Showing posts with label Vodafone. Show all posts
Showing posts with label Vodafone. Show all posts

Tuesday, 26 January 2021

Banana and Egg gets 5G Telesurgery


Last year I wrote a detailed post on '5G Remote Surgery and Telehealth Solutions' here. Since then many people with little or no understanding of how the technology works have got in touch with me to educate me about all the 5G remote surgeries taking place. 

I am always prepared to learn new things and looked at both of these surgeries (detailed below) with open mind. I was still unable to see the 5G angle here. In fact in the case of banana, I don't even know if 5G was used.

Back in 2014, a BBC article detailed how a surgeon in Canada has performed over 20 remote surgeries with the help of a robot including colon operations and hernia repairs. The article goes on to ask, "The technology behind long-distance surgery is now mature enough to be used more widely, allowing people to access world-leading expertise and better healthcare without having to travel. Could it become the norm in hospitals?"

The first case is from Aug 2020 as shown in the video above where Doctor Liu Rong from a hospital in Beijing takes on the challenge of remotely controlling a medical robot in distant Qingdao City via the 5G network to finish an egg membrane suture surgery in 90 minutes.

The question here is that where exactly was 5G used and why? Did both the ends have 5G or just one end? Etc. I was unable to find a schematic to show the end-to-end details that would provide credibility to such a scenario.

To explain what I mean, when Vodafone UK launched 5G, they demonstrated low latency by giving an example of Haptic tackle using TeslaSuit. You can read the details and watch the video here

As you can see, the end-to-end solution architecture is nicely explained as shown in this picture. I would expect a similar kind of schematic for the surgery scenario. While I can clearly understand the use case for sports outdoor, I am not able to understand the use case for the surgery indoors. Where was the access point? What frequency was used? Was this Standalone or Non-Standalone network? And many other questions like these. 

The second case was a more recent one. The video is embedded below.

Even though the video mentions 5G and many other sites (see this LinkedIn post with nearly 2.5 million views) that have picked this up mention 5G, the original Instagram video does not mention 5G. In all likelihood there is no 5G connection with this one.

Surely there will be a real life 5G remote surgery use case someday that will capture our imagination but not today.

Related Posts:

Saturday, 10 October 2020

What is Cloud Native and How is it Transforming the Networks?


Cloud native is talked about so often that it is assumed everyone knows what is means. Before going any further, here is a short introductory tutorial here and video by my Parallel Wireless colleague, Amit Ghadge.  

If instead you prefer a more detailed cloud native tutorial, here is another one from Award Solutions.

Back in June, Johanna Newman, Principal Cloud Transformation Manager, Group Technology Strategy & Architecture at Vodafone spoke at the Cloud Native World with regards to Vodafone's Cloud Native Journey 


Roz Roseboro, a former Heavy Reading analyst who covered the telecom market for nearly 20 years and currently a Consulting Analyst at Light Reading wrote a fantastic summary of that talk here. The talk is embedded below and selective extracts from the Light Reading article as follows:

While vendors were able to deliver some cloud-native applications, there were still problems ensuring interoperability at the application level. This means new integrations were required, and that sent opex skyrocketing.

I was heartened to see that Newman acknowledged that there is a difference between "cloud-ready" and "cloud-native." In the early days, many assumed that if a function was virtualized and could be managed using OpenStack, that the journey was over.

However, it soon became clear that disaggregating those functions into containerized microservices would be critical for CSPs to deploy functions rapidly and automate management and achieve the scalability, flexibility and, most importantly, agility that the cloud promised. Newman said as much, remarking that the jump from virtualized to cloud-native was too big a jump for hardware and software vendors to make.

The process of re-architecting VNFs to containerize them and make them cloud-native is non-trivial, and traditional VNF suppliers have not done so at the pace CSPs would like to see. I reference here my standard chicken and egg analogy: Suppliers will not go through the cost and effort to re-architect their software if there are no networks upon which to deploy them. Likewise, CSPs will not go through the cost and effort to deploy new cloud networks if there is no software ready to run on them. Of course, some newer entrants like Rakuten have been able to be cloud-native out of the gate, demonstrating that the promise can be realized, in the right circumstances.

Newman also discussed the integration challenges – which are not unique to telecom, of course, but loom even larger in their complex, multivendor environments. During my time as a cloud infrastructure analyst, in survey after survey, when asked what the most significant barrier to faster adoption of cloud-native architectures, CSPs consistently ranked integration as the most significant.

Newman spent a little time discussing the work of the Common NFVi Telco Taskforce (CNTT), which is charged with developing a handful of reference architectures that suppliers can then design to which will presumably help mitigate many of these integration challenges, not to mention VNF/CNF life cycle management (LCM) and ongoing operations.

Vodafone requires that all new software be cloud-native – calling it the "Cloud Native Golden Rule." This does not come as a surprise, as many CSPs have similar strategies. What did come as a bit of a surprise, was the notion that software-as-a-service (SaaS) is seen as a viable alternative for consuming telco functions. While the vendor with the SaaS offering may not itself be cloud-native (for example, it could still have hardware dependencies), from Vodafone's point of view, it ends up performing as such, given the lower operational and maintenance costs and flexibility of a SaaS consumption model.

If you have some other fantastic links, videos, resources on this topic, feel free to add in the comments.

Related Posts:

Monday, 11 May 2020

5G Remote Surgery and Telehealth Solutions


One of the most controversial 5G use cases is the remote surgery. In this post I want to quickly look at the history and what is possible. Before I go to that, here is a short summary video that I am embedding upfront.



As far as I can recall, Ericsson was the first vendor that started talking about remote surgery. This is a tweet from back in 2017.


Huawei didn't want to be far behind so they did one at MWC Shanghai in 2018. Their tweet with video is embedded below.


In January 2019, South China Morning Post (SCMP) showed a video of a remote surgery on an animal. While the video and the article didn't provide many details, I am assuming this was done by Huawei as detailed here. The video of the surgery below.



This was followed by Mobile World Congress 2019 demo where a doctor used 5G to direct surgery live from a stage at MWC to Hospital Clinic Barcelona over 3 miles away. The team of doctors was removing a cancerous tumor from a patient's colon. This video from that is embedded below.



Vodafone New Zealand had a silly remote surgery of a dog video but looks like they have removed it.  Nothing can beat this Telecom Italia ad embedded below.



There are some realistic use cases. One of them being that with 5G the number of cables / wires in a hospital can be reduced saving on the disinfection.
NTT Docomo showcased 5G Mobile SCOT (Smart Cyber Operating Theater) which is an Innovative solution to enable advanced medical treatment in diverse environments. You can read more details here.

There are lots of other things going on. Here is a short list:
  • April 2020: Because of Coronavirus COVID-19, NT Times has an article on Telemedicine Arrives in the U.K.: ‘10 Years of Change in One Week’ - even though this does not involve 5G, it just shows that we are moving in that direction.
  • February 2020: 5G-aided remote CT scans used to diagnose COVID-19 patients in China (link)
  • February 2020: Verizon teamed with Emory Healthcare to test new 5G use cases for the medical industry at the latter’s Innovation Hub in Atlanta, in a bid to discover how the technology can be used to improve patient care. The collaboration will explore applications including connected ambulances; remote physical therapy; medical imaging; and use of AR and VR for training. (link)
  • February 2020: Vodafone 5G Healthcare – Conference & Experience Day (link)
  • November 2019: TIM enables first live remote-surgery consultation using 5G immersive reality (link)
  • October 2019: Along with a hospital in Malaga, Telefónica has presented what it claims is the first expert assistance system for medical interventions that runs on 5G. (link and video)
  • September 2019: Mobile Future Forward 2019 - World's First Remote VR Surgery Demo conducted on Sept 4th, 2019 in Seattle by Chetan Sharma, James Youngquist, Evie Powell, Nissim Hadar, David Colmenares, and Gabe Jones. (link)

Finally, a nice video on Benefits of 5G for Healthcare Technology by T-Mobile



Related Posts:

Tuesday, 15 October 2019

Summary of #CWTEC 2019 Conference: 5G, Satellites & Magic MIMO

I was involved in helping organise yet another CW TEC conference this year. The topic was quite interesting and we had some brilliant speakers. Some of the excellent presentations were shared too, links below. Here is a very quick summary of the event, linking also to couple of excellent summaries below.

The topic was a bit unusual and it rhymed very well with the attendees which were from many different backgrounds, from 5G, communications, satellites, electronics, T&M companies, etc. Here is the opening video that will show you the motivations behind this



The day started with a breakfast briefing from Cambridge Consultants that looked at how Massive MIMO is the key to unlocking 5G User Experiences. Presentations available here.


Session 1 was titled "What has Massive MIMO ever done for us?". The narrative for the session was as follows:
Clearly the desire for more and more capacity in cellular networks has driven the industry to find more and more novel techniques. The work done over the years and boosted by Tom Marzetta’s article titled “Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas” has set high expectations for this emergent technology, so much so the term Magic MIMO has been coined. However, how significant is it into today’s early 5G rollout and what can we expect over the coming years? Are there still further enhancements we should expect to see?

There were 3 talks as follows:
  • Sync Architectures for 5G NR by Chris Farrow, Technical Manager, Chronos Technology (slides)
  • Three UK’s RAN transformation: Spectrum, RAN architecture strategy, Why? by Dr Erol Hepsaydir, Head of RAN and Devices Strategy and Architecture, Three UK (slides)
  • Active antenna systems in RAN: performance, challenges and evolution by Anvar Tukmanov, Wireless Research Manager, BT (slides)


Session 2 looked at "Non-Terrestrial & Hybrid Networks". The narrative for the session was as follows:
There are different initiatives underway to make satellite and other non-terrestrial networks as part of 5G. In addition, many different mobile operators have demonstrated compelling use-cases with drones, balloons and other aerostats. Other innovative approaches like European Aviation Network uses a hybrid-network using terrestrial network supported by a satellite connection as a backhaul for in-flight Wi-Fi. In addition to latency, what other challenges are stopping mass adoption of Non-terrestrial and Hybrid networks? What about advanced features like slicing, etc.?

There were 3 talks as follows:

  • Opportunities for blending terrestrial and satellite technologies by Dr Jaime Reed, Director, Consulting, Space, Defence and Intelligence, CGI (slides)
  • Non-terrestrial Networks: Standardization in 5G NR by Dr Yinan Qi, Senior 5G Researcher, Samsung R&D Institute UK (slides)
  • Satellites and 5G: A satellite operator’s perspective by Simon Watts, Principal Consultant, Avanti Communications (slides)


Session 3 looked at "5G: A Catalyst for Network Transformation". The narrative was as follows:
5G has set high expectations in the user as well as operator community. While eMBB can be supported with an upgrade of existing 4G infrastructure, URLLC and mMTC may require massive change in the network architecture. Operators have already started the transformation process with backhaul upgrades, new data centers, distributed core and cloud rollouts, etc. How are networks evolving to accommodate these deep changes? What other changes will be required in the network to support the growth until the next new generation arrives?
This session featured 3 talks as well
  • An Introduction to Open RAN Concept by Zahid Ghadialy, Senior Director, Strategic Marketing, Parallel Wireless UK & EMEA (slides)
  • Powering the successful deployment of 5G infrastructure by David George, Vice President of EMEA and APAC, Sitetracker (slides)
  • The 5G transformation: no sweet without sweat by Antonella Faniuolo, Head of Network Strategy, Planning, Digital & Optimisation, Vodafone (slides)


The final session topic was "Getting ready for Beyond-5G Era". The narrative was as follows:
Many technologies like Full duplex, etc. that were originally intended to be part of 5G were not able to make it into the standards. Along with these, what other revolutionary changes are needed to make Beyond-5G technologies not only fulfil the vision, ambition and use-cases that were originally envisaged for 5G but to take it a step further and make it a game changer.
This session featured 3 talks as well, as follows:
  • Thinking Beyond 5G: Projects and Initiatives by Alan Carlton, Vice President, InterDigital Europe (slides not available)
  • 5G Evolution: Progressive enhancement and new features for new markets by Matthew Baker, Head of Radio Physical Layer and Coexistence Standardization, Nokia (slides)
  • Why 6G’s design goals need far more than just radio & core innovation by Dean Bubley, Analyst & Futurist, Disruptive Analysis (slides not available)
And my personal highlight was that I launched World's first coloured 5G tie


Hopefully you found the presentations shared as useful. Please also read the summaries of CWTEC provided below.


Related Articles:

Thursday, 18 July 2019

5G SpeedTests and Theoretical Max Speeds Calculations


Right now, Speed Tests are being described as 5G killer apps.



A good point by Benedict Evans



Everyone is excited and want to see how fast 5G networks can go. If you use Twitter, you will notice loads and loads of speed tests being done on 5G. An example can be seen above.


I recently heard Phil Sheppard, Director of Strategy & Architecture, '3 UK' speak about their 5G launch that is coming up soon. Phil clearly mentioned that because they have a lot more spectrum (see Operator Watch blog post here and here) in Capacity Layer, their 5G network would be faster than the other UK operators. He also provided rough real world Peak Speeds for Three and other operators as can be seen above. Of course the real world speeds greatly depend on what else is going on in the network and in the cell so this is just a guideline rather than actual advertised speeds.


I have explained multiple times that all 5G networks being rolled out today are Non-Stand Alone (NSA) 5G networks. If you don't know what SA and NSA 5G networks are, check this out. As you can see, the 5G NSA networks are actually 4G Carrier Aggregated Networks + 5G Carrier Aggregated Networks. Not all 4G spectrum will be usable in 5G networks but let's assume it is.

To calculate the theoretical maximum speed of 5G NSA networks, we can calculate the theoretical maximum 4G Network speeds + theoretical maximum 5G Network speeds.

I have looked at theoretical calculation of max LTE Carrier Aggregated Speeds here. Won't do calculation here but assuming 3CA for any network is quite possible.

I also looked at theoretical calculation of 5G FDD New Radio here but then found a website that helps with 5G NR calculation here.

If we calculate just the 5G part, looking at the picture from Three, we can see that they list BT/EE & O2 speeds as 0.61 Gbps or 610 Mbps, just for the 5G part.

Looking at the calculation, if we Input Theoretical max values in this equation:

Calculating just for DL

J - number of aggregated component carriers,
maximum number (3GPP 38.802): 16
input value: 1

v(j)Layers - maximum number of MIMO layers ,
3GPP 38.802: maximum 8 in DL, maximum 4 in UL
input value: 8

Q(j)m modulation order (3GPP 38.804)
For UL and DL Q(j)m is same (QPSK-2, 16QAM-4, 64QAM-6, 256QAM-8)
input value: 8 (256QAM)

f(j) Scaling factor (3GPP 38.306)
input value: 1

FR(j) Frequency Range 3GPP 38.104:
FR1 (450 MHz – 6000 MHz) и FR2 (24250 MHz – 52600 MHz)
input value: FR1

µ(j) -value of carrier configuration (3GPP 38.211)
For DL and UL µ(j) is same (µ(0)=15kHz, µ(1)=30kHz, µ(2)=60kHz, µ(3)=120kHz)
input value: 0 (15kHz)

BW(j)- band Bandwidth, MHz (3GPP 38.104),
should be selected with Frequency Range and µ(i) configuration:
input value: BW:40MHz FR1 µ:15kHz:

Enter a PRB value (if other)
default: 0

Rmax (if you don't know what is it, don't change)
Value depends on the type of coding from 3GPP 38.212
(For LDPC code maximum number is 948/1024 = 0.92578125)
default: 0.92578125

*** Only for TDD ***
Part of the Slots allocated for DL in TDD mode,
where 1 = 100% of Slots (3GPP 38.213, taking into account Flexible slots).
Calculated as: the number of time Slots for DL divided by 14
default value: 0.857142

Part of the Slots allocated for UL in TDD mode,
where 1 = 100% of Slots (3GPP 38.213, taking into account Flexible slots).
Calculated as: 1 minus number of Slots for DL
default value: 0.14285800000000004

Calculated 5G NR Throughput, Mbps: 1584


As you may have noticed, BTE/EE has 40 MHz spectrum while Vodafone in UK have 50 MHz of spectrum.

Changing
BW(j)- band Bandwidth, MHz (3GPP 38.104),
should be selected with Frequency Range and µ(i) configuration:
input value: BW:50MHz FR1 µ:15kHz:

Calculated 5G NR Throughput, Mbps: 1982

Now Three UK has 100 MHz, immediately available for use. So changing

µ(j) -value of carrier configuration (3GPP 38.211)
For DL and UL µ(j) is same (µ(0)=15kHz, µ(1)=30kHz, µ(2)=60kHz, µ(3)=120kHz)
input value: 1 (30kHz)

BW(j)- band Bandwidth, MHz (3GPP 38.104),
should be selected with Frequency Range and µ(i) configuration:
BW:100MHz FR1 µ:30kHz:


Calculated 5G NR Throughput, Mbps: 4006

In theory, a lot of speed is possible with the 100 MHz bandwidth that Three will be able to use. We will have to wait and see who can do a theoretical max SpeedTest. In the meantime remember that a 1Gbps speed test will use over 1 GB of data.



Related Posts:

Saturday, 29 June 2019

Presentations from ETSI Security Week 2019 (#ETSISecurityWeek)


ETSI held their annual Security Week Seminar 17-21 June at their HQ in Sophia Antipolis, France. All the presentations are available here. Here are some I think the audience of this blog will like:


Looks like all presentations were not shared but the ones shared have lots of useful information.


Related Posts:

Sunday, 18 March 2018

Small Cells, Macrocells, Backhaul, Infrastructure and other connectivity solutions from #MWC18


Well, it was officially 3G4G's first Mobile World Congress so I took time to go through the different booths, demos, etc. and compile a small presentation

The presentation (embedded below and can be downloaded from Slideshare) covers the following companies:

Acceleran
Action Technologies
Airspan
Altiostar
Azcom
BaiCells
BravoCom
CBNL
CCS
Ceragon
Comba Telecom
Commscope
Fingu
Gemtek
IP.Access
JMA Wireless
Kleos
MitraStar
NuRAN
Parallel Wireless
Polaris Networks
Qualcomm
Qucell
Raycap
Ruckus
SOLiD
SpiderCloud
Vodafone
Zinwave



Do let me know if you found it useful


Related Posts:



Monday, 1 May 2017

Variety of 3GPP IoT technologies and Market Status - May 2017



I have seen many people wondering if so many different types of IoT technologies are needed, 3GPP or otherwise. The story behind that is that for many years 3GPP did not focus too much on creating an IoT variant of the standards. Their hope was that users will make use of LTE Cat 1 for IoT and then later on they created LTE Cat 0 (see here and here).

The problem with this approach was that the market was ripe for a solution to a different types of IoT technologies that 3GPP could not satisfy. The table below is just an indication of the different types of technologies, but there are many others not listed in here.


The most popular IoT (or M2M) technology to date is the humble 2G GSM/GPRS. Couple of weeks back Vodafone announced that it has reached a milestone of 50 million IoT connections worldwide. They are also adding roughly 1 million new connections every month. The majority of these are GSM/GPRS.

Different operators have been assessing their strategy for IoT devices. Some operators have either switched off or are planning to switch off they 2G networks. Others have a long term plan for 2G networks and would rather switch off their 3G networks to refarm the spectrum to more efficient 4G. A small chunk of 2G on the other hand would be a good option for voice & existing IoT devices with small amount of data transfer.

In fact this is one of the reasons that in Release-13 GSM is being enhanced for IoT. This new version is known as Extended Coverage – GSM – Internet of Things (EC-GSM-IoT ). According to GSMA, "It is based on eGPRS and designed as a high capacity, long range, low energy and low complexity cellular system for IoT communications. The optimisations made in EC-GSM-IoT that need to be made to existing GSM networks can be made as a software upgrade, ensuring coverage and accelerated time to-market. Battery life of up to 10 years can be supported for a wide range use cases."

The most popular of the non-3GPP IoT technologies are Sigfox and LoRa. Both these technologies have gained significant ground and many backers in the market. This, along with the gap in the market and the need for low power IoT technologies that transfer just a little amount of data and has a long battery life motivated 3GPP to create new IoT technologies that were standardised as part of Rel-13 and are being further enhanced in Rel-14. A summary of these technologies can be seen below


If you look at the first picture on the top (modified from Qualcomm's original here), you will see that these different IoT technologies, 3GPP or otherwise address different needs. No wonder many operators are using the unlicensed LPWA IoT technologies as a starting point, hoping to complement them by 3GPP technologies when ready.

Finally, looks like there is a difference in understanding of standards between Ericsson and Huawei and as a result their implementation is incompatible. Hopefully this will be sorted out soon.


Market Status:

Telefonica has publicly said that Sigfox is the best way forward for the time being. No news about any 3GPP IoT technologies.

Orange has rolled out LoRa network but has said that when NB-IoT is ready, they will switch the customers on to that.

KPN deployed LoRa throughout the Netherlands thereby making it the first country across the world with complete coverage. Haven't ruled out NB-IoT when available.

SK Telecom completed nationwide LoRa IoT network deployment in South Korea last year. It sees LTE-M and LoRa as Its 'Two Main IoT Pillars'.

Deutsche Telekom has rolled out NarrowBand-IoT (NB-IoT) Network across eight countries in Europe (Germany, the Netherlands, Greece, Poland, Hungary, Austria, Slovakia, Croatia)

Vodafone is fully committed to NB-IoT. Their network is already operational in Spain and will be launching in Ireland and Netherlands later on this year.

Telecom Italia is in process of launching NB-IoT. Water meters in Turin are already sending their readings using NB-IoT.

China Telecom, in conjunction with Shenzhen Water and Huawei launched 'World's First' Commercial NB-IoT-based Smart Water Project on World Water Day.

SoftBank is deploying LTE-M (Cat-M1) and NB-IoT networks nationwide, powered by Ericsson.

Orange Belgium plans to roll-out nationwide NB-IoT & LTE-M IoT Networks in 2017

China Mobile is committed to 3GPP based IoT technologies. It has conducted outdoor trials of NB-IoT with Huawei and ZTE and is also trialing LTE-M with Ericsson and Qualcomm.

Verizon has launched Industry’s first LTE-M Nationwide IoT Network.

AT&T will be launching LTE-M network later on this year in US as well as Mexico.

Sprint said it plans to deploy LTE Cat 1 technology in support of the Internet of Things (IoT) across its network by the end of July.

Further reading:

Sunday, 26 June 2016

Three Presentations on 5G Security


Here are three presentations from the 5G Huddle in April, looking at 5G security aspects. As I have repeatedly mentioned, 5G is in process of being defined so these presentations are just presenting the view from what we know about 5G today.



Saturday, 9 January 2016

5G Spectrum Discussions

While most people are looking at 5G from the point of new technologies, innovative use cases and even lumping everything under sun as part of 5G, many are unaware of the importance of spectrum and the recently concluded ITU World Radio Conference 2015 (WRC-15).

As can be seen in the picture above, quite a few bands above 24GHz were identified for 5G. Some of these bands have an already existing allocation for mobile service on primary basis. What this means is that mobile services can be deployed in these bands. For 3G and 4G, the spectrum used was in bands below 4GHz, with 1800MHz being the most popular band. Hence there was never a worry for those high frequency bands being used for mobile communication.

As these bands have now been selected for study by ITU, 5G in these bands cannot be deployed until after WRC-19, where the results of these studies will be presented. There is a small problem though. Some of the bands that were initially proposed for 5G, are not included in this list of bands to be studied. This means that there is a possibility that some of the proponent countries can go ahead and deploy 5G in those bands.

For three bands that do not already have mobile services as primary allocation, additional effort will be required to have mobile as primary allocation for them. This is assuming that no problems are identified as a result of studies going to be conducted for feasibility of these bands for 5G.


To see real benefits of 5G, an operator would need to use a combination of low and high frequency bands as can be seen in the picture above. Low frequencies for coverage and high frequencies for capacity and higher data rates.


As I mentioned in an earlier blog post, 5G will be coming in two phases. Phase 1 will be Rel-15 in H2, 2018 and Phase 2, Rel-16, in Dec. 2019. Phase 1 of 5G will generally consist of deployment in lower frequency bands as the higher frequency bands will probably get an approval after WRC-19. Once these new bands have been cleared for 5G deployment, Phase 2 of 5G would be ready for deployment of these high frequency bands.

This also brings us to the point that 5G phase 1 wont be significantly different from LTE-A Pro (or 4.5G). It may be slightly faster and maybe a little bit more efficient.

One thing I suspect that will happen is start of switching off of 3G networks. The most commonly used 3G (UMTS) frequency is 2100MHz (or 2.1GHz). If a network has to keep some 3G network running, it will generally be this frequency. This will also allow other international users to roam onto that network. All other 3G frequencies would soon start migrating to 4G or maybe even 5G phase 1.

Anyway, 2 interesting presentations on 5G access and Future of mmWave spectrum are embedded below. They are both available to download from the UK Spectrum Policy Forum (SPF) notes page here.








Further reading:


Wednesday, 31 July 2013

Making LTE fit for the IoT

Another presentation from the #FWIC2013. This presentation by Vodafone covers some of the areas where the LTE standards are being tweaked for making M2M work with them without issues.


Another area is the access barring that I have blogged about before here. This will become important when we have loads of devices trying to access the network at the same time.

The presentation is embedded below and you can also listen to the audio here.


Sunday, 19 May 2013

Is the Global Mobile Roaming model broken?

Yesterday, I noticed some heavyweights discussing roaming prices on Twitter. It is embedded below using the new Twitter embed feature:


Those who follow me on Twitter may have noticed me ranting about the roaming prices recently so I thought that this is a perfect opportunity to put my thoughts down.

As being discussed above, I went on the websites of two UK operators and found out about their roaming rates to India and The USA and they are as follows:


 It should be noted that there is a better rate available with some kind of bundle opt-in from both the operators and I have not shown about the other UK operators but they offer a similar sort of rate so I am not trying to single out O2 and/or Vodafone.

Since LTE is 'All-IP' network my interest is more from Data point of view rather than the voice point of view. A colleague who went to India recently decided that enough is enough and he bought a SIM in India locally. Apparently is just a bit too difficult to get SIM in India if you are not an Indian resident, nevertheless he somehow managed it. The rates as shown below was INR 24 for 100 MB of data.


Rs. 24 is something like $0.50 or £0.35. You see my problem regarding the data rates? People may be quick to point out here that India has the cheapest data rates in the world. On the other hand we look at US, the rates are as follows:

Even if we assume $15 / 1GB data, its far cheaper than the roaming rate which may be something like,  £3/MB = £3000/GB or £6/MB = £6000/GB.

I blogged about all the interesting developments that have been happening in LTE World Summit regarding the roaming solutions but what is the point of having all these solutions if the operators cant work out a way to reduce these costs. Or is it that they do not want to reduce these costs as they are a good source of income?

The operators complain that the OTT services are taking business away from them and turning them into dumb data pipes but to a lot of extent its their fault. People like me who travel often dont want to spend loads of cash on data and have worked out a way around it. Most of the places I visit have WiFi, most of my work is not urgent enough and I can wait till I am in a WiFi coverage area. In some parts of the world, still I have to buy an expensive WiFi access but compared to the roaming rates, its still cheap so I have stopped complaining about it. My decision to book a hotel depends of reviews, free breakfast and free WiFi. Some of our clients who give us their phone to use abroad strictly inform us that data should not be turned on unless its a matter of life and death.

If the operators dont change their strategies and work out a better solution for the roaming rates I am afraid that their short term gains will only lead to long term pains.

Do you have an opinion? I am interested in hearing.

Tuesday, 3 July 2012

A quick summary of #SCWS2012 in tweets

Summary of the interesting announcements and things that happened in the Small Cells World Summit 2012

DAY 1

@lesanto: "small cells are seen as a viable option to meet the demands of exponentially growing networks". even Mongolia is getting into the small cells!

@lesanto: First keynote speaker is Simon Saunders chairman of the Small Cell forum (he's written a LOT of books on the subject...)





@lesanto: I will be quoting Simon Saunders in this style: SS "this is the premier Small Cells event in the world"

@lesanto: SS "the agenda over the next few days is effectively a guide to all the Small Cells issues - a well balanced program"

@lesanto: SS "people often ask which Small Cells event they should go to. I say this one, if you can only do one industry this is it"

@lesanto: Simon Saunders "why is it that Small Cells are a good idea in the first place?"

@lesanto: SS "the more we try to serve the unlimited demand for data with macro cells the more interference we have to deal with"

@lesanto: SS "Small Cell networks help us to serve those data demands without increasing interference"

@lesanto: SS "we founded the Femto Forum in 2007 to answer these challenges"

@lesanto: SS "through hard work we achieved an open architecture for the 3G Femtocells. We highlighted a business case for Femtocells"

@stewartbaines: Simon Saunders: Capacity at limits, pushing Shannon's Law. We need more cells, tighter interference control and cost control

@lesanto: SS "deploying more small cells decreases network interference if managed properly"

@lesanto: SS "it is very heartening to see operators today deploying Femtocells successfully, we're seeing a great deal of maturity"

@thinksmallcell: Operators are finding the cost savings, churn reduction of femtocells to be much better than originally forecast - Simon Saunders

@lesanto: SS "Key attributes of small cells include Scalability, Automated configuration and optimisation..."

@lesanto: SS "we see the need and opportunity to do even more with small cells"

@Ubiquisys: "Our work today is about differentiating the technology to fit different environments"

@lesanto: "60% of operators surveyed consider small cells will be more important to LTE deployments than macrocells"

@LisaGCisco: Chair Simon Saunders highlights the Small Cell Forum work areas that include home, enterprise, metro and rural small cells

@stewartbaines: Simon Saunders: i struggle to find an operator that does not have small cells on their roadmap

@lesanto: go to http://smallcellforum.org where you can download the Small Cells Market Status report (free)

@lesanto: Small Cells forum now has 76 technology providers as members

@lesanto: In 2007 commercial deployment of small cells = zero -- now we have 41 operators deploying them commercially, including 9 of top 10

@bmbarnowski: great retrospective on the evolution of the femtocell/smallcell forum by SS … 2007 was a lonely year indeed for femtos ..

@lesanto: small cell deployment was once solely focussed on domestic deployment, now deployment is much broader inc commercial

@lesanto: 3.8 million femtocells deployed commercially worldwide

@Alejandro_Avren: 3.8 million femtocells deployed globally, says simon saunders of the small cell forum 

@lesanto: several deployments have reached real scale, such as Sprint : over 600,000 units deployed

@lesanto: there will be more small cells deployed than macrocells by the end of 2012

@lesanto: to summarise : small cells have properly arrived ;0)

@Ubiquisys: By the end of 2012 there will be more Small Cells (6.4m) than Macro Cells

@thinksmallcell: forecast 6.4million small cells by end 2012 = more than all global macrocells all technologies

@lesanto: prediction: 91.9 million small cells will be deployed worldwide by end of 2016

@MarkBLHenry: Simon Saunders: "... The central magic of cellular is spectrum reuse..."

@lesanto: small cells offer a very substantial opportunity to increase capacity in a network

@stewartbaines: Simon Saunders: more small cells (6.4m) than macro (6m) by end of year. 80% all cells will be titchy by 2016 #SCWS2012. I got 2 of them :)

@lesanto: small cells can offer real positive change for the user experience on a 3g network

@lesanto: wi-fi and small cells need integration - they should be deployed in cooperation

@disruptivedean: Survey results at #SCWS2012 about coexistence & integration of Small Cells & WiFi point to wishful & unrealistic thinking about #HetNets

@lesanto: we see the opportunity for a deeper integration of small cells and wifi

@disruptivedean: Just had further evidence about slow/misguided focus of Carrier WiFi. WBA announced a trial of NGH WiFi starting Q4 #TooSlow

@lesanto: 2011 Small Cells Forum published small cell APIs

@Ubiquisys: The two overriding themes of @SmallCell_Forum's work are: a) Open and b) Multi-technology 

@disruptivedean: My summary of intro at #SCWS2012: Good move shifting from femto to broader small-cells. Looking bright for LTE. Unconvinced by WiFi pitch

@lesanto: "Vodafone's strategy is to drive Small Cells from a customer needs perspective"

@lesanto: products such a Vodafone's 'sure signal' need to be plug and play, easy to install and use

@SmallCell_Forum: 3.8 million femtocells deployed globally today #SCWS2012. Market status report now at: http://www.smallcellforum.org/resources-white-papers

@lesanto: Vodafone are now running a trial of commercial small cells in Germany with great feedback already

@thinksmallcell: Vodafone to launch enterprise femtocells in Germany 2013. Good feedback from trials so far

@lesanto: data is becoming continually more important to customers, and they also want less wires and network devices in their homes

@thinksmallcell: Vodafone showcasing new FemtoPlug - embedded femtocell into a small mains plug. 8 calls 21Mb/s. Sagemcom and ALU suppliers.

@lesanto: enterprise customers are a very important segment of Vodafone's femtocell proposition - they want easy integration into their IT

@danieldotfox: Wow. The new Sure Signal product from #Vodafone looks amazing. Well thought out consumer proposition. Nice!

@SmallCell_Forum: Vodafone announces femtoplug: tiny femtocell with ethernet over mains. To be launched in existing markets 'within weeks'. 

@disruptivedean: Liking the new "femtoplug" products announced by Vodafone. Very neat residential femto integrated into electric plug. 

@lesanto: Present speaker, Alan Law, Technical Lead for femtocells, Vodafone Group...

@lesanto: "where do you put small cells? How can we determine where the hot spots are? Fortunately there are tools available to help here"

@lesanto: "geolocation tools can also be exploited for network quality improvements"

@Ubiquisys: "Geolocation can be used to identify traffic hotspots"

@lesanto: "Vodafone have gained essential experience on how to address challenges with public access small cells for many environments"

@lesanto: "the availability of multi-technology small cells eases deployment"

@lesanto: "accelerate availability of multi-technology small cells to reduce the number of site boxes required to ease deployment"

@lesanto: "it not just about network cover and quality - it is also about driving new services and revenue growth"

@lesanto: Next speaker : Sebastien Pham Programme Manager New Products Vodafone New Zealand.

@LisaGCisco: Vodafone's Alan Law underscores importance of Iuh standard to accelerate small cell market adoption 

@lesanto: Vodafone NZ faces the challenge of a relatively large area with a relatively low number of users.

@lesanto: 4.8 million mobile subscribers in 2011 in New Zealand - 97% 3g coverage (vodafone) - rural broadband is very challenging

@lesanto: Vodafone deploying small cells in homes in NZ, but their Sure Signal will only work on Vodafone's own DSL network.

@lesanto: watching a video on how small cells can help you make better mobile calls at home : are you hanging out a window to get a single?

@stewartbaines: Femtos bring broadband to rural communities in NZ:http://www.vodafone.co.nz/suresignal

@lesanto: plug in a Sure Signal small cell box into your DSL and suddenly you can make mobile calls from anywhere in the house!#sorted!

@stewartbaines: No more driving testing: use geolocation tools to identify traffic not-spots. Vodafone at #SCWS2012 #smallcells

@lesanto: Next vid: a small business in NZ in a building known as the bunker - thick concrete and steel walls = poor mobile reception!

@disruptivedean: Ironic that Small Cell industry finally getting enterprise proposition right, at same time that #BYOD drives #BYOSP in businesses 

@lesanto: yep, you've guessed it : they plug in a Sure Signal small cell and their mobiles all work - even inside the bunker ;0)

@stewartbaines: @katebo Orange is doing a prez on it's enterprise femtocell strategy at#SCWS2012. Will grab a post for Connecting Technology blog

@danieldotfox: Small Cell feedback via Vodafone.nz, from customers: It's life changing! We all need and depend on mobiles... Food for thought!

@lesanto: small cells were deployed during the Feb 2011 Christchurch earthquake to replace broken macro cells in certain essential areas

@Ubiquisys: Femtocells have been used in disaster situations for emergency coverage, such as the Christchurch earthquake 

@vodafoneNZ: @Ubiquisys Our network team did incredible work for Chch #eqnz. Used creative tools including the Truck http://bit.ly/NGPzM7

@lesanto: new speaker : Emmanuel Adnot International Strategy Manager at Orange...

@lesanto: Orange Group had $45bn turnover in 2011

@lesanto: talking about : How Femtocells support Orange's B2B strategy...

@lesanto: "coverage needs in enterprise markets are niche" Emmanuel Adnot, Orange (EA)

@lesanto: "10% of B2B customers have indoor mobile reception issues that effect their business"

@lesanto: "10% is a niche but it still represents a significant market"

@lesanto: "45% of those connectivity issues are suffered in basement or storeroom situations" EA

@lesanto: "80% of customers suffering local connectivity issues are ready to move to an operator offering a solution to the problem"

@lesanto: "small cells are part of the B2B indoor coverage strategy" EA

@lesanto: "30% of B2B users are using smartphones - but that share is growing massively"

@lesanto: small b2b customers need both wi-fi and small cell solutions to answer their connectivity issues

@lesanto: "small cell installation reduced churn by almost 50% where connectivity had previously been an issue"

@lesanto: "B2B customers suffering indoor connectivity problems are ready to pay for small cell solutions"

@lesanto: "Orange will launch small cell solutions to the UK market in summer 2012"

@danieldotfox: In Portugal, #Orange cam charge over €1000 for a B2B femto. Wow.

@stewartbaines: Orange study: 80% of business customers ready to churn if their coverage issues are not addressed. #SCWS2012. Similar to Alcatel research...

@SmallCell_Forum: Orange: PT, FR, Romania B2B femtocells launched, 2 more countries to be launched (UK, Be) by end 2012 #scws2012 plus Poland next year

@stewartbaines: Small cells can be basis for location-based services. Stop the dumb pipe!

@lesanto: "what's next? Femtocell as a service for small operations..

@lesanto: "what's next: femtocell and other techs within a small cell - leverage indoor coverage solution for location based services"

@Ubiquisys: What's next for B2B femtocell solutions? Here's @orange's outlook





@lesanto: why are Orange concentrating on B2B for small cells? Could it be the cost? I can't see many consumers paying $1500 a pop!

@lesanto: but Orange haven't ruled out bringing small cells to the consumer...

@dmavrakis: Orange believes that SMBs that have coverage problems are willing to pay €1500 for an access point.

@stewartbaines: Orange France enterprise femtos cost 1500 euros. But you do get a visit from an engineer. I thought they were plug & play?

@lesanto: next speaker : Martin Guthrie - head of business development - NEC

@lesanto: MG "small cells are beautiful"

@lesanto: "the world is getting smaller, so are macro cells"

@lesanto: "smaller and smaller cell sizes are an inevitability along with the technical and cost benefits they bring"

@lesanto: " many small cells advantages : better coverage, greater capacity gain, higher density coverage"

@lesanto: "business case benefits of small cells are not fully understood"

@Ubiquisys: The elephant in the small cells room is dichotomy between vendors: "look at our tech" & operators: "how can we make money?" @NEC

@lesanto: "benefits: reduced customer churn : increased customer acquisition : reduced cost of new macro deployment : "

@lesanto: " more benefits: leverage presence of mobile operator in the home : Increased ARPU "

@Ubiquisys: "Integration with operators' existing network and system is key" @NEC

@lesanto: technical and marketing support is essential when deploying small cells - choose your vendor carefully!

@lesanto: "make sure that your small cell solutions use advanced & adaptive radio management technologies that won't interfere with macro"

@lesanto: Next speaker : Mark Gallagher Principle Engineer, Cisco

@lesanto: "mass adoption of the mobile internet is going on right now - scaling to meet this demand is the challenge"

@Ubiquisys: The next speaker is Mark Gallagher of @CiscoSystems "Defining the New Normal"

@small_cells: "usage patterns in mobile internet are as important as the size of use"

@disruptivedean: Watching Cisco at #SCWS2012 . Think that it's underestimating % of smartphone data that goes via WiFi, only small % of which is offload

@small_cells: "network densification is required : small cell development = highly dense topologies"

@Ubiquisys: "Network densification is required. Small cell deployment = highly dense topologies" @CiscoSystems

@small_cells: "you must use all the spectrum assets available to you"

@small_cells: globally available data sources can be incorporated into RF planning tools to give a clear picture of where to add small cells

@small_cells: "you need a simple, scaleable small cell solution that's properly managed"

@small_cells: "there is significant revenue potential in the small cell business model" -- think beyond simply making savings

@small_cells: "Small cells really are the new norm"

@Ubiquisys: London hotspots map shows usage, including tweets & Flickr photos, identifies small cell deployment locations.

@Ubiquisys: Small cells future built around growing penetration of mobile internet. Take learnings from adjacent markets.

@Lance_Hiley: #ciscosystems shows geolocation tool to identify potential #smallcellsdeployment locations using #flicker and #twitter uploads

@small_cells: "small cells are splitting into two categories : capacity and coverage"

@small_cells: "how can we cope with the data tsunami that's coming at us?"

@small_cells: "the cost difference between a small cell and a macro is large"

@Ubiquisys: Joe Madden of Mobile Experts on Small cell economics and time-to-market

@small_cells: "with data growth doubling every year you really need to plan ahead to cope"

@Ubiquisys: Data growth in US will not be uniform. Most data is consumed in downtown metro areas.

@small_cells: "imagine if it was your job to find sites for 28,000 new macro masts per year to cope with data demand!"

@Ubiquisys: Balanced solution = towers in the rural areas, picocells in urban areas.

@stewartbaines: Joe Madden: It worries me that operators are talking small cells only for LTE. You need a balance (small + macro)

@lesanto: "operators are not keeping up with the data curve, I don't see them spending enough capital to keep up with demand"

@lesanto: "I think we're going to fall behind data demand in a serious way in 2015/2016"

@Ubiquisys: Operators won't be able to keep up with data demand. Be ready to ship millions of picocells in next few years.

@lesanto: "when customers want to use more data than they can get we'll have unhappy customers and that means churn"

@disruptivedean: HIghly questionable supply/demand curve at #SCWS2012 that doesn't cover impact of pricing & policy management constraining "demand"

@lesanto: "those unhappy customers will force operators to make choices they hadn't previously wanted to make for economic reasons"

@stewartbaines: Joe Madden: be ready to ship millions of small cells, whether cheapest or not, by 2015

@lesanto: "we are projecting high numbers of small cells because of time-to-Market issues..."

@lesanto: The #London2012 olympics throws up a real challenge for mobile operators - small cells are already installed for the event.

@danieldotfox: #O2UK has 100 small cells within the London area.

@Ubiquisys: Currently on stage, Robert Joyce of Telefonica. Case study: delivering small cells into the heart of central London

@SmallCell_Forum: O2 says "small cells are the only way" for future capacity, even factoring on extra spectrum and LTE-A.

@lesanto: "2g hotspots aren't in the same place as 3g hotspots so replacing existing 2g small cells for 3g cells won't always bring results"

@danieldotfox: #O2UK really like 'open' femto cells. Interesting!

@lesanto: O2 bid on access to street furniture, street lamps etc, in order to use them to provide wi-fi and small cells

@lesanto: BUT, once O2 had the poles they discovered the councils wanted planning permission for each and every lamppost installation...

@stewartbaines: O2: 400 individual planning applications required to deploy metro wifi in Kensington and Westminster. Ouch!

@lesanto: O2 also had to considerer the form factor of the installations, London lampposts are not suitable for big set upis!

@lesanto: O2's London network is fed both 'over the street' and 'under it' - using a mix of masts, cells and fibre...

@lesanto: O2's mobile network plan for London aims to serve a Gig per Km2

@lesanto: O2 have 12 access points for mobile in Trafalgar Square alone

@lesanto: You lot should see just how complex serving mobile to the streets of London is. Remember this next time you complain about signal

@lesanto: Olympic village buildings are clad in aluminium for heat retention - this also locks out mobile signals!

@lesanto: the result is the Olympic village has become probably the densest installation of small cells anywhere...

@SmallCell_Forum: O2 have deployed 1200 femtos in a in an apartment block for some 'very healthy people' (!) in London for this summer

@lesanto: O2 want to use their Olympic experience to roll out small cells elsewhere - but say the price has to come down!

@joelpagot: @wendyzajack nice pic! #smallcells also come in "green" (low-power mobile devices)




@Ubiquisys: Here's a prototype solar powered small cell. Interesting concept.




@joelpagot: @Ubiquisys Good example for #GreenICT #smallcells big impact: more capacity for less

@SmallCell_Forum: After announcements by O2 and Orange today, is UK first market in world where all operators have publically announced femtocells?

@thinksmallcell: O2 deployed 1Gb/s per square kilometre capacity onstreet 3G/WiFi in London using Small Cells - believe will meet forecast demand

@Lance_Hiley: Telefonica's Rob Joyce forecasts 1Gb/s per km #backhaul requirement for London #smallcells by 2015.

@disruptivedean: @Lance_Hiley Quite astonishing to think that 1sq km use of mobile data in 2015 is only equivalent of a single FTTH broadband cnxn

@markc_reed: “@thinksmallcell: O2 deployed 1Gb/s per square kilometre capacity in London using Small demand #SCWS2012” what about install & bhaul cost?

@lesanto: Manish Singh CTO of Radisys is now on the stand

@Ubiquisys: @radisys: Over the next three years, which sources of disruption will have the greatest impact on mobile operators?

@disruptivedean: Radisys survey at #SCWS2012 shows operators still think "good user experience" = seamless WiFi authentication & handover. Very wrong indeed

@Ubiquisys: You need a portfolio of products to address different segments. Requirements are evolving, so flexibility is a must. @radisys

@thinksmallcell: 46% of operators surveyed said logistics and deployment model were barriers to rapid small cell rollout - Radisys survey

@danieldotfox: #O2UK state that 1Gbit per square kilometer is needed for sufficient outdoor data capacity within 2015 timeframe. Crikey.

@Ubiquisys: NGMN Alliance's Julius Robson is talking about small cell specific backhaul requirements

@lesanto: The relentless growth of data consumption - can we handle it? http://smallcells.posterous.com/the-relentless-growth-of-data-consumption-can via @small_cells

@Ubiquisys: Deployment prerequisites for small cell deployment: unserved demand, suitable site, backhaul connectivity #NGMN

@Ubiquisys: Small cell devices are more visible than macros and need to be small, light, touch safe and tamper proof

@stewartbaines: Wilson Street post from #SCWS2012: Orange or Vodafone taking best approach to femtos? - http://www.wilson-street.com/2012/06/scws2012-femtocells-pile-them-high-and-sell-them-cheap-or-keep-them-for-the-most-valuable-customers/

@lesanto: Somewhat technical this presso... not eminently tweetable see "security of LTE backhauling" white paper by ngmn - http://www.ngmn.org/uploads/media/NGMN_Whitepaper_Backhaul_Security.pdf

@Ubiquisys: Small cell backhaul connections are viewed as untrusted and may need IPsec encryption

@lesanto: "backhaul is a key enabler for small cells, but there is uncertainty around which solutions are suitable"

@Ubiquisys: Backhaul white paper is available at http://www.ngmn.org/fileadmin/user_upload/Downloads/Technical/NGMN_Whitepaper_Small_Cell_Backhaul_Requirements.pdf

@lesanto: The streets of London are paved with small cells #SCWS2012 http://smallcells.posterous.com/the-streets-of-london-are-paved-with-small-ce via @small_cells

@Lance_Hiley: Availability of #smallcells can be relaxed in hotspot deployment scenario says Julius Robson, editor of @ngmn_alliance Whitepaper

@lesanto: since the show started this morning we have seen 5% growth in the industry as two major mobile operators have adopted small cells

@SmallCell_Forum: France & UK first countries globally where all mobile operators have announced femtocells.

@lesanto: majority of South Koreans using LTE networks by 2014

@lesanto: South Korea enjoys one of the highest adoptions of high speed networks in the world

@lesanto: SK telecom launched the world's first LTE + wi-fi femtocell network in 2011

@lesanto: SK telecom is preparing for the PETA byte era - which is next year! 1 PETA = 10 to the power of 15 bytes.

@stewartbaines: @lesanto Key thing about the petabyte era, is SK Telecom will has 1 petabyte PER DAY on their mobile network.

@lesanto: Small cells can provide extended coverage at lower cost

@lesanto: "For interference mitigation in small cell deployment, a central interference management system is being developed"

@Ubiquisys: Nick Karter of @qualcomm will now talk about the convergence of 3G, 4G and wifi

@lesanto: "the growth in data traffic is outstripping the ability to put new spectrum on the market" (say it again)

@lesanto: "there is an increase in operator provided wi-fi"

@lesanto: "wi-fi is already a small cell but without all the features you expect from a mobile network"

@lesanto: "Hotspot 2.0 - converging the wi-fi and cellular networks"

@lesanto: "people use cellular primarily for email and facebook, while they use wi-fi for youtube"

@lesanto: "optimising power consumption is critical when combining so many functions into one box"

@lesanto: "you need a good application processor to manage the network efficiently"

@lesanto: providing mobile data is extremely complex - it's a typical swan swimming scenario, serene above the surface, mad action below it.

@Ubiquisys: Need for RF coordination with coexistence of Wi-Fi and LTE. Optimising power limitation is critical. @qualcomm

@lesanto: "security is obviously very critical to a mobile network"

@lesanto: "Hotspot 2.0 - the mission is to make wi-fi connectivity (of mobile devices) as seamless and easy as cellular"

@danieldotfox: The #Qualcomm approach to multiradio/multi spectrum type access points looks good. Mixed in with Hotspot 2.0. Smart thinking.

@Ubiquisys: Manish Gupta of Symmetricomm: Timing and synchronisation for small cells

@Ubiquisys: Small cells defined: Residential, Enterprise, Metro. What is the distinction?

@Ubiquisys: Panel discussion coming up at #SCWS2012: Backhaul challenges for small cell deployment

@Ubiquisys: Rural environment small cell deployments vary wildly. Any data connection is better than zero in many remote areas

@lesanto: rain can degrade mobile network performance. They call it 'rain fade' - #WhoKnew? see: http://searchmobilecomputing.techtarget.com/definition/rain-fade

@LisaGCisco: Multi-operator white label small cells might be a solution to the complexity and cost of multiple public small cell networks

@Ubiquisys: "GPS is great, but make sure you have a back up" #SCWS2012 panel

Day 1 Summaries:



DAY 2

@Ubiquisys: First speaker this morning : Matthew D Brown, Marketing Product Manager, Femtocell, Optus Australia

@lesanto: Matthew Brown Marketing Product Manager Femtocell, Optus Aus. "delivering femtocells to market isn't just about technical aspects"

@stewartbaines: Optus: coverage is still the massive factor in acquisition and retention in Australia

@small_cells: Matthew is treating us to a case study on marketing femtocells to the challenging Australian mobile market

@small_cells: "we decided to include the additional benefit of unlimited calls in a femtocell tariff"

@LisaGCisco: Optus 3G Home Zone provides a value add with unlimited calling according to Optus Product Manager Matthew Brown

@small_cells: Optus consumer marketing video promises 5 bars of mobile signal and unlimited calls - a dual message

@small_cells: Optus marketing strategy was to lead strongly with coverage message and value proposition of tariff

@SmallCell_Forum: Optus Australia: unlimited femtocell voice calls cheaper than a latte

@small_cells: "we managed to mitigate the negative effect of it seeming like they were paying for coverage, hence the unlimited calls package"

@small_cells: "our initial commercial pilots taught us about the big challenge of integrating the femtocell with a variety of different modems"

@small_cells: "this product needs a seamless deployment, it must just plug and play - the consumer is short of patience with set up"

@stewartbaines: Optus: key to residential femto success...5 bar coverage AND differentiated (free standard national) calling from home

@small_cells: Optus have a lot of useful experience with consumer femtocell deployment, it's well worth learning the lessons they've learned!



@stewartbaines: I never realized my femto should be 1m away from my WiFi. You learn something new everyday!

@small_cells: "customers really enjoy the benefit of the connectivity, they absolutely love it - the challenge is how to price that service"

@small_cells: Great presentation from Matthew, lots of useful practical information from the Optus femtocell experience

@stewartbaines: Optus: next steps is presence-based apps and further differentiated pricing.

@stewartbaines: Optus: we're looking for presence-based apps/services for femtos. Anyone got a case study?

@small_cells: next speaker : Xiaojia Liu, Deputy General, Manager of Technology, China Unicom

@small_cells: "wireless network evolution is ongoing"

@small_cells: "more than 40 launches of the LTE network and 200 more commitments"

@small_cells: "LTE-A requires a 1gbs downlink"

@small_cells: "limited coverage of macro sites will become a very big problem"

@small_cells: Service Development Trends: Phones once used for voice call and SMS - now various uses and services including HD TV.

@Ubiquisys: As smartphone use grows, user habits have changed. There are now billions of 'always-on' customers

@small_cells: "40 - 60% mobile calls taking place indoors" leading to connectivity and capacity issues

@small_cells: "densely populated areas lead to more interference between installed femtocells requiring better interference handling technology"

@small_cells: "two deployment scenarios: Hotspot scenario and rural scenario - both requiring different solutions"

@Ubiquisys: Dense scenario is more suited to #China. Need a flexible, intelligent interfence coordination method #Chinacom

@small_cells: "main objective scenario : coverage (for) holes and hotspots"

@small_cells: "one objective of small cells is to minimise CAPEX and OPEX"

@Ubiquisys: Broadband resource, cost per unit and construction complexity should be taken into account in deployment #Chinacom

@small_cells: "small cells seem more flexible and give more choices for operator deployment"

@small_cells: "small cells bring more: higher capacity, better micro-offload, enhanced user experience"

@small_cells: "with small cells we can do more"

@stewartbaines: Is China Unicom suggesting handover between individual HeNBs?

@MarcianoGilbert: China Unicom: 2 small cells rollout scénario: Hotspot (close, semiopen, open for M2M use) & rural; Wifi + Cellular in tandem.

@Ubiquisys: Operators could provided new types of revenue-generating services in small cell development

@SmallCell_Forum: China Unicom: Small Cell Forum has important role in standardisation, comms, cooperation and IoT testing for small cell evolution

@LisaGCisco: Xiao Han China Unicom underscores key role of Small Cell Forum in increasing industry adoption through standardization and IOT

@MarcianoGilbert: China Unicom 10 provinces for precommercial network in small cells #ALU @SmallCell_Forum @Alcatel_Lucent

@lesanto: *very* detailed presentation from China Unicom - hope the slides are available for careful study later...

@SmallCell_Forum: China Unicom: X2 interface is a key component for managing interference in LTE: welcomes news that SCF is working on X2 interop

@small_cells: Next speaker: Mike Schabel - VP LightRadio, Alcatel-Lucent "Metro Cell : Thinking outside the box"

@small_cells: MS "I'd like to share our experiences with introducing LightRadio"

@small_cells: "there is a lot to extract from spectral efficiency - 1x or 2x capacity improvement"

@small_cells: "operators continue to lobby for more spectrum, including adding wi-fi"

@small_cells: "but we really need to look at spatial efficiency - outdoor metro cells are a part of that efficiency"

@stewartbaines: ALU: spectral efficiency can get 1.5x more capacity. Spatial efficiency can get 10x more capacity

@small_cells: we'll have an expanded number of nodes, as many as tens of thousands - and they could be anywhere

@small_cells: "but the box is probably the smallest part of the picture that needs to be solved"

@small_cells: "we have recognised just how important the beyond the box solution is"

@small_cells: "there's a large number of deployment challenges that need to be solved"

@small_cells: "ecosystem partners are likely to change, the whole value chain is up for grabs again"

@small_cells: "we need to talk about the box, I can't escape talking about the box"

@small_cells: it's important that the box is modular to meet the challenges of multiple deployments

@small_cells: "the box is in the public eye so we focussed on the look of the box"

@small_cells: "everything but the kitchen sink has to go into this box"

@small_cells: "you have to be careful about the design of the box, pay attention to details like heat dissipation"

@thinksmallcell: ALU 70% data traffic offload is the tipping point for commercial viability of a dedicated small cell carrier.

@thinksmallcell: ALU recapping that spatial efficiency (small cells) essential to meet forecast capacity growth of 25x

@stewartbaines: No silver bullet for metrocell backhaul. "I can't keep up" says Schnabel, ALU. Need every possible option

@thinksmallcell: ALU forecast 10x growth in cellsites for metro cells. OPEX more significant than CAPEX

@thinksmallcell: ALU explaining MetroDock - pluggable radio cards for compact metrocell. Is this the "radio blade server" for city lampposts?

@small_cells: "Backhaul : No silver bullet - requires comprehensive options"

@stewartbaines: If you can hang a Christmas light, can you really hang a metrocell?

@small_cells: "Site selection: no longer about RF positioning. Need to balance site availability, power, and backhaul"

@thinksmallcell: ALU claim to have automated design tool balancing RF location, backhaul and power for commercially viable best fit for#metrocells

@Alejandro_Avren: ALUH site acquisition major challenge for metrocell deployment..scramble has already begun

@small_cells: "what's not practical is to find an ideal site with no backhaul, that won't solve the problem"

@small_cells: "installation & commissioning a massive challenge, must design the product to make it easy to install without high-skilled labour"

@small_cells: "we have been going through and learning a tremendous amount of lessons with LightRadio"

@thinksmallcell: ALU saying they fully support X2 interface which would facilitate multivendor #HetNets

@small_cells: Next speaker : Will Franks CTO and co-founder of Ubiquisys

@small_cells: "smart cells is a hot topic in the industry"

@small_cells: "small cells serve 4 locations : Home : Enterprise : Urban : Rural "

@small_cells: "data wasn't the original driving factor it was voice quality and capacity"

@small_cells: "Now we are in the post data revolution era"

@small_cells: "we talk about metro cells on lampposts but 70% of mobile data is consumed indoors"

@stewartbaines: Ubiquisys: enterprises femtos are 1/4 cost of picos and DAS. Good news as most enterprises don't have DAS or picos due to cost

@small_cells: "rural backhaul is very costly, femto based technology with satellite backhaul speeds up rural deployment"

@small_cells: "small cells - a 7.7billion dollar opportunity!"

@small_cells: "one of the great things about metro indoor is there are a lot of sites - the real hotspots are indoor"

@small_cells: "50,000 public access small cells deployed - 200,000 open access femtocells deployed"

@Ubiquisys: Will Franks: Ubiquisys has 50k metro indoor small cells deployed around the world, mostly in Asia

@small_cells: "example Metro indoor hotspots stats: 90% of phones are smartphones : data to voice ratio is 10:1 : 10,000 data session in 24 hrs

@small_cells: "data dominated by chatty smartphone apps - signalling procedures per UE in busy hour - up to 50 users"

@Ubiquisys: Will Franks: traffic is dominated by data/signalling. Data is dominated by chatty smartphone apps. Users are highly transient.

@small_cells: "transient users - ave 7 mins in cell - different profile to wi-fi users who tend to dwell longer"

@small_cells: "cafe hotspot : people get their coffee and immediately fire up their browser or social network"

@small_cells: 'Map' of cafe hotspot cell usage shows data data data - lots of chatter but very little talking!

@Ubiquisys: Will Franks: small cells cover specific areas where traffic is heavily correlated

@small_cells: "challenges are not data use but cell overload, camp-on attempts, data vs signalling"

@small_cells: "our aim is zero touch deployment, making it as simple and as hands off as possible"

@Ubiquisys: Will Franks: The challenge for public access hotspots is no longer about headline data rates or call capacity

@small_cells: "hotspot robustness : these cells are 100% utilised in busy times and have to be able to manage themselves"

@small_cells: "smart cells are about extending the cloud to the edge of the network"

@small_cells: "why smart cells : it's about user experience"

@small_cells: "smart cells provide high-speed, short-range signal with low contention"

@small_cells: "Ubiquisys teamed up with Intel to put a comms-tuned compute platform in a small cell to make a smart cell"

@small_cells: "there are no standards issues with smart cells at all"

@Ubiquisys: Will Franks: Smart cells = small cell + hi spec server + clever apps

@small_cells: "proactive and predictive cache used to cut backhaul traffic - improves user experience"

@theshipster: Ubiquisys Will Franks: In Japan, small cells, with satellite backhaul, take rural coverage deployment time from 1 yr to 1 day

@small_cells: "more smart cell applications: cellular - wi-fi policy management : video / ad server : CDN clients : "

@Ubiquisys: With proactive smart cell caching, first play of a video plays from cloud, subsequent of same file play from cache

@small_cells: "small cells come in many flavours : home femtocells, enterprise small cells, metro indoor, metro outdoor and rural"

@Ubiquisys: Smart cells: optimise end UX, optimise backhaul performance, offer new edge cloud apps for service products

@MarcianoGilbert: Colt on stage promoting new business model managed femto services or How MVNO can distribute femto as a service

@Ubiquisys: Femto as a Service (FaaS) from a fixed service provider can accelerate deployment in buildings. Len Schuch of Colt

@small_cells: "enterprises have to embrace BYOD and Colt certainly are"

@Ubiquisys: FaaS opens the door for more mobile operators to deploy small cells

@small_cells: "demand and supply - don't believe the data crunch is a myth"

@small_cells: "near-time data growth has exceeded the value of last years Cisco VNI analysis"

@small_cells: "it's not just background data and email it is about delivering QoS"

@small_cells: "by 2016, 70% of data will be video"

@small_cells: "it's not 75kbps per sub spread over 6h it's 10Mbps per sub in 30s bursts"

@small_cells: "you can deliver high quality with low throughput but as soon as throughput increases you loose QoS"

@small_cells: "it's generally the backhaul which is the limit to throughout..."

@MarcianoGilbert: New thermodynamic demo on stage . After PV=NRT you have macro + small cell * hetnet = high QoS*high throughput

@Ubiquisys: Here's a slide visualising that smart cell proactive caching capability




@thinksmallcell: ip.access say X.2 interface isn't sufficient for purpose today. It needs to be for true multi vendor #HetNets

@small_cells: Speaker now is Hiroyuki Hosono Radio Access Network Development Dept at NTT DoCoMo

@small_cells: NTT DoCoMo already rolling out LTE products

@small_cells: by last March 30% Japanese population could access LTE, that'll be up to 70% by end of 2012!

@Alejandro_Avren: By end of 2012, NTT will cover 70% of population with LTE coverage

@small_cells: Japan will have almost total LTE coverage by end 2014

@small_cells: NTT DeCoMo have already signed up 2.2 million LTE subscribers and expect to hit 10m by end of 1q 2013.

@small_cells: "NTT DeCoMo see two main advantages for LTE femtocells : expanded coverage and traffic offload"

@small_cells: "approx 12 x data growth expected between 2011 & 2015 - we need to satisfy that future traffic demand"

@small_cells: "we will develop femtocell networks to help meet future data demand" NTT DeCoMo

@thinksmallcell: NTT DoCoMo forecast 12x mobile data traffic growth between 2011-2015. LTE #femtocells essential

@small_cells: "we may limit data speed of heavy users" NTT DeCoMo

@Alejandro_Avren: BH Telecom: more smart phones sold last year than PCs

@small_cells: "in 2011 more smartphones than PCs were sold"

@Ubiquisys: The number of smartphones sold exceeded PCs last year. In a few years the no of smartphones will dwarf PCs. #BHTelecom

@Ubiquisys: We are watching Adnan Hatalasevic talking about business solutions and synergy design for small cells and Wi-Fi

@small_cells: Next speaker Steve Price, Gen Manager, Comms and Infrastructure division, Intel

@small_cells: "I'd like to talk about building intelligence into the overall network"

@small_cells: watching a 'what happens in one internet minute video' ....http://techbullets.blogspot.co.uk/2012/06/internet-in-one-minute-intel.html



@small_cells: "mix of social networking and mobile users has changed the way we work and socialise. Now think ahead to 2015"

@stewartbaines: Here is that Intel internet minute infographic:



@small_cells: "what kind of network do we need for 2015 when there will be twice as many connected mobile devices as today?

@small_cells: "if done correctly you can increase revenue and decrease operating expenses"

@small_cells: "small cell base stations redefine HetNet economics"

@small_cells: "what is a smart cell? All small cells have some intelligence but now we are taking Intel's datacentre skills to the operator"

@small_cells: "the consumer with a mobile intelligent device can upload as much as he downloads, networks have to be symmetrical"

@small_cells: "we believe smart cells need massive storage abilities and high performance CPUs"

@small_cells: "smart small cells allow you to take advantage of value added services and offer better user experience"

@small_cells: "putting intelligence in a device increases cost, so we wanted to determine the economic benefits of smart small cells"

@small_cells: "we found there was a reduction in network operating costs of 22% when using smart cells, mainly from backhaul savings"

@Ubiquisys: Smart cells are more expensive than standard small cells, but fewer are needed to accomplish the same results @intel

@small_cells: "Summary business case findings: Improvements are seen in OpEx savings, specifically, in network OpEx"

@small_cells: "smart cells help with operator bottom line, beyond capacity and coverage"

@small_cells: "local caching and filtering eliminates peak hours overload"

@Ubiquisys: Conclusion: Smart Cells help with operator bottom line, beyond capacity and coverage @intel

@small_cells: we are in the midsts of a very exciting time in mobile comms - and the smart small cell is a key aspect of this revolution

@small_cells: "even Moore's law can't keep up with where the networks are going"

@small_cells: "silicon alone can't solve the thirst for bandwidth"

@Ubiquisys: Doug Pulley of @mindspeed is now talking about small cell architecture for RAN evolution

@small_cells: Next speaker : Doug Pulley - CTO Wireless, Wireless Business Unit - MindSpeed

@small_cells: "Small Cell Networks - Taking the strain - how many small cells to cover London - or the world!"

@small_cells: "Cell Traffic Dimensioning - what does it really take to overwhelm a cell?"

@small_cells: "internet video will be driving much of future mobile data traffic"

@small_cells: "is there a busy hour? most reports show traffic usage is fairly constant from 8-8"

@small_cells: "people are consuming data via multiple devices, my kids use three simultaneously - I don't know how they do it!"

@small_cells: Mindspeed's study suggests a London wide small cell network with over 71,000 base stations --- and 19 million needed worldwide!

@thinksmallcell: Mindspeed research study estimates global need for 19,059,612 small cells globally to meet Cisco VNI data traffic forecast

@small_cells: "all this detail helps specify and build the best small cell SoC solutions"

@small_cells: Next speaker is Viraj Abhayawardhana Specialist Strategy at BT talking about backhaul...

@small_cells: "BT provides fixed backhaul to all major mobile operators in the UK"

@small_cells: "BT Openzone has the biggest WiFi footprint in the UK. 16 wireless cities in the UK. 4 million UK hotspots"

@small_cells: "BT investing £2.5b extending fibre infrastructure close to home"

@small_cells: "Small Cells: How to identify sites, how to acquire sites, how to manage sites cost effectively, how to manage teams & field force

@small_cells: "street lamps came out top for small cell location"

@small_cells: "to reduce backhaul we must reuse as much capability as possible so we must try to leverage the fibre roll out"

@small_cells: "backhaul isn't just about access it's all about integrating, building an end to end OSS is a significant cost"

@SmallCell_Forum: BT: "Comedy and small cells: it's all about the timing"

@small_cells: "small cells have challenges in sites, backhaul and power - and costs have to come down"

@small_cells: "to solve backhaul problems, end to end service delivery and maintenance should be considered"

@Ubiquisys: Now in the conference room: OMA and @SmallCell_Forum cooperation - new enablers for new enhanced apps, from @telecomitaliaTw

@Ubiquisys: Digital use case at home: The Home wakes up and is aware of owners' presence, and gets adaptive to them! @telecomitaliaTw

@Ubiquisys: Shopping mall use case: Device tells you "Your favourite green ties today discounted" @telecomitaliaTw

@Ubiquisys: Now up at #SCWS2012, Yoav Volloch from @Broadcom: 3G/4G/5G multi RAT small cells

@Ubiquisys: Licensed vs Unlicensed: LTE enjoys better frequency bands, while Wi-Fi supports carrier aggregation @broadcom

@Ubiquisys: Broadcom believes a small cell is a multi RAT access point that manages the entire spectrum over a given cell range

@Ubiquisys: The business model for open access femtocells can be the same as ‘selling power to the grid’ @Broadcom

@Ubiquisys: Small cell solutions were born due to the practical need to increase 3G license spectrum capacity @broadcom

@Ubiquisys: Small cells are not low cost Macro cells; they have their own personality@Broadcom

@Ubiquisys: The final session of the day - a panel on new technologies reshaping the business case for small cells

@Ubiquisys: We get very hung up on presence + location aspect, but a valuable app is getting flat-rated local calls in coverage area

@stewartbaines: should enterprises get free at-desk mobile calls if they have a femto? And what of PBX integration?

@stewartbaines: Operators should think of the commercial value of presence & location from small cells

@Ubiquisys: @SmallCell_Forum asked consumers 'what apps would you pay for?’ Many were excited about having a home phone network

@Ubiquisys: #SCWS2012 in pictures http://ubiquisys.com/small-cells-blog/small-cells-world-summit-2012-in-pictures/ - Is that you I see?

Day 2 summary blogs



Small Cell Forum 2012 Award Winners


Day 3


@small_cells: First Speaker - Andy Sutton, Principal Network Engineer at Everything, Everywhere.

@small_cells: "small cells could be interpreted as anything non-macrocell"

@small_cells: "two different scenarios : capacity or coverage?"

@small_cells: "Femto provides in-building coverage for voice services"

@small_cells: "Public Access external small cells for capacity"

@small_cells: "we anticipate supporting voice as well as data on our public access small and pico cells"

@small_cells: "we're likely to see an improvement in spectral efficiency"

@small_cells: "if we deploy a 3g solution today we want to see an evolution path to LTE"

@small_cells: "on average we look at small cells costing 1/10th the cost of a macro"

@small_cells: "key performance indicators should ideally be the same as the macro network"

@small_cells: "you could open a new area of coverage and this is a different scenario to simply adding capacity to an existing hotspot"

@small_cells: "small cells are a game changer in terms of how we architect networks"

@small_cells: "both LoS and NLoS have a part to play in small cell backhaul"

@small_cells: "backhaul could be fully integrated with macro network or completely decoupled with an overlay (underlay) solution"

@small_cells: "we will see small cells rolled out in volume to support mobile network evolution"

@small_cells: "small cell sites must have a very low TCO in the region of 10% of that associated with macro sites"

@small_cells: "several backhaul solutions will be required to meet all likely deployment scenarios"

@small_cells: "reducing latency could be a significant battleground in the LTE market"

@small_cells: Yoshihito Shimazaki Deputy Division Head, from Softbank

@small_cells: Yoshito will talk to us about the status of LTE small cells

@small_cells: "in Japan data usage is crazy"

@thinksmallcell: everything everywhere say 3G metro cells will gain real traction during 2013. Expects dual carrier 3G before LTE

@small_cells: "What is the key to mobile market up-growth -- Market share : ARPU improvement : Market Value Improvement "

@small_cells: "four competition elements to win: 1 Network 2 service 3 charge rate 4 customer service "

@small_cells: "number of Softbank base stations: 190,000 -- excluding home femtocells"

@small_cells: "by May 2012 Softbank had deployed 121,850 home femtocells, the figure continues to rise"

@small_cells: very dense deployment of small cells in metropolitan Tokyo

@small_cells: "outdoor cell sites cannot cover all indoor areas in downtown Tokyo"

@small_cells: "femto to macro handover is very important to indoor"

@thinksmallcell: SoftBank almost completed trial of handover from inbuilding Femto to macrocell. Improved abnormal call drop rate by 3.5%

@small_cells: "we got the number one tv commercial by deploying the white dog"

@small_cells: "smartphone data traffic is 10X more than a feature phone"

@small_cells: "mobile network traffic will grow 12X from FY2010 to FY2016"

@small_cells: "Tokyo data use is very crazy, I can't believe it"

@stewartbaines: SoftBank: mobile distribution in Japan. Check out the Tokyo spike





@small_cells: "we are deploying a multi-layer cell architecture"

@small_cells: "we need a very strong co-operative interface coordination"

@small_cells: current speaker : Jang Ahn Kwon Chief Marketing Officer & VP, Contela Inc.

@thinksmallcell: korea has >50% smartphones, 7M LTE subs today, 14M by end 2012. Competition is fierce

@thinksmallcell: LTE congestion in Korea came sooner than expected

@small_cells: "home small cell needs to be dual mode to support 3G and LTE for legacy handsets"

@thinksmallcell: Korea residential femtocells need to be dual mode 3G and LTE say Contela. Not everyone in a family will have LTE handsets

@thinksmallcell: Contela achieved 60Mbps downlink and 25Mbps uplink performance on their LTE femtocell field trials

@small_cells: Current speaker : Jie Zhang - Ranplan "small cell deployment in heterogeneous networks"

@small_cells: Fascinating coverage mapping slides from Jie Zhang - graphically illustrating coverage benefits of small cell deployment

@small_cells: "Intelligent Cell Optimisation (ICO) shows where small cells should be located"

@disruptivedean: After listening to comments at #SCWS2012 , I think that some forms of carrier WiFi will make sense outdoors. But indoor proposition trickier

@small_cells: it seems European homes are better at blocking mobile signals that US homes...

@small_cells: "providing better coverage throughout the entire home gets the whole family on the operator's plan"

@small_cells: "does it work? does it really offer long lasting value to the subscriber and operator"

@small_cells: current speaker is "Michiel Lotter, VP of Engineering Nextivity Inc.

@small_cells: "95% of customers who installed cel-fi remained with operator (as opposed to churning away)"

@small_cells: "50% of mobile users worldwide don't have access to broadband, meaning femtos are not an option"

@small_cells: Next speaker: Andy Germano Vice Chairman Small cell Forum

@small_cells: "why small cell service? 5 bar indoor coverage"

@small_cells: "small cells allow for application sweetspot"

@small_cells: "small cells can help deliver the intelligent home"

@small_cells: "small cell networks can help deliver location based services"

@small_cells: "small cells enable shopping 2.0"

@small_cells: "8 different demos of small cell enabled apps going on at recent small cell forum"

@small_cells: "consumers want small cell services and are willing to pay"

@Alejandro_Avren: Sunrise Switzerland now on the main stage, presenting their project status on their femtocell deployment

@small_cells: "Sunrise is under pressure to constantly add capacity, enhance the user experience, & keep a lid on total cost of ownership"

@Alejandro_Avren: Sunrise: 16 time data usage increase expected by 2017, doubling every year until 2014!!

@small_cells: "avoid problems- avoid low price users eating up too much capacity : maximise utilisation of spectrum : deploy smart wi-fi offload

@small_cells: "the congested 3g cell rate is increasing whereas the footprint of the congested cells remains the same"

@small_cells: "demanding environmental factors in Switzerland will favour the use of small cells"

@small_cells: "Sunrise will continue to use the femto and is ready for wide-spread deployment"

@small_cells: "main purpose: to deliver cost efficient object special coverage to compliment macro base station portfolio"

@small_cells: Sunrise will "continue to use femto as a retention and business enabler tool"

@small_cells: "fair use policies reduce levels of data use growth temporarily but they cannot reverse the skyrocketing demand for mobile data"

@small_cells: "small cells vendors need to support SON for HetNet as well as an effective small cells management"

@small_cells: next speaker: Jean-Christophe Nanan, RF systems engineer at Freescale - small cells call for scaleable architecture

@small_cells: Final speaker is Joseph Byre Analyst at the Linley Group

@small_cells: "Mobile bandwidth is increasing"

@small_cells: UK is depressingly blue on a map showing LTE enabled areas in red :0(

@small_cells: "funding for bandwidth increases and alternatives is decreasing, pressuring OEMs and Chip Cos."

@small_cells: "ARPU rising only 3%"

@small_cells: "Base station costs falling from $40K"

@small_cells: "Moore's Law enables cost reduction but heats up competition among chip companies"

@small_cells: "to defend or capture share, chip companies are rushing in to supply base station processors"

@small_cells: "the opportunity for system vendors is an opportunity for chip factors"

@small_cells: "markets tend to ramp later than expected but ramps tend to be bigger than forecast"

@small_cells: "market drivers for femtocells are problematical"

@small_cells: "shipment growth has only just begun - enough data to define a trend?"

@small_cells: "vague plans by major operators to deploy"

@small_cells: "causes for concern - technology dynamics: ..."

@thinksmallcell: NEC's outdoor metrocell. Looks pretty solid and durable to me. Believed to be Ubiquisys technology inside.



Day 3 Roundups



FINAL Roundups


Thanks to all those who tweeted and made this article possible. Credit to the following people

@lesanto = Glenn Le Santo
@stewartbaines = Stewart Baines
@thinksmallcell = David Chambers
@Ubiquisys = Keith Day
@LisaGCisco = Lisa Garza
@bmbarnowski = Barney Barnowski
@Alejandro_Avren = Alejandro Piñero
@MarkBLHenry = Mark Henry
@disruptivedean = Dean Bubley
@SmallCell_Forum = Small Cell Forum
@danieldotfox = Daniel Fox
@vodafoneNZ = Vodafone New Zealand
@dmavrakis = Dimitris Mavrakis
@small_cells = Small Cells
@Lance_Hiley = Lance Hiley
@joelpagot = Joel Pagot
@markc_reed = Mark Reed
@MarcianoGilbert = Gilbert Marciano
@theshipster = Steve Shipley


If you enjoyed reading this why dont you let me know by clicking the 'Very Useful' checkbox below this post.