Showing posts with label Cambridge Wireless (CW). Show all posts
Showing posts with label Cambridge Wireless (CW). Show all posts

Thursday, 23 May 2019

Presentations on Macro Cells and Millimetre-wave Technology from recent CW (Cambridge Wireless) events


CW (Cambridge Wireless) held a couple of very interesting events from 2 very popular groups.

The first one was on "5G wide area coverage: macro cells – the why and the how". This event looked at the design and optimisation of the macro cell layer and its role within future heterogeneous networks. You can access the presentations for limited time on CW website here.

The presentations available are:
Related posts that may be of interest:


The second one was on "Commercialising millimetre-wave technology". The event reviewed the commercial opportunities at millimetre-wave frequencies, what bands are available and what licensing is needed. You can access the presentations on CW website for limited time here.

The presentations available are:

We recently made a video to educate people outside our industry about non-mmWave 5G. It's embedded below.


Thursday, 9 May 2019

Examples of 5G Use Cases & Applications


I recently did another 5G training for CW (Cambridge Wireless) & UK5G. One of the sections in that was about Use Cases. A very common questions that people ask is what can 5G do that 4G can't. The answer frankly is sometimes not very straightforward.


While you can get a very high speed and very reasonable latency 4G system, it's not necessarily a commonplace. Similarly 5G is a bit over-hyped. There is a lot of potential in the technology but the theory may not translate into practice. Take for example millimeter wave. There is a large amount of bandwidth that can be available to each operator in this spectrum. The laws of physics however restrict how far mmWave can travel and also the fact that mmWave does not penetrate through glass, walls, etc. Does that mean that an indoor 5G system would be required to complement an outdoor one? Would Wi-Fi be able to complement cellular in-building? There are many unanswered questions at the moment.

There is also the debate around 5G icon displayed on your smartphones. When you see 5G, would it really be 5G or just re-branded 4G? Light Reading has explained this issue nicely here.

So while there are many potential applications & use cases that will benefit from 5G in the long run, the answers are not that easily available today. Anyhow, the collection of videos and slides embedded below will provide you with an insight on how different vendors and operators are looking at potentially using 5G.






The latest version of these slides are available to download from UK5G website here.

Saturday, 6 April 2019

Some interesting April Fools' Day 2019 Technology Jokes


This year April Fools' Day wasn't as fun as the last one, even though it was on Monday. Many tech companies that make effort didn't make one this year. In fact Microsoft went even further and banned any public facing April Fools' pranks. Anyway, here are some of the jokes that I found interesting.

Parallel Wireless 7G Vision
This one was important for me as it features me (Yay!) and also enhanced my video editing skills. Grateful to CW (Cambridge Wireless) for being part of it too.

Video is slightly long but funny hopefully



In short, the focus for the next few years will be do design a 7G logo that can explain the vision and connect with people. Did I mention 7GPPPPP?


Google Sssnakes on a map
Google temporarily added a version of the classic game Snakes into its Google Maps app for April Fools’ Day this year.

The company says that the game is rolling out now to iOS and Android users globally today, and that it’ll remain on the app for the rest of the week. It also launched a standalone site to play the game if you don’t have the app.

Jabra Ear bud(dy)


World’s first shared headphone - engineered for shared music moments. The website says:

The headphones come with an ultra-light headband that extends seamlessly to accommodate the perfect fit for every pair of buddies, so you’ll never have to enjoy another music moment alone. The Jabra Earbud(dy)™ comes with a unique Buddy mode that promises a shared music experience that is tailored to suit each person’s preferences. Fans of voice command will be thrilled to know that with just one touch, the Jabra Earbud(dy)™ can connect to dual voice assistant.


T-Mobile Phone BoothE

T-Mobile USA and their CEO John Legere never disappoints. They always come up with something interesting. Here is a video of the prank


From MacRumours:

T-Mobile is again fighting one of the so-called pain points of the wireless industry with the launch of the Phone BoothE, a completely sound-proof and high-tech phone booth that lets T-Mobile customers escape from noisy areas to make their phone calls. Inside the Phone BoothE you can charge your devices, connect to a smart screen called "Magenta Pages" to mirror your smartphone display, and adjust the lighting to take great selfies.

In regards to the name, T-Mobile is taking a shot at AT&T's misleading 5GE label: "The Phone BoothE is an evolution towards the new world of mobility. Like many in the tech and wireless industry today, we decided that by adding an "E" to the name, you would know it's a real technology evolution." 

Although this is an April Fools' Day joke, T-Mobile has actually built the Phone BoothE and deployed them in select locations around New York City, Seattle, and Washington, DC, where anyone will be able to use them. The company on Monday also revealed the T-Mobile Phone BoothE Mobile EditionE, which is more in line with a straightforward April Fools' Day hoax, as it's "literally a magenta cardboard box with a hole in it." 

While the actual site disappeared after April 1, the archived version can be seen here.

X-Ray vision Nokia 9 PureView

The Nokia 9 PureView has plenty of cameras on its back, but did you know that the black sensor isn’t a 3D ToF camera but rather an X-Ray sensor? Can be unlocked with the new Nokia X-Ray app in Play Store


"Digi-U" from Ericsson Digital


Parallel Wireless Adds AMPS (1G) Capabilities to Their Unified ALL G Architecture


From the press release:

Worlds First Fully Virtualized AMPS (vAMPS) to enable Modernization and Cost Savings

Parallel Wireless vAMPS is compatible with: Total Access Communications Systems (TACS) in the U.K.; Nordic Mobile Telephone (NMT) System in Scandinavia; C450 in Germany; and NTT System in Japan, among others, and will allow global operators to modernize their 1G infrastructure. The 1G vAMPS solution is also software upgradable to vD-AMPS, for operators who wish to follow that path.


Truphone foldable SIM (F-SIM) for Foldable Smartphones

F-SIM – the foldable SIM – designed especially for the new foldable smartphones and tablets demonstrated at this February’s MWC Barcelona, including Huawei’s Mate X and Samsung’s Galaxy Fold.

Widely tipped as the next generation in SIM technology, the foldable SIM works on minute hinges that allow it to fold smaller than any previous SIM form factor. Made specifically for foldable phones and other devices, Truphone’s latest innovation fulfils on its broader brand promise to engineer better connections between things, people and business—anywhere in the world.

The F-SIM comes in ‘steel grey’ and, for only £5 more, ‘hot pink’. Pricing structures vary depending on data, storage, roaming charges and device model.


Google Screen Cleaner in the Files app




Mother of All USB-C Hubs for Apple Macbook - HyperDrive Ultimate Ultimate Hub



Other funny April Fools jokes:

One of the funniest jokes is Qualcomm's HandSolo that was released back in 1998. You may enjoy watching here.

Related posts:

Friday, 14 December 2018

Robots in Telecoms World - A presentation from #CWFDT event on 'Robots: Assistance, Automation, Entertainment'


Another of the CW (Cambridge Wireless) Future Devices & Technologies (#CWFDT) event 'Robots: Assistance, Automation, Entertainment' happened a few weeks back. I had helped arrange the event and as always when a speaker dropped out at the last minute, I prepared a short talk on what role Robots play in the telecoms world. More later.

Robots have been part of human imagination for decades for example they feature heavily in popular culture and we typically have a favourite robot character. My favourite was 'Johnny Sokko And His Flying Robot'. Even though it was made in 1967, I saw it only in 1986.

The anticipated future impact of Robots is widely discussed. Their potential use in military operations may well change the face of future warfare, whilst in civilian life, industrial and domestic, it is speculated how they will both be our assistants and our replacements.

The intention of the event was to reflect on the challenges of lives transformed by new human-robot relationships.

While we had interesting talks and I think we succeeded in achieving what we set out to, not all speakers shared their presentations but you can see the ones available here.

My talk along with the videos is embedded below. If you prefer to hear my talk as it was, it's on YouTube here.



A twitter moment with some of the tweets from the day is embedded below:





Related Post:

Wednesday, 10 October 2018

Automated 4G / 5G HetNet Design


I recently heard Iris Barcia, COO of Keima speak after nearly 6 years at Cambridge Wireless CWTEC 2018. The last time I heard her, it was part of CW Small Cells SIG, where I used to be a SIG (special interest group) champion. Over the last 6 years, the network planning needs have changed from planning for coverage to planning for capacity from the beginning. This particular point started a little debate that I will cover in another post, but you can sneak a peek here 😉.

Embedded below is the video and presentation. The slides can be downloaded from SlideShare.





Related posts:

Tuesday, 2 October 2018

Benefits and Challenges of Applying Device-Level AI to 5G networks


I was part of Cambridge Wireless CWTEC 2018 organising committee where our event 'The inevitable automation of Next Generation Networks' covered variety of topics with AI, 5G, devices, network planning, etc. The presentations are available freely for a limited period here.

One of the thought provoking presentations was by Yue Wang from Samsung R&D. The presentation is embedded below and can be downloaded from Slideshare.



This presentation also brought out some interesting thoughts and discussions:

  • While the device-level AI and network-level AI would generally work cooperatively, there is a risk that some vendor may play the system to make their devices perform better than the competitors. Something similar to the signaling storm generated by SCRI (see here).
  • If the device-level and network-level AI works constructively, an operator may be able to claim that their network can provide a better battery life for a device. For example iPhone XYZ has 25% better battery life on our network rather than competitors network.
  • If the device-level and network-level AI works destructively for any reason then the network can become unstable and the other users may experience issues. 

I guess all these enhancements will start slowly and there will be lots of learning in the first few years before we have a stable, mutually beneficial solution.

Related Posts:

Monday, 24 September 2018

5G New Radio Standards and other Presentations


A recent Cambridge Wireless event 'Radio technology for 5G – making it work' was an excellent event where all speakers delivered an interesting and insightful presentation. These presentations are all available to view and download for everyone for a limited time here.

I blogged about the base station antennas last week but there are other couple of presentations that stood out for me.


The first was an excellent presentation from Sylvia Lu from u-Blox, also my fellow CW Board Member. Her talk covered variety of topics including IoT, IIoT, LTE-V2X and Cellular positioning, including 5G NR Positioning Trend. The presentation is embedded below and available to download from Slideshare





The other presentation on 5G NR was one from Yinan Qi of Samsung R&D. His presentation looked at variety of topics, mainly Layer 1 including Massive MIMO, Beamforming, Beam Management, Bandwidth Part, Reference Signals, Phase noise, etc. His presentation is embedded below and can be downloaded from SlideShare.




Related Posts:

Friday, 21 September 2018

Base Station Antenna Considerations for 5G

I first mentioned Quintel in this blog three years back for their innovations in 4T8R/8T8R antennas. Since then they have been going strength to strength.


I heard David Barker, CTO of Quintel at Cambridge Wireless event titled "Radio technology for 5G – making it work" talking about the antennas consideration for 5G. There are quite a few important areas in this presentation for consideration. The presentation is embedded below:



Related Posts:

Monday, 13 August 2018

Telefonica: Big Data, Machine Learning (ML) and Artificial Intelligence (AI) to Connect the Unconnected


Earlier, I wrote a detailed post on how Telefonica was on a mission to connect 100 Million Unconnected with their 'Internet para todos' initiative. This video below is a good advert of what Telefinica is trying to achieve in Latin America


I recently came across a LinkedIn post on how Telefónica uses AI / ML to connect the unconnected by Patrick Lopez, VP Networks Innovation @ Telefonica. It was no brainer that this needs to be shared.



In his post, Patrick mentions the following:

To deliver internet in these environments in a sustainable manner, it is necessary to increase efficiency through systematic cost reduction, investment optimization and targeted deployments.

Systematic optimization necessitates continuous measurement of the financial, operational, technological and organizational data sets.

1. Finding the unconnected


The first challenge the team had to tackle was to understand how many unconnected there are and where. The data set was scarce and incomplete, census was old and population had much mobility. In this case, the team used high definition satellite imagery at the scale of the country and used neural network models, coupled with census data as training. Implementing visual machine learning algorithms, the model literally counted each house and each settlement at the scale of the country. The model was then enriched with crossed reference coverage data from regulatory source, as well as Telefonica proprietary data set consisting of geolocalized data sessions and deployment maps. The result is a model with a visual representation, providing a map of the population dispersion, with superimposed coverage polygons, allowing to count and localize the unconnected populations with good accuracy (95% of the population with less than 3% false positive and less than 240 meters deviation in the location of antennas).


2. Optimizing transport



Transport networks are the most expensive part of deploying connectivity to remote areas. Optimizing transport route has a huge impact on the sustainability of a network. This is why the team selected this task as the next challenge to tackle.

The team started with adding road and infrastructure data to the model form public sources, and used graph generation to cluster population settlements. Graph analysis (shortest path, Steiner tree) yielded population density-optimized transport routes.


3. AI to optimize network operations


To connect very remote zones, optimizing operations and minimizing maintenance and upgrade is key to a sustainable operational model. This line of work is probably the most ambitious for the team. When it can take 3 hours by plane and 4 days by boat to reach some locations, being able to make sure you can detect, or better, predict if / when you need to perform maintenance on your infrastructure. Equally important is how your devise your routes so that you are as efficient as possible. In this case, the team built a neural network trained with historical failure analysis and fed with network metrics to provide a model capable of supervising the network health in an automated manner, with prediction of possible failure and optimized maintenance route.

I think that the type of data driven approach to complex problem solving demonstrated in this project is the key to network operators' sustainability in the future. It is not only a rural problem, it is necessary to increase efficiency and optimize deployment and operations to keep decreasing the costs.


Finally, its worth mentioning again that I am helping CW (Cambridge Wireless) organise their annual CW TEC conference on the topic 'The inevitable automation of Next Generation Networks'. There are some good speakers and we will have similar topics covered from different angles, using some other interesting approaches. The fees are very reasonable so please join if you can.

Related posts:

Sunday, 29 July 2018

Automating the 5G Core using Machine Learning and Data Analytics

One of the new entities introduced by 3GPP in the 5G Core SBA (see tutorial here) is Network Data Analytics Function, NWDAF.
3GPP TR 23.791: Study of Enablers for Network Automation for 5G (Release 16) describes the following 5G Network Architecture Assumptions:

1 The NWDAF (Network Data Analytics Function) as defined in TS 23.503 is used for data collection and data analytics in centralized manner. An NWDAF may be used for analytics for one or more Network Slice.
2 For instances where certain analytics can be performed by a 5GS NF independently, a NWDAF instance specific to that analytic maybe collocated with the 5GS NF. The data utilized by the 5GS NF as input to analytics in this case should also be made available to allow for the centralized NWDAF deployment option.
3 5GS Network Functions and OAM decide how to use the data analytics provided by NWDAF to improve the network performance.
4 NWDAF utilizes the existing service based interfaces to communicate with other 5GC Network Functions and OAM.
5 A 5GC NF may expose the result of the data analytics to any consumer NF utilizing a service based interface.
6 The interactions between NF(s) and the NWDAF take place in the local PLMN (the reporting NF and the NWDAF belong to the same PLMN).
7 Solutions shall neither assume NWDAF knowledge about NF application logic. The NWDAF may use subscription data but only for statistical purpose.

Picture SourceApplication of Data Mining in the 5G Network Architecture by Alexandros Kaloxylos

Continuing from 3GPP TR 23.791:

The NWDAF may serve use cases belonging to one or several domains, e.g. QoS, traffic steering, dimensioning, security.
The input data of the NWDAF may come from multiple sources, and the resulting actions undertaken by the consuming NF or AF may concern several domains (e.g. Mobility management, Session Management, QoS management, Application layer, Security management, NF life cycle management).
Use case descriptions should include the following aspects:
1. General characteristics (domain: performance, QoS, resilience, security; time scale).
2. Nature of input data (e.g. logs, KPI, events).
3. Types of NF consuming the NWDAF output data, how data is conveyed and nature of consumed analytics.
4. Output data.
5. Possible examples of actions undertaken by the consuming NF or AF, resulting from these analytics.
6. Benefits, e.g. revenue, resource saving, QoE, service assurance, reputation.

Picture SourceApplication of Data Mining in the 5G Network Architecture by Alexandros Kaloxylos

3GPP TS 23.501 V15.2.0 (2018-06) Section 6.2.18 says:

NWDAF represents operator managed network analytics logical function. NWDAF provides slice specific network data analytics to a NF. NWDAF provides network analytics information (i.e., load level information) to a NF on a network slice instance level and the NWDAF is not required to be aware of the current subscribers using the slice. NWDAF notifies slice specific network status analytic information to the NFs that are subscribed to it. NF may collect directly slice specific network status analytic information from NWDAF. This information is not subscriber specific.

In this Release of the specification, both PCF and NSSF are consumers of network analytics. The PCF may use that data in its policy decisions. NSSF may use the load level information provided by NWDAF for slice selection.

NOTE 1: NWDAF functionality beyond its support for Nnwdaf is out of scope of 3GPP.
NOTE 2: NWDAF functionality for non-slice-specific analytics information is not supported in this Release of the specification.

3GPP Release-16 is focusing on 5G Expansion and 5G Efficiency, SON and Big Data are part of 5G Efficiency.
Light Reading Artificial Intelligence and Machine Learning section has a news item on this topic from Layer123's Zero Touch & Carrier Automation Congress:

The 3GPP standards group is developing a machine learning function that could allow 5G operators to monitor the status of a network slice or third-party application performance.

The network data analytics function (NWDAF) forms a part of the 3GPP's 5G standardization efforts and could become a central point for analytics in the 5G core network, said Serge Manning, a senior technology strategist at Sprint Corp.

Speaking here in Madrid, Manning said the NWDAF was still in the "early stages" of standardization but could become "an interesting place for innovation."

The 3rd Generation Partnership Project (3GPP) froze the specifications for a 5G new radio standard at the end of 2017 and is due to freeze another set of 5G specifications, covering some of the core network and non-radio features, in June this year as part of its "Release 15" update.

Manning says that Release 15 considers the network slice selection function (NSSF) and the policy control function (PCF) as potential "consumers" of the NWDAF. "Anything else is open to being a consumer," he says. "We have things like monitoring the status of the load of a network slice, or looking at the behavior of mobile devices if you wanted to make adjustments. You could also look at application performance."

In principle, the NWDAF would be able to make use of any data in the core network. The 3GPP does not plan on standardizing the algorithms that will be used but rather the types of raw information the NWDAF will examine. The format of the analytics information that it produces might also be standardized, says Manning.

Such technical developments might help operators to provide network slices more dynamically on their future 5G networks.

Generally seen as one of the most game-changing aspects of 5G, the technique of network slicing would essentially allow an operator to provide a number of virtual network services over the same physical infrastructure.

For example, an operator could provide very high-speed connectivity for mobile gaming over one slice and a low-latency service for factory automation on another -- both reliant on the same underlying hardware.

However, there is concern that without greater automation operators will have less freedom to innovate through network slicing. "If operators don't automate they will be providing capacity-based slices that are relatively large and static and undifferentiated and certainly not on a per-customer basis," says Caroline Chappell, an analyst with Analysys Mason .

In a Madrid presentation, Chappell said that more granular slicing would require "highly agile end-to-end automation" that takes advantage of progress on software-defined networking and network functions virtualization.

"Slices could be very dynamic and perhaps last for only five minutes," she says. "In the very long term, applications could create their own slices."

Despite the talk of standardization, and signs of good progress within the 3GPP, concern emerged this week in Madrid that standards bodies are not moving quickly enough to address operators' needs.

Caroline Chappell's talk is available here whereas Serge Manning's talk is embedded below:



I am helping CW organise the annual CW TEC conference on the topic The inevitable automation of Next Generation Networks
Communications networks are perhaps the most complex machines on the planet. They use vast amounts of hardware, rely on complex software, and are physically distributed over land, underwater, and in orbit. They increasingly provide essential services that underpin almost every aspect of life. Managing networks and optimising their performance is a vast challenge, and will become many times harder with the advent of 5G. The 4th Annual CW Technology Conference will explore this challenge and how Machine Learning and AI may be applied to build more reliable, secure and better performing networks.

Is the AI community aware of the challenges facing network providers? Are the network operators and providers aware of how the very latest developments in AI may provide solutions? The conference will aim to bridge the gap between AI/ML and communications network communities, making each more aware of the nature and scale of the problems and the potential solutions.

I am hoping to see some of this blog readers at the conference. Looking forward to learning more on this topic amongst others for network automation.

Related Post:

Sunday, 22 April 2018

Short summary of #CWFDT event 'Smart Devices of 2025'


Last month, just before the Easter break, I along with some other SIG champions of the Future Devices & Technologies group at CW (Cambridge Wireless) organised an event titled 'Smart Devices of 2025'. Technologies are moving at such an amazing speed that it is not easy to foresee anything beyond 6-8 years. Hence 2025, 7 years from now.



As this was the inaugural event for the revamped SIG, the slides above are my quick introduction to the SIG. We not only talked about the future but we had some nice futuristic devices too. The nuFood 3D Food Printer by Dovetailed printed out some fancy toppings that could go on cheesecake and on other food, making it more appetising. Here is the video on how it works.



All the talks were very informative and very well explained. Its amazing how all of them came together to form a complete picture. The talks are all available here (limited time for non-CW members)

The starting talk by David Wood (@dw2), chair of London Futurists was not only informative and relevant to the subject being discussed but equally entertaining, especially for those who have been in the mobile industry for a long time. He has kindly agreed for me to share his slides which are embedded below.



David talks about NBIC (slide 18) and how it could be combined with Social-tech and Planetary-tech in future to do a lot more than what we can do with it today. While David explains NBIC in his slides, I found this short video on this topic that I think is worth embedding.



It was also good to hear Dr Jenny Tillotson again after a long time. I blogged about smell transmission some 6 years back here. This is something that is still work in progress and probably will be ready by 2025. In the meantime 'Context-Driven Fragrances' can be used for variety of purposes from entertainment to health.


Finally, here is another small presentation (with embedded video) on Telepresence Robots that I did.



Related posts:

Thursday, 12 April 2018

#CWHeritage Talk: The history of synchronisation in digital cellular networks


CW (a.k.a. Cambridge Wireless) held a very interesting event titled 'Time for Telecoms' at the Science Museum in London. I managed to record this one talk by Prof. Andy Sutton, who has also kindly shared slides and some other papers that he mentions in his presentation. You can also see the tweets from the event on Twitter.

The video playlist and the presentation is embedded below.




The papers referred to in the presentation/video available as follows:

Friday, 22 December 2017

The small detail about 5G you may have missed...


While going through the latest issue of CW Journal, I came across this article from Moray Rumney, Lead Technologist, Keysight. It highlights an interesting point that I missed out earlier that 5G also includes all LTE specifications from Release 15 onwards.

I reached out to our CW resident 3GPP standards expert Sylvia Lu to clarify and received more details.
There is a whole lot of detail available in RP-172789.zip. Here RIT stands for Radio Interface Technology and SRIT for Set of RIT.

In fact at Sylvia clarified, NB-IoT and Cat-M will also be part of the initial IMT-2020 submissions early next year. Thanks Sylvia.


There is also this nice presentation by Huawei in ITU (here) that describes Requirements, Evaluation Criteria and Submission Templates for the development of IMT-2020. It is very helpful in understanding the process.

Coming back to the question I have often asked (see here for example),
1. What features are needed for operator to say they have deployed 5G, and
2. How many sites / coverage area needed to claim 5G rollout

With LTE Release-15 being part of 5G, I think it has just become easy for operators to claim they have 5G.

What do you think?

Sunday, 27 August 2017

Bluetooth 5 for IoT


Bluetooth 5 (not 5.0 - to simplify marketing messages and communication) was released last year. The main features being 2x Faster, 4x Range (Bluetooth 4 - 50m outdoors, 10m Indoors; Bluetooth 5 - 200m outdoors, 40m indoors) & 8x Data.
I like this above slide by Robin Heydon, Qualcomm from a presentation he gave in CW (Cambridge Wireless) earlier this year. What is highlights is that Bluetooth 5 is Low Energy (LE) like its predecessor 4.0.For anyone interested, a good comparison of 5 vs 4.2 is available here.

In addition, Mesh support is now available for Bluetooth. I assume that this will work with Bluetooth 4.0 onwards but it would probably only make sense from Bluetooth 5 due to support for reasonable range.

The Bluetooth blog has a few posts on Mesh (see here, here and here). I like this simple introductory video below.


This recent article by Geoff Varral on RTT says the following (picture from another source):

Long distance Bluetooth can also be extended with the newly supported mesh protocol.

This brings Bluetooth into direct competition with a number of other radio systems including 802.15,4 based protocols such as Zigbee, LoRa, Wireless-M (for meter reading), Thread and 6 LowPAN (IPV6 over local area networks. 802.11 also has a mesh protocol and long distance ambitions including 802.11ah Wi-Fi in the 900 MHz ISM band. It also moves Bluetooth into the application space targeted by LTE NB IOT and LTE M though with range limitations.

There are some interesting design challenges implied by 5.0. The BLE specification is inherently less resilient to interference than Classic or EDR Bluetooth. This is because the legacy seventy eight X 1 MHz channels within the 20 MHz 2.4 GHz pass band are replaced with thirty nine two MHz channels with three fixed non hopping advertising channels in the middle and edge of the pass band.

These have to withstand high power 20 MHz LTE TDD in Band 40 (below the 2.4 GHz pass band) and high power 20 MHz LTE TDD in band 41 above the pass band (and Band 7 LTE FDD). This includes 26 dBm high power user equipment.

The coexistence of Bluetooth, Wi-Fi and LTE has been intensively studied and worked on for over ten years and is now managed with surprising effectiveness within a smart phone through a combination of optimised analogue and digital filtering (SAW and FBAR filters) and time domain interference mitigation based on a set of  industry standard wireless coexistence protocols.

The introduction of high power Bluetooth however implies that this is no longer just a colocation issue but potentially a close location issue. Even managing Bluetooth to Bluetooth coexistence becomes a non-trivial task when you consider that +20 dBm transmissions will be closely proximate to -20 dBm or whisper mode -30 dBm transmissions and RX sensitivity of -93 dBm, potentially a dynamic range of 120dB. Though Bluetooth is a TDD system this isolation requirement will be challenging and vulnerable to ISI distortion. 

More broadly there is a need to consider how ‘5G Bluetooth’ couples technically and commercially with 5G including 5G IOT

Ericsson has a whitepaper on Bluetooth Mesh Networking. The conclusion of that agrees that Bluetooth may become a relevant player in IoT:

Bluetooth mesh is a scalable, short-range IoT technology that provides flexible and robust performance. The Bluetooth Mesh Profile is an essential addition to the Bluetooth ecosystem that enhances the applicability of Bluetooth technology to a wide range of new IoT use cases. Considering the large Bluetooth footprint, it has the potential to be quickly adopted by the market. 

With proper deployment and configuration of relevant parameters of the protocol stack, Bluetooth mesh is able to support the operation of dense networks with thousands of devices. The building automation use case presented in this white paper shows that Bluetooth mesh can live up to high expectations and provide the necessary robustness and service ratio. Furthermore, the network design of Bluetooth mesh is flexible enough to handle the introduction of managed operations on top of flooding, to further optimize behavior and automate the relay selection process.


Moreover, another Ericsson article says that "smartphones with built-in Bluetooth support can be part of the mesh, may be used to configure devices and act as capillary gateways."

A capillary network is a LAN that uses short-range radio-access technologies to provide groups of devices with wide area connectivity. Capillary networks therefore extend the range of the wide area mobile networks to constraint devices. Figure above illustrates the Bluetooth capillary gateway concept.

Once there are enough smartphones and Bluetooth devices with Bluetooth 5 and Mesh support, It would be interesting to see how developers use it. Would also be interesting to see if it will start encroaching LoRa and Sigfox markets as well.

Tuesday, 15 August 2017

AT&T Blog: "Providing Connectivity from Inside a Cactus"


A recent AT&T blog post looks at how the fake cactus antennas are manufactured. I also took a closeup of a fake cactus antenna when I went to a Cambridge Wireless Heritage SIG event as can be seen in tweet below.

The blog says:
To make a stealth site look as real as possible, our teams use several layers of putty and paint. Our goal is to get the texture and color just right, but also ensure it can withstand natural elements – from snowy Colorado to blistering Arizona. 
Tower production takes 6-8 weeks and starts with constructing a particular mold. The molds quickly become 30-foot tall saguaro cacti or 80-foot tall redwood trees.But these aren’t just steel giants. 
The materials that cover the stealth antennas, like paint or faux-leaves, must be radio frequency-friendly. Stealth antennas designed to look like church steeples or water towers are mostly made of fiberglass. This lets the signal from the antennas penetrate through the casing. 
These stealth deployments are just one of the many unique ways we provide coverage to our customers. So take a look outside, your connection may be closer than you think—hidden in plain sight!
This videos gives a good idea


If this is a topic of interest, then have a look at this collection of around 100 antennas:



See also: