Showing posts with label Internet of Things. Show all posts
Showing posts with label Internet of Things. Show all posts

Wednesday, 14 August 2024

3GPP Release 18 Description and Summary of Work Items

The first official release of 3GPP TR 21.918: "Release 18 Description; Summary of Rel-18 Work Items" has been published. It's the first official version of 5G-Advanced. Quoting from the report: 

Release 18 specifies further improvements of the 5G-Avanced system. 

These improvements consist both in enhancements of concepts/Features introduced in the previous Releases and in the introduction of new topics.

Some of the key improvements are:

  • a further integration of the Satellite (NTN) access (introduced in Rel-17) in the 5G System (5GS), 
  • a more efficient support of Internet of Things (IoT), Machine-Type Communication (MTC), including by satellite coverage
  • and also several aspects of proximity communication and location (Sidelink, Proximity, Location and Positioning, better support of the industrial needs (Verticals, Industries, Factories, Northbound API), Multicast and Broadcast Services (MBS), Network Slicing or Uncrewed Aerial Vehicles (UAV).

As for the new topics, some of the key aspects are:

  • Energy Efficiency (EE)
  • Artificial Intelligence (AI)/Machine Learning (ML)
  • eXtended, Augmented and Virtual Reality (XR, AR, VR), immersive communications

The following list is from the v1.0.0 table of contents to make it easier to find the list of topics. If it interests you, download the latest version technical report from the directory here.

5 Satellite / Non-Terrestrial Network (NTN)
5.1 General aspects
5.1.1 User plane: “5G system with satellite backhaul”
5.1.2 Discontinuous coverage: “Satellite access Phase 2”
5.1.3 Radio: "NR NTN enhancements"
5.1.4 Charging and Management aspects of Satelite
5.2 Specific aspects
5.2.1 IoT (Internet of Things) NTN enhancements
5.2.2 Guidelines for Extra-territorial 5G Systems
5.2.3 5G system with satellite access to Support Control and/or Video Surveillance
5.2.4 Introduction of the satellite L-/S-band for NR
5.2.5 Other band-related aspects of satellite

6 Internet of Things (IoT), Machine-Type Communication (MTC)
6.1 Personal IoT and Residential networks
6.2 Enhanced support of Reduced Capability (RedCap) NR devices
6.3 NR RedCap UE with long eDRX for RRC_INACTIVE State
6.4 Application layer support for Personal IoT Network
6.5 5G Timing Resiliency System
6.6 Mobile Terminated-Small Data Transmission (MT-SDT) for NR
6.7 Adding new NR FDD bands for RedCap in Rel-18
6.8 Signal level Enhanced Network Selection
6.9 IoT NTN enhancements

7 Energy Efficiency (EE)
7.1 Enhancements of EE for 5G Phase 2
7.2 Network energy savings for NR
7.3 Smart Energy and Infrastructure

8 Uncrewed Aerial Vehicles (UAV), UAS, UAM
8.1 Architecture for UAV and UAM Phase 2
8.2 Architecture for UAS Applications, Phase 2
8.3 NR support for UAV
8.4 Enhanced LTE Support for UAV

9 Sidelink, Proximity, Location and Positioning
9.1 5GC LoCation Services - Phase 3
9.2 Expanded and improved NR positioning
9.3 NR sidelink evolution
9.4 NR sidelink relay enhancements
9.5 Proximity-based Services in 5GS Phase 2
9.6 Ranging-based Service and sidelink positioning
9.7 Mobile Terminated-Small Data Transmission (MT-SDT) for NR
9.8 5G-enabled fused location service capability exposure

10 Verticals, Industries, Factories, Northbound API
10.1 Low Power High Accuracy Positioning for industrial IoT scenarios
10.2 Application enablement aspects for subscriber-aware northbound API access
10.3 Smart Energy and Infrastructure
10.4 Generic group management, exposure and communication enhancements
10.5 Service Enabler Architecture Layer for Verticals Phase 3
10.6 SEAL data delivery enabler for vertical applications
10.7 Rel-18 Enhancements of 3GPP Northbound and Application Layer interfaces and APIs
10.8 Charging Aspects of B2B
10.9 NRF API enhancements to avoid signalling and storing of redundant data
10.10 GBA_U Based APIs
10.11 Other aspects

11 Artificial Intelligence (AI)/Machine Learning (ML)
11.1 AI/ML model transfer in 5GS
11.2 AI/ML for NG-RAN
11.3 AI/ML management & charging
11.4 NEF Charging enhancement to support AI/ML in 5GS

12 Multicast and Broadcast Services (MBS)
12.1 5G MBS Phase 2
12.2 Enhancements of NR MBS
12.3 UE pre-configuration for 5MBS
12.4 Other MBS aspects

13 Network Slicing
13.1 Network Slicing Phase 3
13.2 Enhancement of NSAC for maximum number of UEs with at least one PDU session/PDN connection
13.3 Enhancement of Network Slicing UICC application for network slice-specific authentication and authorization
13.4 Charging Aspects of Network Slicing Phase 2
13.5 Charging Aspects for NSSAA
13.6 Charging enhancement for Network Slice based wholesale in roaming
13.7 Network Slice Capability Exposure for Application Layer Enablement
13.8 Other slice aspects

14 eXtended, Augmented and Virtual Reality (XR, AR, VR), immersive
14.1 XR (eXtended Reality) enhancements for NR
14.2 Media Capabilities for Augmented Reality
14.3 Real-time Transport Protocol Configurations
14.4 Immersive Audio for Split Rendering Scenarios  (ISAR)
14.5 Immersive Real-time Communication for WebRTC
14.6 IMS-based AR Conversational Services
14.7 Split Rendering Media Service Enabler
14.8 Extended Reality and Media service (XRM)
14.9 Other XR/AR/VR items

15 Mission Critical and emergencies
15.1 Enhanced Mission Critical Push-to-talk architecture phase 4
15.2 Gateway UE function for Mission Critical Communication
15.3 Mission Critical Services over 5MBS
15.4 Mission Critical Services over 5GProSe
15.5 Mission Critical ad hoc group Communications
15.6 Other Mission Critical aspects

16 Transportations (Railways, V2X, aerial)
16.1 MBS support for V2X services
16.2 Air-to-ground network for NR
16.4 Interconnection and Migration Aspects for Railways
16.5 Application layer support for V2X services; Phase 3
16.6 Enhanced NR support for high speed train scenario in frequency range 2 (FR2)

17 User Plane traffic and services
17.1 Enhanced Multiparty RTT
17.2 5G-Advanced media profiles for messaging services
17.3 Charging Aspects of IMS Data Channel
17.4 Evolution of IMS Multimedia Telephony Service
17.5 Access Traffic Steering, Switch and Splitting support in the 5G system architecture; Phase 3
17.6 UPF enhancement for Exposure and SBA
17.7 Tactile and multi-modality communication services
17.8 UE Testing Phase 2
17.9 5G Media Streaming Protocols Phase 2
17.10 EVS Codec Extension for Immersive Voice and Audio Services
17.11 Other User Plane traffic and services items

18 Edge computing
18.1 Edge Computing Phase 2
18.2 Architecture for enabling Edge Applications Phase 2
18.3 Edge Application Standards in 3GPP and alignment with External Organizations

19 Non-Public Networks
19.1 Non-Public Networks Phase 2
19.2 5G Networks Providing Access to Localized Services
19.3 Non-Public Networks Phase 2

20 AM and UE Policy
20.1 5G AM Policy
20.2 Enhancement of 5G UE Policy
20.3 Dynamically Changing AM Policies in the 5GC Phase 2
20.4 Spending Limits for AM and UE Policies in the 5GC
20.5 Rel-18 Enhancements of UE Policy

21 Service-based items
21.1 Enhancements on Service-based support for SMS in 5GC
21.2 Service based management architecture
21.3 Automated certificate management in SBA
21.4 Security Aspects of the 5G Service Based Architecture Phase 2
21.5 Service Based Interface Protocol Improvements Release 18

22 Security-centric aspects
22.1 IETF DTLS protocol profile for AKMA and GBA
22.2 IETF OSCORE protocol profiles for GBA and AKMA
22.3 Home network triggered primary authentication
22.4 AKMA phase 2
22.5 5G Security Assurance Specification (SCAS) for the Policy Control Function (PCF)
22.6 Security aspects on User Consent for 3GPP services Phase 2
22.7 SCAS for split-gNB product classes
22.8 Security Assurance Specification for AKMA Anchor Function Function (AAnF)
22.9 Other security-centric items

23 NR-only items
23.1 Not band-centric
23.1.1 NR network-controlled repeaters
23.1.2 Enhancement of MIMO OTA requirement for NR UEs
23.1.3 NR MIMO evolution for downlink and uplink
23.1.4 Further NR mobility enhancements
23.1.5 In-Device Co-existence (IDC) enhancements for NR and MR-DC
23.1.6 Even Further RRM enhancement for NR and MR-DC
23.1.7 Dual Transmission Reception (TxRx) Multi-SIM for NR
23.1.8 NR support for dedicated spectrum less than 5MHz for FR1
23.1.9 Enhancement of NR Dynamic Spectrum Sharing (DSS)
23.1.10 Multi-carrier enhancements for NR
23.1.11 NR RF requirements enhancement for frequency range 2 (FR2), Phase 3
23.1.12 Requirement for NR frequency range 2 (FR2) multi-Rx chain DL reception
23.1.13 Support of intra-band non-collocated EN-DC/NR-CA deployment
23.1.14 Further enhancements on NR and MR-DC measurement gaps and measurements without gaps
23.1.15 Further RF requirements enhancement for NR and EN-DC in frequency range 1 (FR1)
23.1.16 Other non-band related items
23.2 Band-centric
23.2.1 Enhancements of NR shared spectrum bands
23.2.2 Addition of FDD NR bands using the uplink from n28 and the downlink of n75 and n76
23.2.3 Complete the specification support for BandWidth Part operation without restriction in NR
23.2.4 Other NR band related topics

24 LTE-only items
24.1 High Power UE (Power Class 2) for LTE FDD Band 14
24.2 Other LTE-only items

25 NR and LTE items
25.1 4Rx handheld UE for low NR bands (<1GHz) and/or 3Tx for NR inter-band UL Carrier Aggregation (CA) and EN-DC
25.2 Enhancement of UE TRP and TRS requirements and test methodologies for FR1 (NR SA and EN-DC)
25.3 Other items

26 Network automation
26.1 Enablers for Network Automation for 5G phase 3
26.2 Enhancement of Network Automation Enablers

27 Other aspects
27.1 Support for Wireless and Wireline Convergence Phase 2
27.2 Secondary DN Authentication and authorization in EPC IWK cases
27.3 Mobile IAB (Integrated Access and Backhaul) for NR
27.4 Further NR coverage enhancements
27.5 NR demodulation performance evolution
27.6 NR channel raster enhancement
27.7 BS/UE EMC enhancements for NR and LTE
27.8 Enhancement on NR QoE management and optimizations for diverse services
27.9 Additional NRM features phase 2
27.10 Further enhancement of data collection for SON (Self-Organising Networks)/MDT (Minimization of Drive Tests) in NR and EN-DC
27.11 Self-Configuration of RAN Network Entities
27.12 Enhancement of Shared Data ID and Handling
27.13 Message Service within the 5G system Phase 2
27.14 Security Assurance Specification (SCAS) Phase 2
27.15 Vehicle-Mounted Relays
27.16 SECAM and SCAS for 3GPP virtualized network products
27.17 SECAM and SCAS for 3GPP virtualized network products
27.18 MPS for Supplementary Services
27.19 Rel-18 enhancements of session management policy control
27.20 Seamless UE context recovery
27.21 Extensions to the TSC Framework to support DetNet
27.22 Multiple location report for MT-LR Immediate Location Request for regulatory services
27.23 Enhancement of Application Detection Event Exposure
27.24 General Support of IPv6 Prefix Delegation in 5GS
27.25 5G Timing Resiliency System
27.26 MPS when access to EPC/5GC is WLAN
27.27 Data Integrity in 5GS
27.28 Security Enhancement on RRCResumeRequest Message Protection

28 Administration, Operation, Maintenance and Charging-centric Features
28.1 Introduction
28.2 Intent driven Management Service for Mobile Network phase 2
28.3 Management of cloud-native Virtualized Network Functions
28.4 Management of Trace/MDT phase 2
28.5 Security Assurance Specification for Management Function (MnF)
28.6 5G performance measurements and KPIs phase 3
28.7 Access control for management service
28.8 Management Aspects related to NWDAF
28.9 Management Aspect of 5GLAN
28.10 Charging Aspects of TSN
28.11 CHF Distributed Availability
28.12 Management Data Analytics phase 2
28.12 5G System Enabler for Service Function Chaining
28.13 Other Management-centric items

29 Other Rel-18 Topics

If you find them useful then please get the latest document from here.

Related Posts

Wednesday, 8 November 2023

Presentations from ETSI Security Conference 2023

It's been a while since I wrote about the ETSI Security Conference, which was known as ETSI Security week once upon a time. This year, ETSI’s annual flagship event on Cyber Security took place face-to-face from 16 to 19 October 2023, in ETSI, Sophia Antipolis, France and gathered more than 200 people. 

The event this year focused on Security Research and Global Security Standards in action The event also considered wider aspects such as Attracting the next generation of Cyber Security standardization professionals and supporting SMEs.

The following topics were covered

  • Day 1:
    • Session 1: Global Cyber Security
    • Session 2: Global Cyber Security
    • Session 3: Regulation State of the Nation
    • Session 4: Regulation, Data Protection and Privacy, Technical Aspects
  • Day 2:
    • Session 1: Zero Trust, Supply Chain & Open Source
    • Session 2: IoT & Certification
    • Session 3: Zero Trust, Supply Chain & Open Source
    • Session 4: Quantum Safe Cryptography Session
  • Day 3:
    • Session 1: Experiences of Attracting Next Generation of Engineers and Investing in Future
    • Session 2: IoT and Certification Session
    • Session 3: IoT & Mobile Certification
    • Session 4: 5G in the Wild - Part 1
  • Day 4:
    • Session 1: 5G in the Wild - Part 2
    • Session 2: 6G Futures
    • Session 3: Augmented Reality and AI

You can see the detailed agenda here. The presentations from the conference are available here.

The CyberSecurity Magazine interviewed Helen L. And Jane Wright discussing diversity and careers in Cybersecurity. Helen, from the National Cyber Security Centre, has worked in Security for over 20 years and is a mentor at the CyberFirst programme. CyberFirst intends to inspire and encourage students from all backgrounds to consider a career in cybersecurity. Jane Wright is a Cyber Security Engineer at QinetiQ and has been participating in the CyberFirst. The interview, along with a video, is available here.

Related Posts

Wednesday, 12 July 2023

Small Data Transmission (SDT) in LTE and 5G NR

One of the features that was introduced part of 5G NR 3GPP Release 17 is known as Small Data Transmission (SDT). When small amount of data, in case of an IoT device, needs to be sent, there is no need to establish data radio bearers. The information can be sent as part of signalling message. A similar approach is available in case of 4G LTE. 

Quoting from Ofinno whitepaper 'Small Data Transmission: PHY/MAC', 

The SDT in the 3GPP simply refers to data transmission in an inactive state. Specifically, the SDT is a transmission for a short data burst in a connectionless state where a device does not need to establish and teardown connections when small amounts of data need to be sent.

In the 3GPP standards, the inactive state had not supported data transmission until Release 15. The 3GPP standards basically allowed the data transmission when ciphering and integrity protection are achieved during the connection establishment procedure. Therefore, the data transmission can occur after the successful completion of the establishment procedure between the device and network.

The problem arises as a device stays in the connected state for a short period of time and subsequently releases the connection once the small size data is sent. Generally, the device needs to perform multiple transmissions and receptions of control signals to initiate and maintain the connection with a network. As a payload size of the data is relatively smaller compared with the amounts of the control signals, making a connection for the small data transmission becomes more of a concern for both the network and the device due to the control signaling overhead.

The 3GPP has developed the SDT procedure to enable data transmission in the inactive state over the existing LTE and NR standards. The device initiates the SDT procedure by transmitting an RRC request message (e.g., SDT request message) and data in parallel instead of transmitting the data after the RRC request message processed by a network. Additional transmission and/or reception are optional. The device performs this SDT procedure without transition to the connected state (i.e., without making a connection to the network).

The SDT enables for the network to accept data transmission without signaling intensive bearer establishment and authentication procedure required for the RRC connection establishment or resume procedure. For example, in the SDT procedure, the device needs only one immediate transmission of a transport block (TB) that contains data and RRC request message. Furthermore, the device does not need to perform procedures (e.g., radio link monitoring) defined in the connected state since the RRC state is kept as the inactive state. This results in improving the battery life of the device by avoiding control signaling unnecessary for transmission of small size data.

The principle of the SDT is very simple. The network configures radio resources beforehand for the data transmission in the inactive state. For example, if the conditions to use the configured radio resources satisfy, the device transmits data and the RRC request message together via the configured radio resources. In the 3GPP standards, there are two types of the SDT depending on the ways to configure the radio resources: (1) SDT using a random access (RA) and (2) SDT using preconfigured radio resources. 

Figure 2 (top) illustrates different types of the SDT referred in 3GPP LTE and NR standards. The SDT using the random access in LTE and NR standards is referred to as an EDT (early data transmission) and RA-SDT (Random Access based SDT), respectively. For both the EDT and the RA-SDT, the device performs data transmission using shared radio resources of the random access procedure. Thus, the contention with other devices can occur over the access to the shared radio resources. The shared radio resources for the SDT are broadcast by system information and are configured as isolated from the one for a nonSDT RA procedure, i.e., the legacy RA procedure. On the other hands, the CG-SDT uses the preconfigured radio resources dedicated to the device. The SDT using the preconfigured radio resource is referred to as transmission via PUR (Preconfigured Uplink Resource) in the LTE standards. The NR standards refers the SDT using the preconfigured radio resource as CG-SDT (Configured Grant based SDT). The network configures the configuration parameters of the preconfigured radio resources when transiting the device in the connected state to the inactive state. For example, an RRC release message transmitted from the network for a connection release contains the configuration parameters of PUR or CG-SDT. No contention is expected for the SDT using the preconfigured radio resource since the configuration parameters are dedicated to the device. 

You can continue reading the details in whitepaper here. Ofinno has another whitepaper on this topic, 'Small Data Transmission (SDT): Protocol Aspects' here.

3GPP also recently published an article on this topic here. Quoting from the article:

With SDT it is possible for the device to send small amounts of data while remaining in the inactive state. Note that this idea resembles the early GSM systems where SMS messages where sent via the control signalling; that is, transferring small amounts of data while the mobile did not have a (voice) connection.

SDT is a procedure which allows data and/or signalling transmission while the device remains in inactive state without transitioning to connected state. SDT is enabled on a radio bearer basis and is initiated by the UE only if less than a configured amount of UL data awaits transmission across all radio bearers for which SDT is enabled. Otherwise the normal data transmission scheme is used.

With SDT the data is transmitted quickly on the allocated resource. The IoT device initiates the SDT procedure by transmitting an RRC request message and payload data in parallel, instead of the usual procedure where the data is transmitted after the RRC request message is processed by a network.

It is not only the speed and the reduced size of the transmitted data which make SDT such a suitable process for IoT devices. Since the device stays in the inactive state, it does not have to perform many tasks associated with the active state. This further improves the battery life of the IoT device. Additional transmission and/or reception are optional.

There are two ways of performing SDT:

  1. via random access (RA-SDT)
  2. via preconfigured radio resources (CG-SDT)

Random Access SDT

With RA-SDT, the IoT device does not have a dedicated radio resource, and it is possible that the random access message clashes with similar RA-SDT random access messages from other IoT devices. The device gets to know the radio resources for the RA procedure from system information messages, in a similar way to non RA-SDT devices. However, the RA radio resources for SDT and non SDT devices are kept separate; that is, these device types do not interfere with each other in random access

The RA-SDT procedure can be a two-step or a four-step random access procedure. In two-step procedure the payload data is already sent with the initial random access message, whereas in four-step procedure the device first performs contention resolution with the random access request - random access response message pair, and then sends the UL payload with RRC Resume Request. The procedure may continue with further uplink and downlink small data transmissions, and then it is terminated with an RRC Release from the network.

Below are the signalling diagrams for both two-step and four-step RA-SDT procedures. Note that in both cases the UE stays in the RRC inactive state during the whole process.

Configured Grant SDT

For CG-SDT, the radio resources are allocated periodically based on the estimation of the UE’s traffic requirements. This uplink scheduling method is called Configured Grant (CG). With CG-SDT there will be no message clashes with other IoT devices since the radio resources are dedicated for each device. The resource allocation is signalled to the IoT device by the network when the device leaves the connected state.

If the amount of data in the UE's tx buffer is larger than a defined limit, then the data transmission is done using the normal non-SDT procedure.

For SDT process, the device selects the CG-SDT as the SDT type if the resources for the CG-SDT are configured on the selected uplink carrier. If the resources for the CG-SDT are unavailable or invalid, the RA-SDT or the non-SDT RA procedure will be chosen if those are configured. If no SDT type configuration is available then a normal non-SDT data transmission is performed.

With IoT devices proliferating, it makes sense to optimise data transfer and anything else that will reduce the power consumption and let the battery in the devices last for much longer.

Related Posts

Thursday, 6 April 2023

ETSI's Summit on Sustainability: ICT Standards for a Greener World

The ETSI Summit on Sustainability - How ICT developments and standards can enable sustainability and have a positive impact on society, took place on 30 March 2023 and focused on the key role of the ICT industry and related standardization activities to support Green initiatives. The event brought a large and global audience of over 220 stakeholders including operators, solution providers, policy makers and standards bodies or fora working on the topic.

A multitude of presentations including two interactive panel sessions, rhythmed the day and succeeded to make it a highly interactive Summit, pointing out challenges and how ICT can be both the problem and the solution.

The opening session examined the sustainability challenges and global green initiatives from numerous global standards bodies and fora. One of the suggested actions was to adopt ESG (Environmental Social Governance) goals as an integral part of the company’s objectives. Another highlight from the session was the need for standards work on the measuring and reporting of “avoided emissions,” that is being covered by ongoing work in ETSI. Feedback from the audience pointed out that it would be beneficial to further investigate the balance of ICT deployments vs real needs. Do we really need to endlessly deploy new technologies, when exiting ones serve the need?

The following are presentations from the welcome address and session 1:

The second session focused on the role of ICT in sustainability and was animated by two panels. The first one addressed the operators’ objectives and their plans for sustainability. The second one dealt with various initiatives being taken by solutions providers to meet the needs expressed by the operators and society as a whole. Suggested actions emerging from the debate included putting sustainability criteria in the procurement phase towards the vendors and enhance collaboration between operators, to share their common requirements and provide them to the supply chain ecosystem. In an animated exchange between the Panellists and the audience it was highlighted that there is an urgent need to reduce energy consumption, extend the lifecycles of ICT equipment and systematically recycle and repurpose in order to reduce ICT waste.

The following are presentations from session 2:

  • Session 02 - The Role of ICT in Sustainability: The session comprises two interactive panel sessions examining 1) Operators objectives and plans for Sustainability and 2) several initiatives being taken by solutions providers to meet those objectives. Session Chaired by David Boswarthick, ETSI
    • Operators Panel Moderated by Anita Dohler, NGMN Alliance e.V.: The purpose of this panel is to examine what are the sustainability plans, challenges & priorities for Operators
      • Saima Ansari, Deutsche Telekom
      • P. Balaji, Vodafone Idea
      • Marc Grant, AT&T
      • Luca Pesando, TIM
    • Solution Providers Panel Moderated by Joe Barrett, GSA, Global Mobile Suppliers Association - The purpose is to examine what the current solutions and remaining challenges on Sustainability are.

The afternoon opened with an  overview of ETSI, 3GPP and oneM2M activities supporting technologies for sustainability. One of the presentations highlighted that ICT should initially focus its own environmental impacts and consider digital sobriety as it is recognized that the cleanest energy is the one that is not consumed.

The following are presentations from session 3:

The summit concluded with a dynamic exchange around what more telecoms can do to move forward in the right direction. ICT and specifically data centres create a significant carbon footprint, and there was a call to use the ISO Net Zero guidelines in order to develop sustainable strategies. The industry should adopt an eco-design (sustainability by design) approach and seek to have products that are energy efficient, with longer life cycles, recyclable and repairable.

The following are presentations from session 4:

As a conclusion it was agreed that ICT is part of the sustainability problem and must seek to reduce its own emissions, whilst at the same time ICT is certainly part of the solution and should be applied to other domains in order to help them reach their own sustainability goals. As a first step, making ICT more sustainable should be the #01 priority for the industry today and ETSI groups TC EE (environmental engineering), TC ATTM (access, terminal and multiplexing) and ISG OEU (operational energy efficiency for users) are currently providing the standards to enable this transition to greener digital technologies.

Event Wrap-Up / Conclusions is available here.

Should you wish to learn more about the summit, all of the presentations including the conclusion slides are available here.

Related Posts

Thursday, 6 October 2022

Key enablers for mass IoT adoption

At 'The Things Conference' in Amsterdam in September, Roman Nemish, Co-Founder & President of TEKTELIC presented a critical view of different IoT technologies and argued that LoRaWAN is the only technology that will eventually make mass IoT possible.

The following is the intro to the talk from the conference:

IoT technology has progressed from home to city-scale applications, making it a crucial part of any operational process. IoT sensors are becoming more affordable, reliable, and easy to deploy.

The Internet of Things has already brought advancement to healthcare, retail, city infrastructure, and manufacturing with many other opportunities still open.

We are ready to explain why IoT deployment has transformed from privilege to necessity, what benefits it can bring to your business, and how you win the competition using IoT.

Enterprise IoT Insights have a good take on the talk here. The following is an extract:

Nemish, president at TEKTELIC, argued that new-wave cellular IoT – in the form of NB-IoT and LTE-M, primarily – is “too expensive” for consumers and too small-margin for mobile operators; that “most IoT opportunities are 10-25 times smaller [than the kinds of deals that would] attract operator attention”. Cellular IoT has “vast potential”, he concluded, but requires a “different approach”.

In other words, there is not enough profit in (low-power) cellular IoT for mobile operators to give it proper focus – and the deals are not big enough to make them really care. The IoT game – based on finely-calculated returns on volume-deals not going much higher than 100,000 units at a time – is better served by smaller-sized providers, without regional spectrum licences, offering broadly-equivalent technologies in unlicensed bands, he implied.

But experiences with Sigfox and LoRaWAN (in some formats) – the French-born IoT twin-tech that started the whole low-power wide-area (LPWA) movement, and forced the cellular community to come up with their own alternatives – have not been much better, necessarily, the story goes. Sigfox pumped $350 million over 10 years into its technology and network, only to go into receivership at the start of 2022 with fewer than 20 million devices under management.

The problem, said Nemish, is with the business model, and not the tech. (As an aside, a takeaway from The Things Conference last week, as from the LoRaWAN World Expo in Paris in the summer, and from any number of private discussions in between, is the IoT market is mature enough to let go of its closely-held tech differences, and acknowledge that customers don’t really care so long as it works – and so the blame switches to the business model, instead.)

Nemish blamed Sigfox’s ‘failure’ on exclusive single-market contracts and cripping licensing fees; these “killed most operator business plans”, he suggested. Of course, Sigfox lives to see another day – and, it might be noted, Taiwan-based IoT house Unabiz, its new owners, have just hosted the 0GUN Alliance of Sigfox operators in France to bash-out a new operator model, and a collaborative approach to a “unified LPWAN world”.

And LoRaWAN is not exempt in the analysis, either. In Amsterdam, Nemish held up the madly-hyped Helium model for crypto-led community network building as another failed IoT business model. Again – and of course, with a critical appraisal of a LoRaWAN network by a LoRaWAN provider – the tech is not the problem, just the way it is being offered. Because Helium, he said, with $1 billion of public community funding, has “no use” after three years.

As per the slide, parent Nova Labs has “failed to sign customers, implement SLA(s), or plan network evolution”, he suggested. The community behind it, originally bedsit enthusiasts on to a good thing, are not motivated by “IoT adoption but [by] crypto-mania”, said Nemish. Just look on eBay, where 10,000 secondhand Helium miners (gateways) are being flogged, to see how its star has fallen, he said – along with its stock, with HNT trading up 12 percent at around $5 at writing, on the back of a deal for decentralised 5G with T-Mobile in the US, but down from a high of nearly $30 a few months ago.

The article highlights some heated discussions on the presentation and slides. You can read the whole article here.

The closing slide nicely summarises that IoT deployment is a marathon, not a sprint. End users are interested in solving real-world problems. Partner to develop complete IoT solutions that can be integrated simply with any IoT platform and with clearly defined API. Also have a strong engineering team to support customer integration and early deployment.

Here is the video of the talk for anyone interested:

Related Posts

Monday, 25 April 2022

Edge Computing Tutorial from Transforma Insights

Jim Morrish, Founding Partner of Transforma Insights has kindly made an in-depth Edge Computing Tutorial for our channel. Slides and video is embedded below.

In this tutorial Jim covers the following topics:

  • Definitions of Edge Computing.
  • How and why Edge Computing is used.
  • Planning for deployment of Edge Computing.
  • Forecasts for Edge Computing.

We would love to know if this answers your questions on this topic. If not, please feel free to post your questions below.  

Related Posts

Monday, 4 October 2021

Are there 50 Billion IoT Devices yet?

Detailed post below but if you are after a quick summary, it's in the picture above.

Couple of weeks back someone quoted that there were 50 billion devices last year (2020). After challenging them on the number, they came back to me to say that there were over 13 billion based on GSMA report. While the headline numbers are correct, there are some finer details we need to look at.

It all started back in 2010 when the then CEO of Ericsson announced that there will be 50 Billion IoT Devices by 2020. You could read all about it here and see the presentation here. While it doesn't explicitly say, it was expected that the majority of these will be based on cellular technologies. I also heard the number 500 Billion by 2030, back in 2013.

So the question is how many IoT devices are there today and how many of these are based on mobile cellular technologies?

The headline number provided by the GSMA Mobile Economy report, published just in time for MWC 2021, is 13.1 billion in 2020. It does not provide any further details on what kind of connectivity these devices use. I had to use my special search skills to find the details here.

As you can see, only 1.9 billion of these are based on cellular connections, of which 0.2 billion are based on licensed Low Power Wide Area (licensed LPWA, a.k.a. LTE-M and NB-IoT) connections. 

Ericsson Mobility Report, June 2021, has a much more detailed breakdown regarding the numbers as can be seen in the slide above. As of the end of 2020, there were 12.4 billion IoT devices, of which 10.7 billion were based on Short-range IoT. Short-range IoT is defined as a segment that largely consists of devices connected by unlicensed radio technologies, with a typical range of up to 100 meters, such as Wi-Fi, Bluetooth and Zigbee.

Wide-area IoT, which consists of segment made up of devices using cellular connections or unlicensed low-power technologies like Sigfox and LoRa had 1.7 billion devices. So, the 1.6 billion cellular IoT devices also includes LPWAN technologies like LTE-M and NB-IoT.

I also reached out to IoT experts at analyst firm Analysys Mason. As you can see in the Tweet above, Tom Rebbeck, Partner at Analysys Mason, mentioned 1.6 billion cellular (excluding NB-IoT + LTE-M) and 220 million LPWA (which includes NB-IoT, LTE-M, as well as LoRa, Sigfox etc.) IoT connections.

I also noticed this interesting chart in the tweet above which shows the growth of IoT from Dec 2010 until June 2021. Matt Hatton, Founding Partner of Transforma Insights, kindly clarified that the number as 1.55 billion including NB-IoT and LTE-M.

As you can see, the number of cellular IoT connections are nowhere near 50 billion. Even if we include all kinds of IoT connectivity, according to the most optimistic estimate by Ericsson, there will be just over 26 billion connections by 2026.

Just before concluding, it is worth highlighting that according to all these cellular IoT estimates, over 1 billion of these connections are in China. GSMA's 'The Mobile Economy China 2021' puts the number as 1.34 billion as of 2020, growing to 2.29 billion by 2025. Details on page 9 here.

Hopefully, when someone wants to talk about Internet of Thing numbers in the future, they will do a bit more research or just quote the numbers from this post here.

Related Posts

Tuesday, 17 August 2021

'5G RAN Release 18 for Industry Verticals' Webinar Highlights

5G PPP held a virtual workshop on RAN Release 18 for Industry Verticals on June 23rd, 2021. The workshop was organised by 3GPP Market Representation Partners (MRPs): 5G-IA, 5GAA, 5G-ACIA and PSCE.

It features a fireside chat with new 3GPP RAN TSG Chair, Wanshi Chen. In addition to this, the workshop then provides a deep dive on new requirements from verticals, spanning automotive (5GAA), manufacturing (5G-ACIA), critical communications and public safety (TCCA with PSCE), broadcasting and media (5G-MAG), satellite (ESOA), rail (UIC), maritime (IALA) and energy (EUTC).

5G-SOLUTIONS came on board as a 5G PPP project supporting verticals with the 5G-EVE and 5G-VINNI 5G network infrastructures alongside RAN specialists doing standardisation work applicable to multiple verticals.

The video of the webinar is embedded below. In addition, you will find timings of when a particular talk starts and a link to the slides (if shared/available)

Timings:

  • 0:04:21 Fireside chat with Wanshi Chen, Qualcomm and 3GPP RAN TSG Chairman
  • 0:21:00 NTN Requirements in Rel-18 by Nicolas Chuberre, Thales Alenia Space (slides)
  • 0:31:40 Multiple verticals: Andrea Di Giglio, 5G SOLUTIONS (slides)
  • 0:36:35 Media and Broadcasting: David Vargas, BBC and 5G-MAG Chair of CD-T WG, Proposals for 3GPP RAN Rel-18 (slides)
  • 0:43:19 Maritime: Hyounhee Koo, Synctechno and IALA, Maritime Requirements on 3GPP Rel 18 RAN Studies/Works Priorities (slides)
  • 0:46:12 Rail: Ingo Wendler, UIC, NR Narrowband Channel Bandwidth - Railway Use Case (slides)
  • 0:50:02 Utilities: Julian Stafford, EUTC 3GPP RAN Rel-18 Requirements (slides)
  • 0:58:35 Utilities: Erik Guttman, Samsung 5G Smart Energy Infrastructure (slides)
  • 1:05:45 Multiple verticals: Mathew Webb, Huawei and 3GPP RAN 3GPP Release 17 and Release 18 support for industry verticals (slides)
  • 1:15:19 Public Safety/Critical Communications: Tero Pesonen, TCCA Chair, joint presentation with PSCE, 3GPP MRP Mini Workshop: 3GPP Rel 18. Requirements from industry verticals (slides)
  • 1:20:15 Multiple verticals: Thierry Berisot, Novamint and 3GPP RAN, Industry Verticals and Rel-18 RAN (slides)
  • 1:32:56 Manufacturing/IIoT: Michael Bahr, Siemens and 5G-ACIA WG 1Chair and An Xueli, Huawei and 5G-ACIA WG1 Vice Chair 3GPP RAN Rel-18 for Industry Verticals (slides)
  • 1:42:20 Automotive: 5GAA Maxime Flament, CTO Input to RAN 18 Rel-18 Workshop (slides)
  • 1:53:35 Interactive Session 2
  • 2:04:36 Passive IoT for 5G-Advanced, Mathew Webb, Huawei and 3GPP RAN (slides)
  • 2:14:59 Template A for Interactive Session 2
  • 2:20:40 Critical Communications / Public Safety requirements for Release 18 
  • 2:26:00 Closing Remarks

Official page here.

The slide above nicely summarizes 3GPP RAN Verticals up to Release 17.

Related Posts

Tuesday, 27 July 2021

Introduction to 5G Reduced Capability (RedCap) Devices

Back in 2019, we wrote about Release-17 study item called NR-Lite (a.k.a. NR-Light). After the study started, it was renamed as RedCap or Reduced Capability.

We have now made a video tutorial on RedCap to not only explain what it is but also discuss some of the enhancements being discussed for 3GPP Release-18 (5G-Advanced). For anyone wanting to find out the differences between the baseline 5G devices with RedCap, without wanting to go too much in detail, can see the Tweet image for comparison.

The video and the slides of the tutorial are embedded below:

Related Posts: