:

Wednesday, 10 March 2021

Everything you need to know about 5G Security


5G & Security are both big topics on this blog as well as on 3G4G website. We reached out to 3GPP 5G security by experts from wenovator, Dr. Anand R. Prasad & Hans Christian Rudolph to help out audience understand the mysteries of 5G security. Embedded below is video and slides from a webinar they recorded for us.

You can ask any security questions you may have on the video on YouTube

The slides could be downloaded from SlideShare.

Related Posts:

Monday, 7 December 2020

Nokia Lectures in Collaboration with Bangalore University

Nokia recently delivered some lectures virtually to Bangalore University students. The talks covered a variety of talks from LTE to 5G, Security & IMS. The playlist from Nokia is embedded below. The video contains following topics:

Part 1: 5G - General Introduction and IoT Specific Features
Part 2: 5G Overview
Part 3: Network Security Practices and Principles
Part 4: LTE Network Architecture - Interface and Protocols
Part 5: IMS - IP Multimedia Subsystem

Related Posts:

Tuesday, 10 November 2020

Network Slicing Tutorials and Other Resources

I have received quite a few requests to do a 5G Network Slicing tutorial but have still not got around to doing it. Luckily there are so many public resources available that I can get away with not doing one on this topic. 


This Award Solutions webinar by Paul Shepherd (embedded below) provides good insights into network slicing, what it is, how it efficiently enables different services in 5G networks, and the architectural changes in 5G required to support it.

Then there is also this myth about 3 slices in the network. The GSMA slice template is a good starting point for an operator looking to do network slicing in their 5G networks. The latest version is 3.0, available here.


As this picture (courtesy of Phil Kendall) shows, it's not a straightforward task.  

Alistair URIE from Nokia Bell Labs points out some common misconceptions people have with Network Slicing:

  1. Multiple slices may share the same cell and the same RU in each slice
  2. Single UE may have up to 8 active slices but must have a single CU-CP instance to terminate the common RRC 
  3. Slicing supports more than 3 slices 

Back in March, China Mobile, Huawei, Tencent, China Electric Power Research Institute, and Digital Domain have jointly released the Categories and Service Levels of Network Slice White Paper to introduce the industry’s first classification of network slice levels. The new white paper dives into the definitions, solutions, typical scenarios, and evolution that make up the five levels of network slices. It serves as an excellent reference to provide guidance in promoting and commercializing network slicing, and lays a theoretical foundation for the industry-wide application of network slicing.

The whitepaper describes the different phases as:

Phase 1 (ready): As mentioned above, the 5G transport network and 5G core network support different software-based and hardware-based isolation solutions. On the 5G NR side, 5QIs (QoS scheduling mechanism) are mainly used to achieve software-based isolation in WAN scenarios. Alternatively, campus-specific 5G NR (including micro base stations and indoor distributed base stations) is used to implement hardware-based isolation in LAN scenarios. In terms of service experience assurance, 5QIs are used to implement differentiated SLA assurance between slices. In terms of slice OAM capabilities, E2E KPIs can be managed in a visualized manner. This means that from 2020 on, Huawei is ready to deliver commercial use of E2E slicing for common customers and VIP customers of the public network and common customer of general industries (such as UHD live broadcast and AR advertisement).

Phase 2 (to be ready in 2021): In terms of isolation, the 5G NR side supports the wireless RB resource reservation technology (including the static reservation and dynamic reservation modes) to implement E2E network resource isolation and slicing in WAN scenarios. In terms of service experience assurance, features such as 5G LAN and 5G TSN are enhanced to implement differentiated and deterministic SLA assurance between different slices. In terms of slice OAM, on the basis of tenant-level KPI visualization, the limited self-service of the industry for rented slices can be further supported. In this phase, operators can serve VIP customers in common industries (such as AR/VR cloud games and drone inspection), dedicated industry customers (such as electric power management information region, medical hospital campus, and industrial campus), and dedicated industry customers (such as electric power production control region and public security).

Phase 3 (to be ready after 2022): In this phase, 5G network slicing supports real dynamic closed-loop SLAs based on AI and negative feedback mechanism, implementing network self-optimization and better serving industries (such as 5G V2X) with high requirements on mobility, roaming, and service continuity. In addition, industry-oriented comprehensive service capabilities will be further enhanced and evolved.

A more technical presentation from Nokia is available here. The video below shows how innovations in IP routing and SDN work together to implement network slicing in the transport domain.

If you know some other good resources and tutorials worth sharing, add them in the comments below.

Related Posts:

Monday, 2 November 2020

Lawful Intercept in 5G Networks

Mats Näslund is a cryptologist at the National Defence Radio Establishment outside Stockholm, an agency under the Swedish dept. of defence. As part of his work, he represents Sweden in technical LI standardization in 3GPP. Mats also has a part time appointment as adjunct professor at KTH. Her recently delivered a HAIC Talk on Lawful Intercept in 5G Networks. HAIC Talks is a series of public outreach events on contemporary topics in information security, organized by the Helsinki-Aalto Institute for Cybersecurity (HAIC).


The following is the description from HAIC website:

Our societies have been prospering, much due to huge technological advances over the last 100 years. Unfortunately, criminal activity has in many cases also been able to draw benefits from these advances. Communication technology, such as the Internet and mobile phones, are today “tools-of-the-trade” that are used to plan, execute, and even hide crimes such as fraud, espionage, terrorism, child abuse, to mention just a few. Almost all countries have regulated how law enforcement, in order to prevent or investigate serious crime, can sometimes get access to meta data and communication content of service providers, data which normally is protected as personal/private information. The commonly used term for this is Lawful Interception (LI). For mobile networks LI is, from a technical standpoint, carried out according to ETSI and 3GPP standards. In this talk, the focus will lie on the technical LI architecture for 5G networks. We will also give some background, describing the general, high-level legal aspects of LI, as well as some current and future technical challenges.

The slides are available here.

Related Posts:

Friday, 16 October 2020

Couple of Tutorials on ETSI NFV MANO


The premises of virtualization is to move physical network functions (PNF in hardware) into software and to design them in a way so that they can be deployed on a NFVI (Network Functions Virtualization Infrastructure, a.k.a. the cloud).

MANagement and Orchestration (MANO) is a key element of the ETSI network functions virtualization (NFV) architecture. MANO is an architectural framework that coordinates network resources for cloud-based applications and the lifecycle management of virtual network functions (VNFs) and network services. As such, it is crucial for ensuring rapid, reliable NFV deployments at scale. MANO includes the following components: the NFV orchestrator (NFVO), the VNF manager (VNFM), and the virtual infrastructure manager (VIM).

NFV MANO is broken up into three functional blocks:

  • NFV Orchestrator: Responsible for onboarding of new network services (NS) and virtual network function (VNF) packages; NS lifecycle management; global resource management; validation and authorization of network functions virtualization infrastructure (NFVI) resource requests.
  • VNF Manager: Oversees lifecycle management of VNF instances; fills the coordination and adaptation role for configuration and event reporting between NFV infrastructure (NFVI) and Element/Network Management Systems.
  • Virtualized Infrastructure Manager (VIM): Controls and manages the NFVI compute, storage, and network resources.

For the NFV MANO architecture to work properly and effectively, it must be integrated with open application program interfaces (APIs) in the existing systems. The MANO layer works with templates for standard VNFs and gives users the power to pick and choose from existing NFVI resources to deploy their platform or element.

Couple of good old tutorials, good as gold, explaining the ETSI NFV MANO concept. The videos are embedded below. The slides from the video are probably not available but there are other slides from ETSI here. If you are new to this, this is a good presentation to start with.

NFV MANO Part 1: Overview and VNF Lifecycle Management: Uwe Rauschenbach | Rapporteur | ETSI NFV ISG covers:

  • ETSI NFV MANO Concepts
  • VNF Lifecycle Management

NFV MANO Part 2: Network Service Lifecycle Management: Jeremy Fuller | Chair, IFA WG | ETSI NFV ISG covers:
  • Network Service Lifecycle Management

If you have any better suggestions for the slides / video, please feel free to add in the comments.

Related Posts:

Saturday, 10 October 2020

What is Cloud Native and How is it Transforming the Networks?


Cloud native is talked about so often that it is assumed everyone knows what is means. Before going any further, here is a short introductory tutorial here and video by my Parallel Wireless colleague, Amit Ghadge.  

If instead you prefer a more detailed cloud native tutorial, here is another one from Award Solutions.

Back in June, Johanna Newman, Principal Cloud Transformation Manager, Group Technology Strategy & Architecture at Vodafone spoke at the Cloud Native World with regards to Vodafone's Cloud Native Journey 


Roz Roseboro, a former Heavy Reading analyst who covered the telecom market for nearly 20 years and currently a Consulting Analyst at Light Reading wrote a fantastic summary of that talk here. The talk is embedded below and selective extracts from the Light Reading article as follows:

While vendors were able to deliver some cloud-native applications, there were still problems ensuring interoperability at the application level. This means new integrations were required, and that sent opex skyrocketing.

I was heartened to see that Newman acknowledged that there is a difference between "cloud-ready" and "cloud-native." In the early days, many assumed that if a function was virtualized and could be managed using OpenStack, that the journey was over.

However, it soon became clear that disaggregating those functions into containerized microservices would be critical for CSPs to deploy functions rapidly and automate management and achieve the scalability, flexibility and, most importantly, agility that the cloud promised. Newman said as much, remarking that the jump from virtualized to cloud-native was too big a jump for hardware and software vendors to make.

The process of re-architecting VNFs to containerize them and make them cloud-native is non-trivial, and traditional VNF suppliers have not done so at the pace CSPs would like to see. I reference here my standard chicken and egg analogy: Suppliers will not go through the cost and effort to re-architect their software if there are no networks upon which to deploy them. Likewise, CSPs will not go through the cost and effort to deploy new cloud networks if there is no software ready to run on them. Of course, some newer entrants like Rakuten have been able to be cloud-native out of the gate, demonstrating that the promise can be realized, in the right circumstances.

Newman also discussed the integration challenges – which are not unique to telecom, of course, but loom even larger in their complex, multivendor environments. During my time as a cloud infrastructure analyst, in survey after survey, when asked what the most significant barrier to faster adoption of cloud-native architectures, CSPs consistently ranked integration as the most significant.

Newman spent a little time discussing the work of the Common NFVi Telco Taskforce (CNTT), which is charged with developing a handful of reference architectures that suppliers can then design to which will presumably help mitigate many of these integration challenges, not to mention VNF/CNF life cycle management (LCM) and ongoing operations.

Vodafone requires that all new software be cloud-native – calling it the "Cloud Native Golden Rule." This does not come as a surprise, as many CSPs have similar strategies. What did come as a bit of a surprise, was the notion that software-as-a-service (SaaS) is seen as a viable alternative for consuming telco functions. While the vendor with the SaaS offering may not itself be cloud-native (for example, it could still have hardware dependencies), from Vodafone's point of view, it ends up performing as such, given the lower operational and maintenance costs and flexibility of a SaaS consumption model.

If you have some other fantastic links, videos, resources on this topic, feel free to add in the comments.

Related Posts:

Sunday, 1 March 2020

5G Private and Non-Public Network (NPN)


Private Networks have been around for a while and really took off after 4G was launched. This is due to the fact that the architecture was simplified due to the removal of CS core and also the advancements in silicon, storage, computation, etc. allowed creation of smaller and more efficient equipment that simplified private networks.

While private networks imply an isolated network for selected devices that are allowed to connect on to the network, Non-Public Networks are much broader in scope. Chief among them is the ability of certain devices to be capable of working on Private as well as Public Network or roaming between them.

I recently ran a workshop on 'Introduction to Private 4G & 5G Networks' with a well known Industry analyst Dean Bubley. One of the sections looked at the Network Architecture based on the 3GPP standards. This tutorial is a part of that particular section. Slides and video embedded below. There are also some interesting videos on YouTube that show how and why Private Networks are needed and some use cases. The playlist is embedded in the end.






Playlist of Private Networks Use Cases.



Related Posts:

Thursday, 27 February 2020

5G and Industry 4.0


Telefónica published an infographic on 'Benefits of 5G in Industry 4.0' last week. You can download it on their website here. This reminded me that we have now completed the third video in our series of IoT.

  1. The beginners guide to M2M, MTC & IoT is discussed here and video is available here.
  2. Industrial IoT (IIoT) vs IoT is discussed here.
  3. This blog post with with embedded video / slide looks at Industrie 4.0 (a.k.a. I4.0 or I4)



Slides and Video is embedded below, let us know what you think.






Related Posts and Links:

Wednesday, 5 June 2019

New Tutorial on 5G Spectrum


We made a new tutorial on 5G spectrum. It's in 2 different formats. Short version (~13 mins) or Long version (~31 mins). Instead of embedding the slides/videos here, I am providing links to the 5G section on 3G4G page below.

Short Version (~13 mins) - click here

Long Version (~31 mins) - click here


Related posts:



Monday, 4 February 2019

Friday, 1 December 2017

Macrocells, Small Cells & Hetnets Tutorial


I blogged about it on the Small Cells blog but cross posting here, just in case you missed it. I am making some videos sharing basic information about mobile technology. Its on YouTube here.

Recently I made some videos looking at all kinds of cellular infrastructure; playlist is embedded below. If you need slides, get it from 3G4G slideshare channel here.

Tuesday, 18 January 2011

3GPP Tutorials via 'The SpecTools'

Some of you may have noticed that the new and revamped 3GPP website have recently started offering 3GPP specs and features tutorials via The SpecTools. There is quite a lot of useful information and most of it is premium but a lot is free as well.

So the new starters or those wishing to refresh their knowledge feel free to check this out: